331 research outputs found

    Word maps in Kac-Moody setting

    Full text link
    The paper is a short survey of recent developments in the area of word maps evaluated on groups and algebras. It is aimed to pose questions relevant to Kac--Moody theory.Comment: 16 pag

    Quadratic Word Equations with Length Constraints, Counter Systems, and Presburger Arithmetic with Divisibility

    Full text link
    Word equations are a crucial element in the theoretical foundation of constraint solving over strings, which have received a lot of attention in recent years. A word equation relates two words over string variables and constants. Its solution amounts to a function mapping variables to constant strings that equate the left and right hand sides of the equation. While the problem of solving word equations is decidable, the decidability of the problem of solving a word equation with a length constraint (i.e., a constraint relating the lengths of words in the word equation) has remained a long-standing open problem. In this paper, we focus on the subclass of quadratic word equations, i.e., in which each variable occurs at most twice. We first show that the length abstractions of solutions to quadratic word equations are in general not Presburger-definable. We then describe a class of counter systems with Presburger transition relations which capture the length abstraction of a quadratic word equation with regular constraints. We provide an encoding of the effect of a simple loop of the counter systems in the theory of existential Presburger Arithmetic with divisibility (PAD). Since PAD is decidable, we get a decision procedure for quadratic words equations with length constraints for which the associated counter system is \emph{flat} (i.e., all nodes belong to at most one cycle). We show a decidability result (in fact, also an NP algorithm with a PAD oracle) for a recently proposed NP-complete fragment of word equations called regular-oriented word equations, together with length constraints. Decidability holds when the constraints are additionally extended with regular constraints with a 1-weak control structure.Comment: 18 page

    Finding All Solutions of Equations in Free Groups and Monoids with Involution

    Full text link
    The aim of this paper is to present a PSPACE algorithm which yields a finite graph of exponential size and which describes the set of all solutions of equations in free groups as well as the set of all solutions of equations in free monoids with involution in the presence of rational constraints. This became possible due to the recently invented emph{recompression} technique of the second author. He successfully applied the recompression technique for pure word equations without involution or rational constraints. In particular, his method could not be used as a black box for free groups (even without rational constraints). Actually, the presence of an involution (inverse elements) and rational constraints complicates the situation and some additional analysis is necessary. Still, the recompression technique is general enough to accommodate both extensions. In the end, it simplifies proofs that solving word equations is in PSPACE (Plandowski 1999) and the corresponding result for equations in free groups with rational constraints (Diekert, Hagenah and Gutierrez 2001). As a byproduct we obtain a direct proof that it is decidable in PSPACE whether or not the solution set is finite.Comment: A preliminary version of this paper was presented as an invited talk at CSR 2014 in Moscow, June 7 - 11, 201

    Computing the Noncomputable

    Get PDF
    We explore in the framework of Quantum Computation the notion of computability, which holds a central position in Mathematics and Theoretical Computer Science. A quantum algorithm that exploits the quantum adiabatic processes is considered for the Hilbert's tenth problem, which is equivalent to the Turing halting problem and known to be mathematically noncomputable. Generalised quantum algorithms are also considered for some other mathematical noncomputables in the same and of different noncomputability classes. The key element of all these algorithms is the measurability of both the values of physical observables and of the quantum-mechanical probability distributions for these values. It is argued that computability, and thus the limits of Mathematics, ought to be determined not solely by Mathematics itself but also by physical principles.Comment: Extensively revised and enlarged with: 2 new subsections, 4 new figures, 1 new reference, and a short biography as requested by the journal edito

    KAM for the quantum harmonic oscillator

    Full text link
    In this paper we prove an abstract KAM theorem for infinite dimensional Hamiltonians systems. This result extends previous works of S.B. Kuksin and J. P\"oschel and uses recent techniques of H. Eliasson and S.B. Kuksin. As an application we show that some 1D nonlinear Schr\"odinger equations with harmonic potential admits many quasi-periodic solutions. In a second application we prove the reducibility of the 1D Schr\"odinger equations with the harmonic potential and a quasi periodic in time potential.Comment: 54 pages. To appear in Comm. Math. Phy

    Discrete Quantum Mechanics

    Get PDF
    A comprehensive review of the discrete quantum mechanics with the pure imaginary shifts and the real shifts is presented in parallel with the corresponding results in the ordinary quantum mechanics. The main subjects to be covered are the factorised Hamiltonians, the general structure of the solution spaces of the Schroedinger equation (Crum's theorem and its modification), the shape invariance, the exact solvability in the Schroedinger picture as well as in the Heisenberg picture, the creation/annihilation operators and the dynamical symmetry algebras, the unified theory of exact and quasi-exact solvability based on the sinusoidal coordinates, the infinite families of new orthogonal (the exceptional) polynomials. Two new infinite families of orthogonal polynomials, the X_\ell Meixner-Pollaczek and the X_\ell Meixner polynomials are reported.Comment: 61 pages, 1 figure. Comments and references adde

    Quantitative behavior of unipotent flows and an effective avoidance principle

    Full text link
    We give an effective bound on how much time orbits of a unipotent group UU on an arithmetic quotient G/ΓG/\Gamma can stay near homogeneous subvarieties of G/ΓG /\Gamma corresponding to Q\mathbb Q-subgroups of GG. In particular, we show that if such a UU-orbit is moderately near a proper homogeneous subvariety of G/ΓG/\Gamma for a long time it is very near a different homogeneous subvariety. Our work builds upon the linearization method of Dani and Margulis. Our motivation in developing these bounds is in order to prove quantitative density statements about unipotent orbits, which we plan to pursue in a subsequent paper. New qualitative implications of our effective bounds are also given.Comment: 52 page
    corecore