515 research outputs found

    Efficient Dual Output Regulating Rectifier and Adiabatic Charge Pump for Biomedical Applications Employing Wireless Power Transfer †

    Get PDF
    A power management unit (PMU) is an essential block for diversified multi-functional low-power Internet of Things (IoT) and biomedical electronics. This paper includes a theoretical analysis of a high current, single-stage ac-dc, reconfigurable, dual output, regulating rectifier consisting of pulse width modulation (PWM) and pulse frequency modulation (PFM). The regulating rectifier provides two independently regulated supply voltages of 1.8 V and 3.3 V from an input ac voltage. The PFM control feedback consists of feedback-driven regulation to adjust the driving frequency of the power transistors through adaptive buffers in the active rectifier. The PWM/PFM mode control provides a feedback loop to adjust the conduction duration accurately and minimize power losses. The design also includes an adiabatic charge pump (CP) to provide a higher voltage level. The adiabatic CP consists of latch-up and power-saving topologies to enhance its power efficiency. Simulation results show that the dual regulating rectifier has 94.3% voltage conversion efficiency with an ac input magnitude of 3.5 Vp. The power conversion efficiency of the regulated 3.3 V output voltage is 82.3%. The adiabatic CP has an overall voltage conversion efficiency (VCE) of 92.9% with a total on-chip capacitance of 60 pF. The circuit was designed using 180 nm CMOS technology

    On-chip adaptive power management for WPT-Enabled IoT

    Get PDF
    Internet of Things (IoT), as broadband network connecting every physical objects, is becoming more widely available in various industrial, medical, home and automotive applications. In such network, the physical devices, vehicles, medical assistance, and home appliances among others are supposed to be embedded by sensors, actuators, radio frequency (RF) antennas, memory, and microprocessors, such that these devices are able to exchange data and connect with other devices in the network. Among other IoT’s pillars, wireless sensor network (WSN) is one of the main parts comprising massive clusters of spatially distributed sensor nodes dedicated for sensing and monitoring environmental conditions. The lifetime of a WSN is greatly dependent on the lifetime of the small sensor nodes, which, in turn, is primarily dependent on energy availability within every sensor node. Predominantly, the main energy source for a sensor node is supplied by a small battery attached to it. In a large WSN with massive number of deployed sensor nodes, it becomes a challenge to replace the batteries of every single sensor node especially for sensor nodes deployed in harsh environments. Consequently, powering the sensor nodes becomes a key limiting issue, which poses important challenges for their practicality and cost. Therefore, in this thesis we propose enabling WSN, as the main pillar of IoT, by means of resonant inductive coupling (RIC) wireless power transfer (WPT). In order to enable efficient energy delivery at higher range, high quality factor RIC-WPT system is required in order to boost the magnetic flux generated at the transmitting coil. However, an adaptive front-end is essential for self-tuning the resonant tank against any mismatch in the components values, distance variation, and interference from close metallic objects. Consequently, the purpose of the thesis is to develop and design an adaptive efficient switch-mode front-end for self-tuning in WPT receivers in multiple receiver system. The thesis start by giving background about the IoT system and the technical bottleneck followed by the problem statement and thesis scope. Then, Chapter 2 provides detailed backgrounds about the RIC-WPT system. Specifically, Chapter 2 analyzes the characteristics of different compensation topologies in RIC-WPT followed by the implications of mistuning on efficiency and power transfer capability. Chapter 3 discusses the concept of switch-mode gyrators as a potential candidate for generic variable reactive element synthesis while different potential applications and design cases are provided. Chapter 4 proposes two different self-tuning control for WPT receivers that utilize switch-mode gyrators as variable reactive element synthesis. The performance aspects of control approaches are discussed and evaluated as well in Chapter 4. The development and exploration of more compact front-end for self-tuned WPT receiver is investigated in Chapter 5 by proposing a phase-controlled switched inductor converter. The operation and design details of different switch-mode phase-controlled topologies are given and evaluated in the same chapter. Finally, Chapter 6 provides the conclusions and highlight the contribution of the thesis, in addition to suggesting the related future research topics.Internet de las cosas (IoT), como red de banda ancha que interconecta cualquier cosa, se está estableciendo como una tecnología valiosa en varias aplicaciones industriales, médicas, domóticas y en el sector del automóvil. En dicha red, los dispositivos físicos, los vehículos, los sistemas de asistencia médica y los electrodomésticos, entre otros, incluyen sensores, actuadores, subsistemas de comunicación, memoria y microprocesadores, de modo que son capaces de intercambiar datos e interconectarse con otros elementos de la red. Entre otros pilares que posibilitan IoT, la red de sensores inalámbricos (WSN), que es una de las partes cruciales del sistema, está formada por un conjunto masivo de nodos de sensado distribuidos espacialmente, y dedicados a sensar y monitorizar las condiciones del contexto de las cosas interconectadas. El tiempo de vida útil de una red WSN depende estrechamente del tiempo de vida de los pequeños nodos sensores, los cuales, a su vez, dependen primordialmente de la disponibilidad de energía en cada nodo sensor. La fuente principal de energía para un nodo sensor suele ser una pequeña batería integrada en él. En una red WSN con muchos nodos y con una alta densidad, es un desafío el reemplazar las baterías de cada nodo sensor, especialmente en entornos hostiles, como puedan ser en escenarios de Industria 4.0. En consecuencia, la alimentación de los nodos sensores constituye uno de los cuellos de botella que limitan un despliegue masivo práctico y de bajo coste. A tenor de estas circunstancias, en esta tesis doctoral se propone habilitar las redes WSN, como pilar principal de sistemas IoT, mediante sistemas de transferencia inalámbrica de energía (WPT) basados en acoplamiento inductivo resonante (RIC). Con objeto de posibilitar el suministro eficiente de energía a mayores distancias, deben aumentarse los factores de calidad de los elementos inductivos resonantes del sistema RIC-WPT, especialmente con el propósito de aumentar el flujo magnético generado por el inductor transmisor de energía y su acoplamiento resonante en recepción. Sin embargo, dotar al cabezal electrónico que gestiona y condicionada el flujo de energía de capacidad adaptativa es esencial para conseguir la autosintonía automática del sistema acoplado y resonante RIC-WPT, que es muy propenso a la desintonía ante desajustes en los parámetros nominales de los componentes, variaciones de distancia entre transmisor y receptores, así como debido a la interferencia de objetos metálicos. Es por tanto el objetivo central de esta tesis doctoral el concebir, proponer, diseñar y validar un sistema de WPT para múltiples receptores que incluya funciones adaptativas de autosintonía mediante circuitos conmutados de alto rendimiento energético, y susceptible de ser integrado en un chip para el condicionamiento de energía en cada receptor de forma miniaturizada y desplegable de forma masiva. La tesis empieza proporcionando una revisión del estado del arte en sistemas de IoT destacando el reto tecnológico de la alimentación energética de los nodos sensores distribuidos y planteando así el foco de la tesis doctoral. El capítulo 2 sigue con una revisión crítica del statu quo de los sistemas de transferencia inalámbrica de energía RIC-WPT. Específicamente, el capítulo 2 analiza las características de diferentes estructuras circuitales de compensación en RIC-WPT seguido de una descripción crítica de las implicaciones de la desintonía en la eficiencia y la capacidad de transferencia energética del sistema. El capítulo 3 propone y explora el concepto de utilizar circuitos conmutados con función de girador como potenciales candidatos para la síntesis de propósito general de elementos reactivos variables sintonizables electrónicamente, incluyendo varias aplicaciones y casos de uso. El capítulo 4 propone dos alternativas para métodos y circuitos de control para la autosintonía de receptores de energíaPostprint (published version

    Wind energy harvester interface for sensor nodes

    Get PDF
    The research topic is developping a power converting interface for the novel FLEHAP wind energy harvester allowing the produced energy to be used for powering small wireless nodes. The harvester\u2019s electrical characteristics were studied and a strategy was developped to control and mainting a maximum power transfer. The electronic power converter interface was designed, containing an AC/DC Buck-Boost converter and controlled with a low power microcontroller. Different prototypes were developped that evolved by reducing the sources of power loss and rendering the system more efficient. The validation of the system was done through simulations in the COSMIC/DITEN lab using generated signals, and then follow-up experiments were conducted with a controllable wind tunnel in the DIFI department University of Genoa. The experiment results proved the functionality of the control algorithm as well as the efficiency that was ramped up by the hardware solutions that were implemented, and generally met the requirement to provide a power source for low-power sensor nodes

    Ultra Low Power Circuits for Internet of Things and Deep Learning Accelerator Design with In-Memory Computing

    Full text link
    Collecting data from environment and converting gathered data into information is the key idea of Internet of Things (IoT). Miniaturized sensing devices enable the idea for many applications including health monitoring, industrial sensing, and so on. Sensing devices typically have small form factor and thus, low battery capacity, but at the same time, require long life time for continuous monitoring and least frequent battery replacement. This thesis introduces three analog circuit design techniques featuring ultra-low power consumption for such requirements: (1) An ultra-low power resistor-less current reference circuit, (2) A 110nW resistive frequency locked on-chip oscillator as a timing reference, (3) A resonant current-mode wireless power receiver and battery charger for implantable systems. Raw data can be efficiently transformed into useful information using deep learning. However deep learning requires tremendous amount of computation by its nature, and thus, an energy efficient deep learning hardware is highly demanded to fully utilize this algorithm in various applications. This thesis also presents a pulse-width based computation concept which utilizes in-memory computing of SRAM.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/144173/1/myungjun_1.pd

    Protection, interlocks and diagnostics

    Get PDF
    When designing any power converter it is essential to assess and incorporate adequate protection. The main objective is to offer a solution which is safe, reliable and repairable and that achieves its specification within budget. The level of protection found within each converter varies widely and will depend on the topology employed, its application and rating. This document is a guide to the types of protection engineers should consider mainly when designing power converters, as protection added during construction or after installation will always be expensive

    Power Management ICs for Internet of Things, Energy Harvesting and Biomedical Devices

    Get PDF
    This dissertation focuses on the power management unit (PMU) and integrated circuits (ICs) for the internet of things (IoT), energy harvesting and biomedical devices. Three monolithic power harvesting methods are studied for different challenges of smart nodes of IoT networks. Firstly, we propose that an impedance tuning approach is implemented with a capacitor value modulation to eliminate the quiescent power consumption. Secondly, we develop a hill-climbing MPPT mechanism that reuses and processes the information of the hysteresis controller in the time-domain and is free of power hungry analog circuits. Furthermore, the typical power-performance tradeoff of the hysteresis controller is solved by a self-triggered one-shot mechanism. Thus, the output regulation achieves high-performance and yet low-power operations as low as 12 µW. Thirdly, we introduce a reconfigurable charge pump to provide the hybrid conversion ratios (CRs) as 1⅓× up to 8× for minimizing the charge redistribution loss. The reconfigurable feature also dynamically tunes to maximum power point tracking (MPPT) with the frequency modulation, resulting in a two-dimensional MPPT. Therefore, the voltage conversion efficiency (VCE) and the power conversion efficiency (PCE) are enhanced and flattened across a wide harvesting range as 0.45 to 3 V. In a conclusion, we successfully develop an energy harvesting method for the IoT smart nodes with lower cost, smaller size, higher conversion efficiency, and better applicability. For the biomedical devices, this dissertation presents a novel cost-effective automatic resonance tracking method with maximum power transfer (MPT) for piezoelectric transducers (PT). The proposed tracking method is based on a band-pass filter (BPF) oscillator, exploiting the PT’s intrinsic resonance point through a sensing bridge. It guarantees automatic resonance tracking and maximum electrical power converted into mechanical motion regardless of process variations and environmental interferences. Thus, the proposed BPF oscillator-based scheme was designed for an ultrasonic vessel sealing and dissecting (UVSD) system. The sealing and dissecting functions were verified experimentally in chicken tissue and glycerin. Furthermore, a combined sensing scheme circuit allows multiple surgical tissue debulking, vessel sealer and dissector (VSD) technologies to operate from the same sensing scheme board. Its advantage is that a single driver controller could be used for both systems simplifying the complexity and design cost. In a conclusion, we successfully develop an ultrasonic scalpel to replace the other electrosurgical counterparts and the conventional scalpels with lower cost and better functionality

    RF Power Transfer, Energy Harvesting, and Power Management Strategies

    Get PDF
    Energy harvesting is the way to capture green energy. This can be thought of as a recycling process where energy is converted from one form (here, non-electrical) to another (here, electrical). This is done on the large energy scale as well as low energy scale. The former can enable sustainable operation of facilities, while the latter can have a significant impact on the problems of energy constrained portable applications. Different energy sources can be complementary to one another and combining multiple-source is of great importance. In particular, RF energy harvesting is a natural choice for the portable applications. There are many advantages, such as cordless operation and light-weight. Moreover, the needed infra-structure can possibly be incorporated with wearable and portable devices. RF energy harvesting is an enabling key player for Internet of Things technology. The RF energy harvesting systems consist of external antennas, LC matching networks, RF rectifiers for ac to dc conversion, and sometimes power management. Moreover, combining different energy harvesting sources is essential for robustness and sustainability. Wireless power transfer has recently been applied for battery charging of portable devices. This charging process impacts the daily experience of every human who uses electronic applications. Instead of having many types of cumbersome cords and many different standards while the users are responsible to connect periodically to ac outlets, the new approach is to have the transmitters ready in the near region and can transfer power wirelessly to the devices whenever needed. Wireless power transfer consists of a dc to ac conversion transmitter, coupled inductors between transmitter and receiver, and an ac to dc conversion receiver. Alternative far field operation is still tested for health issues. So, the focus in this study is on near field. The goals of this study are to investigate the possibilities of RF energy harvesting from various sources in the far field, dc energy combining, wireless power transfer in the near field, the underlying power management strategies, and the integration on silicon. This integration is the ultimate goal for cheap solutions to enable the technology for broader use. All systems were designed, implemented and tested to demonstrate proof-of concept prototypes

    Energy Harvesting Systems for the Internet of Things with Applications to Smart Agriculture

    Get PDF
    The Internet of Things is the interconnection of everyday objects to the web, with the purpose of exchanging information to enable smarter actions and potentially make a process more efficient. However, how power is provided and stored in remote sensing applications is still one of the main modern electronics challenges of such technology and can become one of the main constraints to prevent its mass adoption. Energy Harvesting is an emerging technology that can transform energy in the environment into usable energy, among such environmental energy are electromagnetic waves, thermal, solar, kinesthetic transducers, fuel cells, to name a few. Because this technology makes use of the available ambient energy, it has the potential to increase the power readiness for battery-operated electronics and more importantly, it can become the technology that fully powers the next generation of internet-enabled agricultural solutions. This dissertation centers around the design and development of high-efficient power management systems for AC and DC energy harvesting sources. The proposed architectures not only consider circuits, systems and algorithms that make a more efficient power extraction but also focuses on providing inherent sensing functionalities at no extra system complexity, which in turn not only achieves the goal of extending the battery life of proposed smart sensor applications but also proposes new charge extraction methods to permanently power an electronic device. The work presented in this dissertation demonstrates that energy harvesting, and internet of things devices can be implemented in multiple smart agriculture scenarios by proposing algorithms, circuits and systems capable of performing energy harvesting operations while providing reliable data to the end user. The analysis of the design of such proof-of-concept prototypes are provided in this dissertation along with its implementation and testing. The first part of this dissertation proposes novel algorithms for maximum power extraction and new power measurement techniques. The second part focuses on front-end circuits for AC energy harvesting sources and circuits that can provide sensing capabilities along with energy harvesting operations

    VOLTAGE CONTROL OF WIND SYSTEM USING ADAPTIVE FUZZY SLIDING METHOD WITH IOT MONITORING

    Get PDF
    : The idea of employing an Adaptive Fuzzy Sliding (AFS)-operated matrix converter in a grid-connected Wind Energy Conversion System (WECS) for controlling voltage and frequency, with additional support for grid monitoring provided by an Internet of Things (IoT) server. The matrix converter is a power electronic device that facilitates direct voltage and frequency conversion, allowing a variable-speed turbine generator to be connected to the power grid. Matrix converter reliability and efficiency are ensured by the AFS control method's use of adaptive control, fuzzy logic, and sliding mode control. The fundamental function of the control system is to stabilize and guarantee the quality of the electricity being sent from the wind turbine generator to the grid. This system's capabilities are expanded by monitoring the grid status through an IoT server, in addition to controlling voltage and frequency. The system's responsiveness to grid fluctuations, grid faults, and abnormal situations is dynamic due to the constant monitoring of grid status. The AFS control approach, in integration with data from the IoT server, enables adaptive control modifications that facilitate the WES's smooth incorporation into the grid, which in turn helps to preserve grid stability and improves system dependability

    Circuits and Systems for Energy Harvesting and Internet of Things Applications

    Get PDF
    The Internet of Things (IoT) continues its growing trend, while new “smart” objects are con-stantly being developed and commercialized in the market. Under this paradigm, every common object will be soon connected to the Internet: mobile and wearable devices, electric appliances, home electronics and even cars will have Internet connectivity. Not only that, but a variety of wireless sensors are being proposed for different consumer and industrial applications. With the possibility of having hundreds of billions of IoT objects deployed all around us in the coming years, the social implications and the economic impact of IoT technology needs to be seriously considered. There are still many challenges, however, awaiting a solution in order to realize this future vision of a connected world. A very important bottleneck is the limited lifetime of battery powered wireless devices. Fully depleted batteries need to be replaced, which in perspective would generate costly maintenance requirements and environmental pollution. However, a very plausible solution to this dilemma can be found in harvesting energy from the ambient. This dissertation focuses in the design of circuits and system for energy harvesting and Internet of Things applications. The first part of this dissertation introduces the research motivation and fundamentals of energy harvesting and power management units (PMUs). The architecture of IoT sensor nodes and PMUs is examined to observe the limitations of modern energy harvesting systems. Moreover, several architectures for multisource harvesting are reviewed, providing a background for the research presented here. Then, a new fully integrated system architecture for multisource energy harvesting is presented. The design methodology, implementation, trade-offs and measurement results of the proposed system are described. The second part of this dissertation focus on the design and implementation of low-power wireless sensor nodes for precision agriculture. First, a sensor node incorporating solar energy harvesting and a dynamic power management strategy is presented. The operation of a wireless sensor network for soil parameter estimation, consisting of four nodes is demonstrated. After that, a solar thermoelectric generator (STEG) prototype for powering a wireless sensor node is proposed. The implemented solar thermoelectric generator demonstrates to be an alternative way to harvest ambient energy, opening the possibility for its use in agricultural and environmental applications. The open problems in energy harvesting for IoT devices are discussed at the end, to delineate the possible future work to improve the performance of EH systems. For all the presented works, proof-of-concept prototypes were fabricated and tested. The measured results are used to verify their correct operation and performance
    corecore