3 research outputs found

    A sparse decomposition of low rank symmetric positive semi-definite matrices

    Get PDF
    Suppose that A∈RNΓ—NA \in \mathbb{R}^{N \times N} is symmetric positive semidefinite with rank K≀NK \le N. Our goal is to decompose AA into KK rank-one matrices βˆ‘k=1KgkgkT\sum_{k=1}^K g_k g_k^T where the modes {gk}k=1K\{g_{k}\}_{k=1}^K are required to be as sparse as possible. In contrast to eigen decomposition, these sparse modes are not required to be orthogonal. Such a problem arises in random field parametrization where AA is the covariance function and is intractable to solve in general. In this paper, we partition the indices from 1 to NN into several patches and propose to quantify the sparseness of a vector by the number of patches on which it is nonzero, which is called patch-wise sparseness. Our aim is to find the decomposition which minimizes the total patch-wise sparseness of the decomposed modes. We propose a domain-decomposition type method, called intrinsic sparse mode decomposition (ISMD), which follows the "local-modes-construction + patching-up" procedure. The key step in the ISMD is to construct local pieces of the intrinsic sparse modes by a joint diagonalization problem. Thereafter a pivoted Cholesky decomposition is utilized to glue these local pieces together. Optimal sparse decomposition, consistency with different domain decomposition and robustness to small perturbation are proved under the so called regular-sparse assumption (see Definition 1.2). We provide simulation results to show the efficiency and robustness of the ISMD. We also compare the ISMD to other existing methods, e.g., eigen decomposition, pivoted Cholesky decomposition and convex relaxation of sparse principal component analysis [25] and [40]

    Sparse operator compression of higher-order elliptic operators with rough coefficients

    Get PDF
    We introduce the sparse operator compression to compress a self-adjoint higher-order elliptic operator with rough coefficients and various boundary conditions. The operator compression is achieved by using localized basis functions, which are energy-minimizing functions on local patches. On a regular mesh with mesh size hh, the localized basis functions have supports of diameter O(hlog⁑(1/h))O(h\log(1/h)) and give optimal compression rate of the solution operator. We show that by using localized basis functions with supports of diameter O(hlog⁑(1/h))O(h\log(1/h)), our method achieves the optimal compression rate of the solution operator. From the perspective of the generalized finite element method to solve elliptic equations, the localized basis functions have the optimal convergence rate O(hk)O(h^k) for a (2k)(2k)th-order elliptic problem in the energy norm. From the perspective of the sparse PCA, our results show that a large set of Mat\'{e}rn covariance functions can be approximated by a rank-nn operator with a localized basis and with the optimal accuracy
    corecore