7 research outputs found

    Methodology for Designing Decision Support Systems for Visualising and Mitigating Supply Chain Cyber Risk from IoT Technologies

    Full text link
    This paper proposes a methodology for designing decision support systems for visualising and mitigating the Internet of Things cyber risks. Digital technologies present new cyber risk in the supply chain which are often not visible to companies participating in the supply chains. This study investigates how the Internet of Things cyber risks can be visualised and mitigated in the process of designing business and supply chain strategies. The emerging DSS methodology present new findings on how digital technologies affect business and supply chain systems. Through epistemological analysis, the article derives with a decision support system for visualising supply chain cyber risk from Internet of Things digital technologies. Such methods do not exist at present and this represents the first attempt to devise a decision support system that would enable practitioners to develop a step by step process for visualising, assessing and mitigating the emerging cyber risk from IoT technologies on shared infrastructure in legacy supply chain systems

    Artificial intelligence in cyber physical systems

    Get PDF
    This article conducts a literature review of current and future challenges in the use of artifcial intelligence (AI) in cyber physical systems. The literature review is focused on identifying a conceptual framework for increasing resilience with AI through automation supporting both, a technical and human level. The methodology applied resembled a literature review and taxonomic analysis of complex internet of things (IoT) interconnected and coupled cyber physical systems. There is an increased attention on propositions on models, infrastructures and frameworks of IoT in both academic and technical papers. These reports and publications frequently represent a juxtaposition of other related systems and technologies (e.g. Industrial Internet of Things, Cyber Physical Systems, Industry 4.0 etc.). We review academic and industry papers published between 2010 and 2020. The results determine a new hierarchical cascading conceptual framework for analysing the evolution of AI decision-making in cyber physical systems. We argue that such evolution is inevitable and autonomous because of the increased integration of connected devices (IoT) in cyber physical systems. To support this argument, taxonomic methodology is adapted and applied for transparency and justifcations of concepts selection decisions through building summary maps that are applied for designing the hierarchical cascading conceptual framework

    The ethics of shared Covid-19 risks: an epistemological framework for ethical health technology assessment of risk in vaccine supply chain infrastructures

    Get PDF
    AbstractThis article addresses the topic of shared responsibilities in supply chains, with a specific focus on the application of the Internet of Things (IoT) in e-health environments, and Industry 4.0 issues—concerning data security, privacy, reliability and management, data mining and knowledge exchange as well as health prevention. In this article, we critically review methodologies and guidelines that have been proposed to approach these ethical aspects in digital supply chain settings. The emerging framework presents new findings on how digital technologies affect vaccine shared supply chain systems. Through epistemological analysis, the article derives new insights for transparency and accountability of supply chain cyber risk from Internet of Things systems. This research devises a framework for ethical awareness, assessment, transparency and accountability of the emerging cyber risk from integrating IoT technologies on shared Covid-19 healthcare supply chain infrastructure.</jats:p

    Definition of Internet of Things (IoT) Cyber Risk – Discussion on a Transformation Roadmap for Standardization of Regulations, Risk Maturity, Strategy Design and Impact Assessment

    Get PDF
    Definition of Internet of Things (IoT) Cyber Risk – Discussion on a Transformation Roadmap for Standardization of Regulations, Risk Maturity, Strategy Design and Impact Assessmen

    Definition of Internet of Things (IoT) Cyber Risk – Discussion on a Transformation Roadmap for Standardization of Regulations, Risk Maturity, Strategy Design and Impact Assessment

    Get PDF
    Definition of Internet of Things (IoT) Cyber Risk – Discussion on a Transformation Roadmap for Standardization of Regulations, Risk Maturity, Strategy Design and Impact Assessmen

    Cyber risk at the edge: Current and future trends on cyber risk analytics and artificial intelligence in the industrial internet of things and industry 4.0 supply chains

    Get PDF
    Digital technologies have changed the way supply chain operations are structured. In this article, we conduct systematic syntheses of literature on the impact of new technologies on supply chains and the related cyber risks. A taxonomic/cladistic approach is used for the evaluations of progress in the area of supply chain integration in the Industrial Internet of Things and Industry 4.0, with a specific focus on the mitigation of cyber risks. An analytical framework is presented, based on a critical assessment with respect to issues related to new types of cyber risk and the integration of supply chains with new technologies. This paper identifies a dynamic and self-adapting supply chain system supported with Artificial Intelligence and Machine Learning (AI/ML) and real-time intelligence for predictive cyber risk analytics. The system is integrated into a cognition engine that enables predictive cyber risk analytics with real-time intelligence from IoT networks at the edge. This enhances capacities and assist in the creation of a comprehensive understanding of the opportunities and threats that arise when edge computing nodes are deployed, and when AI/ML technologies are migrated to the periphery of IoT networks

    Future developments in standardisation of cyber risk in the Internet of Things (IoT)

    Get PDF
    In this research article, we explore the use of a design process for adapting existing cyber risk assessment standards to allow the calculation of economic impact from IoT cyber risk. The paper presents a new model that includes a design process with new risk assessment vectors, specific for IoT cyber risk. To design new risk assessment vectors for IoT, the study applied a range of methodologies, including literature review, empirical study and comparative study, followed by theoretical analysis and grounded theory. An epistemological framework emerges from applying the constructivist grounded theory methodology to draw on knowledge from existing cyber risk frameworks, models and methodologies. This framework presents the current gaps in cyber risk standards and policies, and defines the design principles of future cyber risk impact assessment. The core contribution of the article therefore, being the presentation of a new model for impact assessment of IoT cyber risk
    corecore