2,386 research outputs found

    Agent-based models of social behaviour and communication in evacuations:A systematic review

    Get PDF
    Most modern agent-based evacuation models involve interactions between evacuees. However, the assumed reasons for interactions and portrayal of them may be overly simple. Research from social psychology suggests that people interact and communicate with one another when evacuating and evacuee response is impacted by the way information is communicated. Thus, we conducted a systematic review of agent-based evacuation models to identify 1) how social interactions and communication approaches between agents are simulated, and 2) what key variables related to evacuation are addressed in these models. We searched Web of Science and ScienceDirect to identify articles that simulated information exchange between agents during evacuations, and social behaviour during evacuations. From the final 70 included articles, we categorised eight types of social interaction that increased in social complexity from collision avoidance to social influence based on strength of social connections with other agents. In the 17 models which simulated communication, we categorised four ways that agents communicate information: spatially through information trails or radii around agents, via social networks and via external communication. Finally, the variables either manipulated or measured in the models were categorised into the following groups: environmental condition, personal attributes of the agents, procedure, and source of information. We discuss promising directions for agent-based evacuation models to capture the effects of communication and group dynamics on evacuee behaviour. Moreover, we demonstrate how communication and group dynamics may impact the variables commonly used in agent-based evacuation models

    Agent-based models of social behaviour and communication in evacuations: A systematic review

    Full text link
    Most modern agent-based evacuation models involve interactions between evacuees. However, the assumed reasons for interactions and portrayal of them may be overly simple. Research from social psychology suggests that people interact and communicate with one another when evacuating and evacuee response is impacted by the way information is communicated. Thus, we conducted a systematic review of agent-based evacuation models to identify 1) how social interactions and communication approaches between agents are simulated, and 2) what key variables related to evacuation are addressed in these models. We searched Web of Science and ScienceDirect to identify articles that simulated information exchange between agents during evacuations, and social behaviour during evacuations. From the final 70 included articles, we categorised eight types of social interaction that increased in social complexity from collision avoidance to social influence based on strength of social connections with other agents. In the 17 models which simulated communication, we categorised four ways that agents communicate information: spatially through information trails or radii around agents, via social networks and via external communication. Finally, the variables either manipulated or measured in the models were categorised into the following groups: environmental condition, personal attributes of the agents, procedure, and source of information. We discuss promising directions for agent-based evacuation models to capture the effects of communication and group dynamics on evacuee behaviour. Moreover, we demonstrate how communication and group dynamics may impact the variables commonly used in agent-based evacuation models.Comment: Pre-print submitted to Safety Science special issue following the 2023 Pedestrian and Evacuation Dynamics conferenc

    Toward cognitive digital twins using a BIM-GIS asset management system for a diffused university

    Get PDF
    The integrated use of building information modeling (BIM) and geographic information system (GIS) is promising for the development of asset management systems (AMSs) for operation and maintenance (O & M) in smart university campuses. The combination of BIM-GIS with cognitive digital twins (CDTs) can further facilitate the management of complex systems such as university building stock. CDTs enable buildings to behave as autonomous entities, dynamically reacting to environmental changes. Timely decisions based on the actual conditions of buildings and surroundings can be provided, both in emergency scenarios or when optimized and adaptive performances are required. The research aims to develop a BIM-GIS-based AMS for improving user experience and enabling the optimal use of resources in the O & M phase of an Italian university. Campuses are complex assets, mainly diffused with buildings spread across the territory, managed with still document-based and fragmented databases handled by several subjects. This results in incomplete and asymmetrical information, often leading to ineffective and untimely decisions. The paper presents a methodology for the development of a BIM-GIS web-based platform (i.e., AMS-app) providing the real-time visualization of the asset in an interactive 3D map connected to analytical dashboards for management support. Two buildings of the University of Turin are adopted as demonstrators, illustrating the development of an easily accessible, centralized database by integrating spatial and functional data, useful also to develop future CDTs. As a first attempt to show the AMS app potential, crowd simulations have been conducted to understand the buildings' actual level of safety in case of fire emergency and demonstrate how CDTs could improve it. The identification of data needed, also gathered through the future implementation of suitable sensors and Internet of Things networks, is the core issue together with the definition of effective asset visualization and monitoring methods. Future developments will explore the integration of artificial intelligence and immersive technologies to enable space use optimization and real-time wayfinding during evacuation, exploiting digital tools to alert and drive users or authorities for safety improvement. The ability to easily optimize the paths with respect to the actual occupancy and conditions of both the asset and surroundings will be enabled

    Herd effect

    Get PDF
    Treball Final de Grau en Finances i Comptabilitat. Codi: FC1049 Curs acadèmic: 2019-2020Financial markets are highly characterized by uncertainty, which means that on many occasions there are ups and downs in the markets, which cannot be explained by real economic variables. These ups and downs can be very prolonged, because a multitude of economic actors have made the same decision. When investors make decisions because a multitude of people are doing so, they are letting themselves be influenced by the behaviour of others, based on the exchange of information between economic agents and not on real economic variables. This crowd behaviour is known as the herd effect. This paper analyses the herd effect and its presence in the financial markets

    A multi-agent system approach in evaluating human spatio-temporal vulnerability to seismic risk using social attachment

    Get PDF
    International audienceSocial attachment theory states that individuals seek the proximity of attachment figures (e.g. family members, friends, colleagues, familiar places or objects) when faced with threat. During disasters, this means that family members may seek each other before evacuating, gather personal property before heading to familiar exits and places, or follow groups/crowds, etc. This hard-wired human tendency should be considered in the assessment of risk and the creation of disaster management plans. Doing so may result in more realistic evacuation procedures and may minimise the number of casualties and injuries. In this context, a dynamic spatio-temporal analysis of seismic risk is presented using SOLACE, a multi-agent model of pedestrian behaviour based on social attachment theory implemented using the Belief-Desire-Intention approach. The model focuses on the influence of human, social, physical and temporal factors on successful evacuation. Human factors considered include perception and mobility defined by age. Social factors are defined by attachment bonds, social groups, population distribution, and cultural norms. Physical factors refer to the location of the epicentre of the earthquake, spatial distribution/layout and attributes of environmental objects such as buildings, roads, barriers (cars), placement of safe areas, evacuation routes, and the resulting debris/damage from the earthquake. Experiments tested the influence of time of the day, presence of disabled persons and earthquake intensity. Initial results show that factors that influence arrivals in safe areas include (a) human factors (age, disability, speed), (b) pre-evacuation behaviours, (c) perception distance (social attachment, time of day), (d) social interaction during evacuation, and (e) physical and spatial aspects, such as limitations imposed by debris (damage), and the distance to safe areas. To validate the results, scenarios will be designed with stakeholders, who will also take part in the definition of a serious game. The recommendation of this research is that both social and physical aspects should be considered when defining vulnerability in the analysis of risk

    The role of social identity processes in mass emergency behaviour: an integrative review

    Get PDF
    This review provides an overview and new integration of recent research that has formed the basis of a social identity explanation of supportive collective behaviour among survivors in emergencies and disasters. I describe a model in which a sense of common fate in the emergency or disaster is the source of an emergent shared social identity among survivors, which in turn provides the motivation to give social support to others affected. In addition, by drawing on the concept of relational transformation in psychological crowds, I show how an emergent shared social identity can engender a range of further behavioural and cognitive consequences that contribute to collective self-organisation in emergencies, including increases in expected support, coordination of behaviour, and collective efficacy. It will be argued that the model can been applied to explaining how potentially dangerous crowd events avoid disaster: shared social identity operates as the basis of spontaneous self-organisation in these cases, as in many emergencies and disasters
    corecore