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A Sparse Bayesin Deep Learning Approach
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Abstract: Nonlinear system identification is important with a wide range of applications. The
typical approaches for nonlinear system identification include Volterra series models, nonlinear
autoregressive with exogenous inputs models, block-structured models, state-space models and
neural network models. Among them, neural networks (NN) is an important black-box method
thanks to its universal approximation capability and less dependency on prior information.
However, there are several challenges associated with NN. The first one lies in the design of a
proper neural network structure. A relatively simple network cannot approximate the feature of
the system, while a complex model may lead to overfitting. The second lies in the availability
of data for some nonlinear systems. For some systems, it is difficult to collect enough data
to train a neural network. This raises the challenge that how to train a neural network for
system identification with a small dataset. In addition, if the uncertainty of the NN parameter
could be obtained, it would be also beneficial for further analysis. In this paper, we propose
a sparse Bayesian deep learning approach to address the above problems. Specifically, the
Bayesian method can reinforce the regularization on neural networks by introducing introduced
sparsity-inducing priors. The Bayesian method can also compute the uncertainty of the NN
parameter. An efficient iterative re-weighted algorithm is presented in this paper. We also test
the capacity of our method to identify the system on various ratios of the original dataset. The
one-step-ahead prediction experiment on Cascaded Tank System shows the effectiveness of our
method. Furthermore, we test our algorithm with more challenging simulation experiment on
this benchmark, which also outperforms other methods.

Keywords: Nonlinear system identification, Deep neural network, Sparse Bayesian learning.

1. INTRODUCTION

Neural network (NN) is an important nonlinear system
identification method. Its main advantages lie in two as-
pects. First of all, neural networks have the capability
for universal approximation (Sontag, 1993; Hornik et al.,
1989). They can approximate a nonlinear system, e.g.
using Fully-Connected (FC) networks with several hid-
den layers for both static and dynamic nonlinear sys-
tems (Narendra and Parthasarathy, 1992, 1990); using
recurrent neural networks for the dynamic identification
and control of nonlinear systems (Jeen-Shing Wang and
Yen-Ping Chen, 2006; Dinh et al., 2010). Secondly, as a
black-box method, a neural network could be trained on
observed data without any prior information about the
system (Liu, 2012).

However, there are some challenges in using neural net-
works for nonlinear system identification. The first chal-
lenge is the design of an appropriate neural network struc-
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ture. A system cannot be approximated with a simple
structure, while a complex one may lead to overfitting
due to the intrinsic connections. Therefore, the balance be-
tween complexity and model prediction accuracy of neural
network should be considered. A second challenge lies in
the availability of data. For some nonlinear systems, the
collection of data is very difficult. In other words, a method
that can train a neural network with small dataset is highly
desired.

Given these problems, we notice that Bayesian system
identification provides a probabilistic perspective in under-
standing and tackling these issues. Specifically, Bayesian
approaches have the following advantages: 1) Overfitting
could be alleviated by penalizing over model parame-
ters (MacKay, 1995); 2) The uncertainty of the model
could be quantified, which would be beneficial for anal-
ysis (Peterka, 1981); 3) Fewer tuning of hyper-parameters
(MacKay, 1992; Hernández-Lobato and Adams, 2015); 4)
Sparsity-inducing hyper-priors eliminates model redun-
dancies (Pan et al., 2016; Jacobs et al., 2018; Pan,
2017). A range of Bayesian nonlinear identification solu-
tions have been developed in the last decades. To name
just a few examples, Pan et al. (2016, 2014); Pan (2017)
proposed a sparse Bayesian approach for nonlinear state-
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space systems. By combining Gaussian process regression,
Bayesian nonparametric methods are developed for NARX
modelling (Frigola and Rasmussen, 2013; Kocijan et al.,
2005). It was also explored to identify biochemical reac-
tion networks from single dataset (Pan et al., 2012)and
heterogeneous datasets (Pan et al., 2015), respectively.
And recently a cyber-physical system modelled by hybrid
system can be automatically discovered from data (Yuan
et al., 2019). Furthermore, the sparse Bayesian learn-
ing algorithms using automatic relevance determination
(ARD) also have been applied for different applications,
e.g. regression and classification (Bishop and Tipping,
2000; Tipping, 2001), signal denoising (Zhang et al., 2008),
neural architecture search (Zhou et al., 2019) and pattern
recognition (Mu and Yuen, 2017).

Inspired by the advantage of Bayesian method, we propose
to address the challenges of neural network models from
two aspects: a) the neural network could be modelled from
Bayesian perspective; b) a sparse neural network could be
obtained by applying a sparse Bayesian learning approach.
Specifically, the objective is to maximize the posterior
estimation of the weight matrices. To compute intractable
marginal likelihood, we adopt the Laplace approximation
method. The likelihood is assumed to be Gaussian distri-
bution. The Gaussian priors for the weight matrices are
incorporated to promote sparsity. Under these conditions,
the Bayesian nonlinear system identification could be re-
garded as a type II maximum likelihood problem (Tipping,
2001). An re-weighted algorithm is proposed to estimate
the system parameter and introduced hyper-parameter
iteratively.

The proposed method could reduce the burden on net-
work design for different applications. We could initialize
a deep and complex network structure to guarantee the
ability to approximate the nonlinear system. And a very
sparse Bayesian neural network could be obtained in the
end which will address the overfitting problem. At the
same time, the relative sparse structure also reduces the
requirement for huge data. Two experiments are imple-
mented on Cascaded tank system (Schoukens et al., 2016)
in this paper. The first one is the one-step ahead prediction
experiment which shows the proposed approach could keep
the prediction performance even with a small dataset. In
addition, we also did the simulation experiment, which is
more challenging. The simulation result further support
that our method could learn the intrinsic feature of a
system or process.

The paper is organized as follows. In Section 2, the general
nonlinear system identification problem is formulated by
using neural network. The nonlinear system identification
problem is formulated from the perspective of the Bayesian
theory in Section 3. In Section 4, the proposed sparse
Bayesian approach is elaborated. Details about both the
prediction and simulation experiments can be found in
Section 5. In Section 6, we conclude and discuss several
problems that we plan to study in the future.

2. PROBLEM FORMULATION

The objective of the neural network approach is to approx-
imate the system input/output relations based on a finite
dataset. Given a nonlinear system with collected regressor

Fig. 1. A multi-layer perceptron with one hidden layer.

vector z(t) = [u(t), u(t−1), . . . , u(t−na), y(t−1), . . . , y(t−
nb)] ∈ Rna+nb+1, where u(t), y(t) stands for the system
input and output and na, nb are two scalars to define
the maximum lags. For simplicity, we assume both u(t)
and y(t) be scalars, and the identification problem with a
neural network could be formulated as building following
mathematical model:

ŷ(t+ 1) = Net(z(t),W(t)) + ξ (1)

where ξ is the noise with zero-mean normally distribution
ξ ∼ N (0, σ2). Net(·) represents the nonlinear mapping
Rna+nb → R, which will be realized by the neural network.
W(t) denotes the weight matrices to be optimized in
the neural network. If we suppose the neural network
includes L layers, W(t) could be denoted as W(t) ,[
W (t)1,W (t)2, . . . ,W (t)L

]
. And W (t)l ∈ Rnl−1×nl(l =

1, . . . , L) stands for the weight matrix between layer l− 1
and layer l, where nl−1 and nl are the number of neurons
in these two layers.

There are many different typical structures for a neural
network, e.g. Convolutional Neural Network, Recurrent
Neural Network and Multi-Layer Perceptron (MLP). MLP
is the most common architecture, which is a feed-forward
network constructed by arranging perceptron-type neu-
rons in different layers. In the following, we will take
MLP as an example to explain how the neural network
works for system identification. And Fig. 1 is a schematic
representation of a MLP with a single hidden layer.

As a fully connected network, every neuron in MLP is
connected to other neurons in the adjacent layers. As
shown in Fig. 1, a1

j , the output of the j-th neuron in the
hidden layer, could be computed as:

h1
j = W 1z + b1 =

na+nb+1∑
i=1

(W 1
ijzi + b1j ), (2a)

a1
j = f(h1

j ) (2b)

where z is the input of the network; W 1
ij is the weighted

scalar which determines the strength of the connection
between the i-th neuron in the input layer and j-th neuron
in the hidden layer. b is the bias. Eq. (2a) stands for
the linear combination, which is computed as the sum of
product between the weight matrix W 1 and input vector
z. The nonlinear behaviour of the neural network model
is decided by f(·), which is named as the nonlinear acti-
vation function. The common activation functions include
the logistic sigmoid function a = 1

1+e−h , the hyperbolic



tangent function a = e2h−1
e2h+1

and the point-wise rectified

linear units a = max(h, 0).

By using the neural network for system identification,
we need to find the optimal weight parameters for fit-
ting the observations according to the criterion function,
i.e. root mean square error (RMSE), i.e. RMSE(ŷ, y) =√

1
N

N∑
t=1

(y(t)− ŷ(t))2, where ŷ is the predicted output and

y is the true output. With the defined criterion function,
the training for a neural network could be implemented
with stochastic gradient descent (SGD). The predicted
errors assessed by the criterion function will be back-
propagated through the network. And both the weights
and biases of the network will be updated iteratively
during the training process. However, the conventional
method for training a neural network cannot solve the
overfitting problem. A sparser and simpler network is
expected to approximate the non-linear system accurately
to a sufficient extent. In the next section, this problem will
be addressed from a Bayesian perspective.

3. A BAYESIAN FRAMEWORK FOR NONLINEAR
SYSTEM IDENTIFICATION

Bayesian method offers a principal way to infer certain
probability distributions for the unknown parameters W .
In this section, we will explain the nonlinear system
identification problem within a Bayesian framework. For
easy notation, W in this section denotes W (t)l which
represents any 2-D weight matrix in a neural network and
has been defined in Section 2.

3.1 Bayesian Posterior Estimation

Given the measured data set y = [y(1), ..., y(N)], the
posterior distribution for parameters W could be denoted
as:

p(W |y) =
p(y|W )p(W )

p(y)
(3)

where p(y|W ) is the likelihood function and p(W ) refers
to the prior distribution for W ; the marginal likelihood
p(y) could be calculated as p(y) =

∫
p(y|W )p(W )dW .

It is obvious that to achieve the posterior distribution,
we should calculate the items in both numerator and
denominator in Eq. (3).

3.2 Likelihood Function

We suppose the distribution of data likelihood belongs to
a Normal distribution:

p(y|W,σ2) =

N∏
t=1

N (y(t)|Net(z(t),W);σ2)

= (2πσ2)
N
2 exp

(
− 1

2σ2

N∑
t=1

(y(t)−Net (z(t),W))2

) (4)

3.3 Priors

As the likelihood given by Eq. (4) is a member of the
exponential family, it is also better to define the prior as

an exponential distribution which satisfies the conjugacy
requirement (Bishop, 2006). We define a Gaussian prior
distribution p(W ), which could enforce sparsity on W :

p(W ) =

nl−1∏
i=1

nl∏
j=1

N (Wij |0, υij)p(υij) (5)

where υij is an unknown parameter which should also be
inferred. Therefore, we introduce the hyper-prior p(υij),
which should be a non-negative function. Considering
gamma priors have the effect of promoting sparsity (Tip-
ping, 2001), we choose gamma distribution as the hyper-
prior,i.e., p(υij) = Gamma(υij |a, b) (Berger, 2013). To
make the prior flat, a and b is simply fixed to be zero (Tip-

ping, 2001). If we define υ , [υ1, . . . , υj , . . . , υnl
] ∈

R(nl−1×nl,1)
+ , where υj =

[
υ1j , . . . , υnl−1j

]
, a joint distri-

bution W and υ could be formed as:

p(W,υ) =

nl−1∏
i=1

nl∏
j=1

N (Wij |0, υij)p(υij)

= N (W |0,Υ)p(υ),

(6)

where Υ = diag [υ].

3.4 Marginal Likelihood

After introducing the υ, the key question is to select
appropriate υ̂ = [υ̂1, . . . , υ̂nl

] to make p(W |y, υ̂, σ2) be
a close relaxation to the posterior distribution p(W |y). If
the parameter of the likelihood distribution σ is fixed, the
optimal υ̂ could be decided by the principle of minimizing
the misaligned probability:

υ̂ = arg min
υ≥0

∫
p(y|W,σ2)

(∣∣p(W )− p(W,υ)
∣∣) dW (7)

As p(W,υ) ≤ p(W ), the solution for (7) can be converted
as type-II maximum likelihood (Tipping, 2001):

υ̂ = argmax
υ≥0

∫
p(y|W,σ2)N (W |0,Υ)p(υ)dW (8)

This also means that the optimal hyperparameters υ̂ can
be computed by maximizing the marginal likelihood.

4. SPARSE BAYESIAN DEEP LEARNING

As elaborated in Section 3.4, the nonlinear system iden-
tification problem could be regarded as an optimization
problem. In this section, we will propose the optimization
procedures and derive an iterative algorithm.

4.1 Optimization Problem Formulation

We formulate the optimization problem in proposition 1 .

Proposition 1. With the likelihood in Eq. (4) and the
sparse inducing prior in Eq. (6), the unknown parameter
W l, hyperparameter υl could be obtained by solving
following approximated optimization problem:

min
W l,υl,σ2

L(W l,υl, σ2)

with
L(W l,υl, σ2)

=W l>
[
Hl + Υl−1

]
W l + 2W l>

[
Gl −HlW l∗

]
+ log |Υl|

+ log |Hl + Υl−1| −N log (2πσ2) · bl − 2

nl−1∑
i=1

nl∑
j=1

log p(υlij)

(9)



Fig. 2. Structural sparsity for 2-D weight matrices

where bl , b(W l∗, σ2) with:

exp

{
−

1

2
W l∗>HlW l∗ +W l∗>Gl −

1

2σ2

N∑
t=1

(y(t)−Net(z(t),W∗))2
}

for simplicity, we use Hl and Gl to denote G(W l∗, σ2) and

H(W l∗, σ2) which are the gradient and Hessian of W l∗.

As analyzed in Section 3.4, the key question is to select
optimal υ̂ and then update W . Therefore, if we first
initialize σ2 to some reasonable value, the proposition 1
could be re-formulated as:

Proposition 2. With known σ2, the optimization problem
in Eq. (9) could be solved with a convex-concave procedure
(CCCP):

min
W l,υl

L(W l,υl)

with the cost function: with

L(W l,υl) ,W l>HlW l + 2W l>
[
Gl −HlW l∗

]
+W l>Υl−1

W l + log |Υl|+ log |Hl + Υl−1|
(10)

With proposition 2, we also give the analytic form for
υl and W l based on the chain rule and basic principle
for convex analysis. We give the iterative analytic form
directly as Eq. (11)-Eq. (14).

Cl(t) =
(

Υl(t)
−1

+ H(W l∗, σ2∗)
)−1

(11)

αlij(t) = −
Cl
ij(t)

υlij(t)
2

+
1

υlij(t)
(12)

υlij(t+ 1) =
|W l

ij(t+ 1)|
ωlij(t)

(13)

where C and α(t) are the introduced intermediate vari-

ables; ωij is assumed as ωij ,
√
αij . For W l, it could be

updated according to:

W l(t+ 1) =argmin
W l

W l>HlW l + 2W l>
(
Gl −HlW l∗

)
+ 2

nl−1∑
i=1

nl∑
j=1

‖ωl
ij(t) ·W l

ij‖`1

≈argmin
W l

E(·) +R(ωl(t) ◦W l(t))

(14)

where R(·) stands for the regularization item.

4.2 Algorithm

By introducing the Bayesian framework, we propose a
sparse Bayesian deep learning algorithm. The pseudo-code
is summarized in Algorithm 1.

The algorithm is consisting of three parts. The first part
is a reweighted optimization, where E(·) is usually known
as the loss function in a neural network as mean square

Algorithm 1 Sparse Bayesian Deep learning algorithm

Initialize: hyper-parameters ωl(0),Υl(0) = 1; regulariza-
tion tuning parameter λl ∈ R+; threshold for NN pruning
κυ, κw ∈ R+; where l = 1, . . . , L;
for t = 1 to Tmax

(1) Maximum likelihood with regularization:

min
W

E(·) +

L∑
l=1

λlR(ωl(t) ◦W l(t)) (15)

(2) Update hyper-parameters Υ(t)l, α(t)l, ω(t)l,∀l =
1, . . . , L, as Table 1.

(3) Dynamic pruning:
if υij(t) < κυ or |Wij(t)| < κw then

prune Wij(t)
end if

end for

error (MSE) and root mean square error (RMSE). R(·)
stands for the regularization item. Its analytical form is
in Table. λ is a tradeoff parameter which denotes the
regularization tuning parameter for R(·). And W will
be updated in this part. The second part is to update
the hyper-parameters, including Υ, α and ω. They will
be updated each iteration with Tmax being the index of
maximal iteration. The detailed update strategy can be
found in Table 1. The detailed update strategy can be
found in Appendix C and Table 1. The third part is
for pruning. Unimportant neurons will be identified and
removed from the original neural network. In this paper,
we propose a dynamic pruning strategy which considers
both the uncertainty and the magnitude of the identified
parameter. Two threshold values κυ and κw are defined in
the beginning. The connections with υij smaller than κυ
or |Wij | smaller than κw will be removed in each iteration.
Besides, in order to promote the structured sparsity (Wen
et al., 2016) for neural network, we also propose some
examples of structured sparsity as shown in Fig. 2. The
corresponding regularization items and hyperparameter
update method are shown in Table 1(b)-(c).

5. EXPERIMENT

We design FC networks with diverse settings for the
number of hidden layers and hidden neurons for dif-
ferent benchmarks. The dataset for training is also se-
lected with different ratios of original dataset. In this
section, one-step ahead prediction experiment and simu-
lation experiment were implemented on Cascaded Tanks
System (2016)(Schoukens et al., 2016). The high-quality
and well-described datasets are provided in http://www.
nonlinearbenchmark.org/index.html.

Benchmark description The cascaded tanks system is a
liquid level control system. Its mathematical model can be
constructed as:

ẋ1(t) = −k1

√
x1(t) + k4u(t) + w1(t),

ẋ2(t) = k2

√
x1(t)− k3

√
x2(t) + w2(t),

y(t) = x2(t) + e(t)

(16)

where u(t) is the input pump voltage, y(t) is the output
which measures the liquid level, x1(t) and x2(t) are the
states of the system, w1(t), w2(t) and e(t) are the noise and
k1, k2, k3, and k4 are the constants which is decided by the



Table 1. Hyper-parameter update rule in Algorithm1

Category Sparse prior Rl(ω ◦W ) ωl Υl

(a) Shape-wise
∏
i

∏
j

N (0,Υi,jIi,j)
i∑

i=1

j∑
j=1

‖ωl
i,j(t) ◦W l

i,j(t)‖`1
ωl
o(t) =

√∑
i

∑
j

|αl
i,j(t)|

ωl
i,j(t) = ωl

o(t) · Ili,j

Υl
o(t) =

‖W l
i,j(t)‖2

ωl
i,j

(t−1)

Υl
i,j(t) = Υl

o(t) · Ili,j

(b) Row-wise
∏
i

N (0,Υi,:Ii,:)
i∑

i=1

‖ωi,:(t) ◦W l
i,:(t)‖`1

ωl
o(t) =

√∑
i

|αl
i,:(t)|

ωl
i,:(t) = ωl

o(t) · Ili,:

Υl
o(t) =

‖W l
i,:(t)‖2

ωl
i,:

(t−1)

Υl
i,: = Υl

o(t) · Ili,:

(c) Column-wise
∏
j

N (0,Υ:,jI:,j)
j∑

j=1

‖ωl
:,j(t) ◦W l

:,j(t)‖`1
ωl
o(t) =

√∑
j

|αl
:,j(t)|

ωl
:,j(t) = ωl

o(t) · Il:,j

Υl
o(t) =

‖W l
:,j(t)‖2

ωl
:,j

(t−1)

Υl
:,j(t) = Υl

o(t) · Il:,j

system properties. In the benchmark provided by http://
www.nonlinearbenchmark.org/index.html, both train-
ing data and test data include 1024 samples. The root
of mean square error between predicted output ŷ and true
output y is selected as the evaluation criterion:

E(·) , RMSE(ŷ, y) =

√√√√ 1

1024

1024∑
i=1

(yi − ŷi)2 (17)

One-step ahead prediction A Fully Connected
network is initialized to be with two hidden layers
and 100 neurons in each layer. The data lags for both
input and output are set as 5. We apply row-wise
(Fig. 2(c)) and column-wise (Fig. 2(d)) regularization
with different λ to the weight matrices. Experiments
are implemented with different ratios of the original
training dataset. The ratio is selected in the scope
[5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%].
As a comparison, we also experimented without applying
regularization with the same network structure. Each
experiment with a different setting was repeatedly
implemented 50 times in total.

The result is shown in Fig. 3, where the smallest and
mean prediction errors with a different dataset of four
approaches are plotted in different colours (i.e. our method
with Bayesian method, neural network with conventional
group regularization, neural network with conventional
regularization, only neural network without regulariza-
tion). From the result, we observe some interesting phe-
nomenon. First of all, all curves show a similar and rea-
sonable trend that the prediction error became smaller
with more provided training data. Secondly, it is obvious
that compared to the experiment without regularization,
our method could obtain a smaller prediction error with
different ratio of original dataset. In the experiments with
conventional group regularization, we also applied row-
wise (Fig. 2(c)) and column-wise (Fig. 2(d)) regularization
with different λ to the weight matrices. Our method could
also achieve comparable result in terms of best and mean
prediction error. The result shows the proposed method
has the capacity to approximate the cascaded tanks sys-
tem.

Besides, as shown in the blue curve, the prediction error
shows a convergence trend. And the optimal prediction
error is 0.0472 with only 70% dataset. We argue that
there exits a balance between the number of samples and
model accuracy. On one hand, if the provided data is

too less (e.g.less than 50%), we cannot obtain an optimal
model no matter whether we introduce the regularization.
On the other hand, the result shows that it is possible
to obtain the optimal model with a reduced training
dataset. On the whole, this result shows that our method
can keep good performance even without enough data.
Last but not least, the sparsity of weight matrices also
changes over iterations. And compared with conventional
group regularization method, our method could achieve a
relative sparser model especially when the training data is
more than 60%. For example, with 80% training data, the
sparsity of the model with our method and conventional
group regularization method is 2.5% and 10.98%. A more
direct comparison of the model sparsity for the proposed
method and conventional group regularization method,
refer to Table. 2.

Simulation prediction Now we consider the more chal-
lenging task for simulation. With the same evaluation
criterion as Eq. (17), a FC network with three hidden
layers and 10 neurons in each layer is initialized. The data
lags for both input and output are set as 19. We apply
shape-wise (Fig. 2(b)), row-wise (Fig. 2(c)), column-wise
(Fig. 2(d)) regularization with different λ to the weight
matrices. With the experiment setting, the best simulation
error of our method is 0.344. The output is shown in Fig. 4,
where the bold blue and red curves stand for the simulation
output and ground truth respectively. For comparison, we
also did the experiment without applying regularization
on weight matrices with the same network structure. This
experiment was repeatedly implemented with different ini-
tialization for 20 times in total. Finally, the simulation
errors with mean value as 2.0634 and standard deviation
as 1.6375 for these 20 repeated experiments were received.
We showed ten of them in Fig. 4 and the output with the
smallest simulation error (0.777) was plotted with bold
green line. It is obvious that our proposed method has
better capacity to approximate the cascaded tanks system.
We also make a comparison with other approaches as
shown in Table. 3, which shows that our method could
achieve a comparable result.

6. CONCLUSION

This paper proposes a sparse Bayesian deep learning ap-
proach for nonlinear system identification. By promoting
sparsity in the neural network model, the proposed method
could overcome the overfitting problem. It was also proved
that this method could achieve similar prediction accuracy



Table 2. Comparison of model sparsity on Cascaded tanks Benchmark

Ratio 5% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

NN with conventioanl
group regularization

46.36% 3.27% 2.23% 2.78% 1.94% 3.04% 3.91% 3.18% 10.98% 51.26% 9.78%

Our method with
Bayesian framework

61.52% 2.01% 2.95% 3.42% 2.14% 2.71% 2.79% 2.30% 2.50% 9.79% 2.23%

5% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
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Fig. 3. The predicted result with different ration of original
dataset for cascaded tanks system. The comparison
of four approaches is shown (i.e. our method with
Bayesian method, neural network with conventional
group regularization, neural network with conven-
tional regularization, only neural network without
regularization) Subfigure.(a) shows the best predic-
tion error and Subfigure.(b) shows the mean predic-
tion error with vertical error bar at each data point.
In both subfigures, the red curve represents the re-
sult of our method, the green curve is the result of
conventional group regularization method and and
blue curve stands for the result of neural network
without regularization. 11 data points in each curve
correspond to the best prediction error with 11 diverse
ratios from 5% to 100%.

to standard identification techniques with a small dataset.
For the simulation, we also could achieve competitive re-
sult, which supports that our method could approximate
the intrinsic feature of a system.
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Appendix A. PROOF FOR PROPOSITION 1

Proof. Given the likelihood with Gaussian distribution

p(y|W l, σ2) = (2πσ2)
N
2 exp

(
− 1

2σ2

N∑
t=1

(y(t)−Net (z(t),W))
2

)
as in (4) and sparse prior with super Gaussian distribution

p(W l,Υl) =

nl−1∏
i=1

nl∏
j=1

N (W l
ij |0, υlij)p(υlij) = N (W l|0,Υl)p(Υl)

as in (6), we go straightly into the marginal likelihood:

p(y) =

∫
p(y|W l)p(W l)dW l

=

∫
p(y|W l, σ2)N (W l|0,Υl)

nl−1∏
i=1

nl∏
j=1

p(υlij)dW
l

=(2πσ2)
N
2

∫
exp{− 1

2σ2

N∑
t=1

(y(t)−Net(z(t),W))2}N (W l|0,Υl)

nl−1∏
i=1

nl∏
j=1

p(υlij)dW
l

(A.1)

To compute the intractable integral in Eq. (A.1), we adopt the Laplace approximation method. For easy notation,

we use E(W,σ2) to denote 1
2σ2

∑N
t=1(y(t) − Net(z(t),W))2. It is worth noting that E(·) is usually known as the loss

function in a neural network. Suppose σ2 is known and E(W,σ2) could be expanded around some point W l∗ according
to Talylor series expansion:

E(W l, σ2) ≈ E(W l∗, σ2) + (W l −W l∗)>G(W ∗, σ2) +
1

2
(W l −W l∗)>H(W ∗, σ2)(W l −W l∗) (A.2)

where G(·) is the gradient and H(·) is the Hessian of E(·) to W l∗. Specifically, according to the principle of backward
propagation and chain rule, the iterative analytical form of G(·) for a specific weight matrix W l, could be given as
follows:

G(W l) =
∂E(·)
∂W l

=
∂E(·)
∂al

◦ ∂a
l

∂hl
∂hl

∂W l
=
∂E(·)
∂al

◦ f ′(hl)al−1>

∂E(·)
∂al

=
∂E(·)
∂al+1

◦ ∂a
l+1

∂hl+1

∂hl

∂W l+1
=
∂E(·)
∂al+1

◦ f ′(hl+1)W l+1>
(A.3)

For Hessian, a recursive method is proposed in Botev et al. (2017) to compute H(·) for a FC layer:

H(W l) =al−1 · (al−1)> ⊗H l, H l = BlW l+1TH l+1W l+1Bl +Dl,

Bl = diag(f ′(hl)), Dl = diag(f ′′(hl)
∂E(·)
∂al

)
(A.4)

where ⊗ stands for Kronecker product; H l denotes the pre-activation Hessian which needs to be computed recursively
for each layer. To derive the cost function in (9), we introduce the posterior mean and covariance

µW l = ΣW l ·
[
G(W l∗, σ2) + H(W l∗, σ2)W l∗

]
, (A.5a)

ΣW l =
[
H(W l∗, σ2) + Υl−1

]−1

. (A.5b)

According to Eq. (A.2), the likelihood p(y|W l, σ2) could be approximated as:

p(y|W l, σ2)

=(2πσ2)
N
2 · exp{− 1

2σ2

N∑
t=1

(y(t)−Net(z(t),W))2}

≈(2πσ2)
N
2 · exp

{
−
(

1

2
(W l −W l∗)>H(W l∗, σ2)(W l −W l∗) + (W l −W l∗)>G(W l∗, σ2) + E(W ∗, σ2)

)}
=(2πσ2)

N
2 · exp

{
−
(

1

2
W l>H(W l∗, σ2)W l +W l>

[
G(W l∗, σ2)−H(W l∗, σ2)W l∗

])}
· exp

{
−
(

1

2
W l∗>H(W l∗, σ2)W l∗ −W l∗>G(W l∗, σ2) + E(W ∗, σ2)

)}
=(2πσ2)

N
2 · b(W l∗, σ2) · exp

{
−
(

1

2
W l>H(W l∗, σ2)W l +W l>Ĝ(W l∗, σ2)

)}

(A.6)



where

b(W l∗, σ2) , exp

{
−
(

1

2
W l∗>H(W l∗, σ2)W l∗ −W l∗>G(W l∗, σ2) + E(W ∗, σ2)

)}
Ĝ(W l∗, σ2) , G(W l∗, σ2)−H(W l∗, σ2)W l∗.

We can write the approximate marginal likelihood as∫
p(y|W l, σ2)N (W l|0,Υl)

nl−1∏
i=1

nl∏
j=1

p(υlij)dW
l

=(2πσ2)
N
2 · b(W l∗, σ2) ·

∫
exp

{
−
(

1

2
W l>H(W l∗, σ2)W l +W l>Ĝ(W l∗, σ2)

)}
N (W l|0,Υl)

nl−1∏
i=1

nl∏
j=1

p(υlij)dW
l

=
(2πσ2)

N
2 · b(W l∗, σ2)

(2π)
(nl×nl−1)/2 |Υl|1/2

∫
exp{−Ê(W l, σ2)}dW l

nl−1∏
i=1

nl∏
j=1

p(υlij),

(A.7)
where

Ê(W l) =
1

2
W l>H(W l∗, σ2)W l +W l>Ĝ(W l∗, σ2) +

1

2
W l>Υl−1

W l. (A.8)

Equivalently, we get

Ê(W l) =
1

2
(W l − µW l)>ΣW l

−1(W l − µW l) + Ê(y), (A.9)

where the data-dependent term can be re-expressed as

Ê(y) =
1

2
µ>H(W l∗, σ2)µ+ µ>G(W l∗, σ2) +

1

2
µ>Υl−1

µ

= min
W l

[
1

2
W l>H(W l∗, σ2)W l +W l>Ĝ(W l∗, σ2) +

1

2
W l>Υl−1

W l

]
= min

W l

[
1

2
W l>H(W l∗, σ2)W l +W l>

(
G(W l∗, σ2)−H(W l∗, σ2)W l∗

)
+

1

2
W l>Υl−1

W l

]
.

(A.10)

Using (A.9), we can evaluate the integral in (A.7) to obtain∫
exp

{
−Ê(W l)

}
dW l = exp

{
−Ê(y)

}
(2π)nl×nl−1 |ΣW l |1/2. (A.11)

Applying a −2 log(·) transformation to (A.7), we have

− 2 log

 (2πσ2)
N
2 · b(W l∗, σ2)

(2π)
nl×nl−1/2 |Υl|1/2

∫
exp{−Ê(W l)}dW l

nl−1∏
i=1

nl∏
j=1

p(υlij)


∝− 2 log (2πσ2)

N
2 · b(W l∗, σ2) + Ê(y) + log |Υl|+ log |H(W l∗, σ2) + Υl−1| − 2

nl−1∑
i=1

nl∑
j=1

log p(υlij)

∝W l>H(W l∗, σ2)W l + 2W l>Ĝ(W l∗, σ2) +W l>Υl−1
W l + log |Υl|+ log |H(W l∗, σ2) + Υl−1|

− 2 log (2πσ2)
N
2 · b(W l∗, σ2)− 2

nl−1∑
i=1

nl∑
j=1

log p(υlij).

(A.12)

Therefore we get the following cost function to be minimized in Eq (9) over W l,Υl, σ2:

L(W l,Υl, σ2) =W l>H(W l∗, σ2)W l + 2W l>
[
G(W l∗, σ2)−H(W l∗, σ2)W l∗

]
+W l>Υl−1

W l

+ log |Υl|+ log |H(W l∗, σ2) + Υl−1| −N log (2πσ2) · b(W l∗, σ2)− 2

nl−1∑
i=1

nl∑
j=1

log p(υlij).

Appendix B. PROOF FOR PROPOSITION 2

Proof. It can be easily found that Eq (10) is consist of two parts, i.e. convex part in W l,Υl and concave part in Υl.
For the first part, we define the function:

u
(
W l,Υl

)
= W l>HlW + 2W l>

[
Gl −HlW l∗

]
+W>Υl−1

W l

∝(W l −W l∗)>Hl(W l −W l∗) + 2W l>Gl +W>Υl−1
W l

(B.1)



u
(
W l,Υl

)
is a convex function jointly in W l, Υl as it is the sum of convex functions with type f(x, Y ) = x>Y−1x

(Boyd and Vandenberghe, 2004). For the second part, we define the function:

v(Υl) = log |Υl|+ log |Υl−1
+ H(W l∗, σ2∗)|

= log
(
|Υl||Υl−1

+ H(W l∗, σ2∗)|
)

= log

∣∣∣∣(H(W l∗, σ2∗)
−Υl

)∣∣∣∣
= log

∣∣∣Υ + H−1(W l∗, σ2∗)
∣∣∣+ log

∣∣∣H(W l∗, σ2∗)
∣∣∣

(B.2)

v(Υl) is a concave function since that Eq. (B.2) is a log-determinant of an affine function of semidefinite matrices Υ.

Therefore, the optimization problem in Eq. (10) could be solved with a convex-concave procedure (CCCP). Specifically,
by computing the gradient of concave part v(Υl) to hyperparameter υ, we have the following iterative optimization
procedure:

W l(t+ 1) = argmin
W l

u(W l,υl(t),H(W l∗, σ2∗)) (B.3)

υl(t+ 1) = arg min
υ�0

u(W l(t),υl,H(W l∗, σ2∗)) +∇υlv(υ
l(t),H(W l∗, σ2∗))>υl (B.4)

Appendix C. ITERATIVE PROCEDURES TO UPDATE PARAMETERS

Eq (B.4) provides the solution to update Υ̂l, the gradient of v(Υl) to Υl should be obtained firstly. By using the chain
rule and the basic principle for convex analysis, its analytic form could be given as follows:

αl(t) ,∇Υlv
(

Υl,H(W l∗, σ2∗)
)>
|Υl=Υl(t)

=∇Υl

(
log |Υl−1

+ H(W l∗, σ2∗)|+ log |Υl|
)>
|Υl=Υl(t)

=− diag
{

(Υl(t))−1
}
◦ diag

{(
(Υl(t))−1 + H(W l∗, σ2∗)

)−1
}
◦ diag

{
(Υl(t))−1

}
+ diag

{
(Υl(t))−1

}
=
[
αl1(t) · · · αlnl

(t)
]

(C.1)

where ◦ represents the Hadamard product; where αl(t) is the introduced intermediate variable and αlj =[
αl1j , . . . , α

l
nl−1j

]
. αlij(t) could be obtained according to Eq (C.1):

Cl(t) =
(

Υl(t)−1 + H(W l∗, σ2∗)
)−1

(C.2)

αlij(t) = −
Cl
ij(t)

(υlij(t))
2

+
1

υlij(t)
(C.3)

Therefore, W l(t+ 1) and Υl(t+ 1) can be calculated as iteratively as Eq (B.3) and Eq (B.4):[
W l(t+ 1),Υl(t+ 1)

]
= arg min

W l
W l>HlW l + 2W l>

(
Gl −HlW l∗

)
+

nl−1∑
i=1

nl∑
j=1

(
W l
ij(t)

2

υlij(t)
+ αlij(t)υ

l
ij(t)

)
. (C.4)

Since

W l
ij(t)

2

υlij(t)
+ αlij(t)υ

l
ij(t) ≥ 2

∣∣∣√αlij(t) ·W l
ij(t)

∣∣∣ ,
the optimal υl can be calculated as:

υlij(t) =
|W l

ij(t)|√
αlij(t)

,∀i, j. (C.5)

In order to compute υl(t + 1), we also require the estimation for W l(t + 1). If we define ω(t) ,
√
α(t), W l(t + 1) can

be solved according to Eq (C.4):



W l(t+ 1) =arg min
W l

1

2
W l>HlW l +W l>

(
Gl −HlW l∗

)
+

nl−1∑
i=1

nl∑
j=1

‖ωlij(t) ·W l
ij(t)‖`1

∝arg min
W l

E(W l∗, σ2) + (W l −W l∗)>G(W l∗, σ2) +
1

2
(W l −W l∗)>H(W l∗, σ2)(W l −W l∗)+

2

nl−1∑
i=1

nl∑
j=1

‖ωlij(t) ·W l
ij‖`1

≈arg min
W l

E(·) + 2

nl−1∑
i=1

nl∑
j=1

‖ωlij(t) ·W l
ij‖`1

(C.6)

then W l(t+ 1) could be injected into Eq (C.5):

υlij(t+ 1) =
|W l

ij(t+ 1)|
ωlij(t)

,∀i, j. (C.7)

With Eq (C.3), (C.6) and (C.7), the weight W l and hyperparameter Υl could be updated alternatively.


