18,421 research outputs found

    A Sparse Bayesian Deep Learning Approach for Identification of Cascaded Tanks Benchmark

    Get PDF
    Nonlinear system identification is important with a wide range of applications. The typical approaches for nonlinear system identification include Volterra series models, nonlinear autoregressive with exogenous inputs models, block-structured models, state-space models and neural network models. Among them, neural networks (NN) is an important black-box method thanks to its universal approximation capability and less dependency on prior information. However, there are several challenges associated with NN. The first one lies in the design of a proper neural network structure. A relatively simple network cannot approximate the feature of the system, while a complex model may lead to overfitting. The second lies in the availability of data for some nonlinear systems. For some systems, it is difficult to collect enough data to train a neural network. This raises the challenge that how to train a neural network for system identification with a small dataset. In addition, if the uncertainty of the NN parameter could be obtained, it would be also beneficial for further analysis. In this paper, we propose a sparse Bayesian deep learning approach to address the above problems. Specifically, the Bayesian method can reinforce the regularization on neural networks by introducing introduced sparsity-inducing priors. The Bayesian method can also compute the uncertainty of the NN parameter. An efficient iterative re-weighted algorithm is presented in this paper. We also test the capacity of our method to identify the system on various ratios of the original dataset. The one-step-ahead prediction experiment on Cascaded Tank System shows the effectiveness of our method. Furthermore, we test our algorithm with more challenging simulation experiment on this benchmark, which also outperforms other methods

    Integrated Pre-Processing for Bayesian Nonlinear System Identification with Gaussian Processes

    Full text link
    We introduce GP-FNARX: a new model for nonlinear system identification based on a nonlinear autoregressive exogenous model (NARX) with filtered regressors (F) where the nonlinear regression problem is tackled using sparse Gaussian processes (GP). We integrate data pre-processing with system identification into a fully automated procedure that goes from raw data to an identified model. Both pre-processing parameters and GP hyper-parameters are tuned by maximizing the marginal likelihood of the probabilistic model. We obtain a Bayesian model of the system's dynamics which is able to report its uncertainty in regions where the data is scarce. The automated approach, the modeling of uncertainty and its relatively low computational cost make of GP-FNARX a good candidate for applications in robotics and adaptive control.Comment: Proceedings of the 52th IEEE International Conference on Decision and Control (CDC), Firenze, Italy, December 201

    Machine Learning for Fluid Mechanics

    Full text link
    The field of fluid mechanics is rapidly advancing, driven by unprecedented volumes of data from field measurements, experiments and large-scale simulations at multiple spatiotemporal scales. Machine learning offers a wealth of techniques to extract information from data that could be translated into knowledge about the underlying fluid mechanics. Moreover, machine learning algorithms can augment domain knowledge and automate tasks related to flow control and optimization. This article presents an overview of past history, current developments, and emerging opportunities of machine learning for fluid mechanics. It outlines fundamental machine learning methodologies and discusses their uses for understanding, modeling, optimizing, and controlling fluid flows. The strengths and limitations of these methods are addressed from the perspective of scientific inquiry that considers data as an inherent part of modeling, experimentation, and simulation. Machine learning provides a powerful information processing framework that can enrich, and possibly even transform, current lines of fluid mechanics research and industrial applications.Comment: To appear in the Annual Reviews of Fluid Mechanics, 202

    Distributed Reconstruction of Nonlinear Networks: An ADMM Approach

    Full text link
    In this paper, we present a distributed algorithm for the reconstruction of large-scale nonlinear networks. In particular, we focus on the identification from time-series data of the nonlinear functional forms and associated parameters of large-scale nonlinear networks. Recently, a nonlinear network reconstruction problem was formulated as a nonconvex optimisation problem based on the combination of a marginal likelihood maximisation procedure with sparsity inducing priors. Using a convex-concave procedure (CCCP), an iterative reweighted lasso algorithm was derived to solve the initial nonconvex optimisation problem. By exploiting the structure of the objective function of this reweighted lasso algorithm, a distributed algorithm can be designed. To this end, we apply the alternating direction method of multipliers (ADMM) to decompose the original problem into several subproblems. To illustrate the effectiveness of the proposed methods, we use our approach to identify a network of interconnected Kuramoto oscillators with different network sizes (500~100,000 nodes).Comment: To appear in the Preprints of 19th IFAC World Congress 201
    corecore