78,149 research outputs found

    A Sparse-Modeling Based Approach for Class Specific Feature Selection

    Get PDF
    In this work, we propose a novel Feature Selection framework called Sparse-Modeling Based Approach for Class Specific Feature Selection (SMBA-CSFS), that simultaneously exploits the idea of Sparse Modeling and Class-Specific Feature Selection. Feature selection plays a key role in several fields (e.g., computational biology), making it possible to treat models with fewer variables which, in turn, are easier to explain, by providing valuable insights on the importance of their role, and likely speeding up the experimental validation. Unfortunately, also corroborated by the no free lunch theorems, none of the approaches in literature is the most apt to detect the optimal feature subset for building a final model, thus it still represents a challenge. The proposed feature selection procedure conceives a two-step approach: (a) a sparse modeling-based learning technique is first used to find the best subset of features, for each class of a training set; (b) the discovered feature subsets are then fed to a class-specific feature selection scheme, in order to assess the effectiveness of the selected features in classification tasks. To this end, an ensemble of classifiers is built, where each classifier is trained on its own feature subset discovered in the previous phase, and a proper decision rule is adopted to compute the ensemble responses. In order to evaluate the performance of the proposed method, extensive experiments have been performed on publicly available datasets, in particular belonging to the computational biology field where feature selection is indispensable: the acute lymphoblastic leukemia and acute myeloid leukemia, the human carcinomas, the human lung carcinomas, the diffuse large B-cell lymphoma, and the malignant glioma. SMBA-CSFS is able to identify/retrieve the most representative features that maximize the classification accuracy. With top 20 and 80 features, SMBA-CSFS exhibits a promising performance when compared to its competitors from literature, on all considered datasets, especially those with a higher number of features. Experiments show that the proposed approach may outperform the state-of-the-art methods when the number of features is high. For this reason, the introduced approach proposes itself for selection and classification of data with a large number of features and classes

    Exploiting Low-dimensional Structures to Enhance DNN Based Acoustic Modeling in Speech Recognition

    Get PDF
    We propose to model the acoustic space of deep neural network (DNN) class-conditional posterior probabilities as a union of low-dimensional subspaces. To that end, the training posteriors are used for dictionary learning and sparse coding. Sparse representation of the test posteriors using this dictionary enables projection to the space of training data. Relying on the fact that the intrinsic dimensions of the posterior subspaces are indeed very small and the matrix of all posteriors belonging to a class has a very low rank, we demonstrate how low-dimensional structures enable further enhancement of the posteriors and rectify the spurious errors due to mismatch conditions. The enhanced acoustic modeling method leads to improvements in continuous speech recognition task using hybrid DNN-HMM (hidden Markov model) framework in both clean and noisy conditions, where upto 15.4% relative reduction in word error rate (WER) is achieved

    Performance Analysis and Optimization of Sparse Matrix-Vector Multiplication on Modern Multi- and Many-Core Processors

    Full text link
    This paper presents a low-overhead optimizer for the ubiquitous sparse matrix-vector multiplication (SpMV) kernel. Architectural diversity among different processors together with structural diversity among different sparse matrices lead to bottleneck diversity. This justifies an SpMV optimizer that is both matrix- and architecture-adaptive through runtime specialization. To this direction, we present an approach that first identifies the performance bottlenecks of SpMV for a given sparse matrix on the target platform either through profiling or by matrix property inspection, and then selects suitable optimizations to tackle those bottlenecks. Our optimization pool is based on the widely used Compressed Sparse Row (CSR) sparse matrix storage format and has low preprocessing overheads, making our overall approach practical even in cases where fast decision making and optimization setup is required. We evaluate our optimizer on three x86-based computing platforms and demonstrate that it is able to distinguish and appropriately optimize SpMV for the majority of matrices in a representative test suite, leading to significant speedups over the CSR and Inspector-Executor CSR SpMV kernels available in the latest release of the Intel MKL library.Comment: 10 pages, 7 figures, ICPP 201

    Sparse model identification using a forward orthogonal regression algorithm aided by mutual information

    Get PDF
    A sparse representation, with satisfactory approximation accuracy, is usually desirable in any nonlinear system identification and signal processing problem. A new forward orthogonal regression algorithm, with mutual information interference, is proposed for sparse model selection and parameter estimation. The new algorithm can be used to construct parsimonious linear-in-the-parameters models
    • …
    corecore