27,682 research outputs found

    On Secrecy Performance of MISO SWIPT Systems With TAS and Imperfect CSI

    Get PDF
    In this paper, a multiple-input single-output (MISO) simultaneous wireless information and power transfer (SWIPT) system, including one base station (BS) equipped with multiple antennas, one desired single-antenna information receiver (IR), and N (N > 1) single-antenna energy-harvesting receivers (ERs) is considered. Assuming that the information signal to the desired IR may be eavesdropped by ERs if ERs are malicious, we investigate the secrecy performance of the target MISO SWIPT system when imperfect channel state information (CSI) is available and adopted for transmit antenna selection at the BS. Considering that each eavesdropping link experiences independent but not necessarily identically distributed Rayleigh fading, the closed-form expressions for the exact and the asymptotic secrecy outage probability, and the average secrecy capacity are derived and verified by simulations. Furthermore, the optimal power splitting factor is derived for each ER to realize the tradeoff between the energy harvesting and the information eavesdropping. Our results reveal the impact of the imperfect CSI on the secrecy performance of MISO SWIPT systems in the presence of multiple wiretap channels

    Optimal Multiuser Scheduling Schemes for Simultaneous Wireless Information and Power Transfer

    Full text link
    In this paper, we study the downlink multiuser scheduling problem for systems with simultaneous wireless information and power transfer (SWIPT). We design optimal scheduling algorithms that maximize the long-term average system throughput under different fairness requirements, such as proportional fairness and equal throughput fairness. In particular, the algorithm designs are formulated as non-convex optimization problems which take into account the minimum required average sum harvested energy in the system. The problems are solved by using convex optimization techniques and the proposed optimization framework reveals the tradeoff between the long-term average system throughput and the sum harvested energy in multiuser systems with fairness constraints. Simulation results demonstrate that substantial performance gains can be achieved by the proposed optimization framework compared to existing suboptimal scheduling algorithms from the literature.Comment: Accepted for presentation at the European Signal Processing Conference 201

    Towards Optimal Energy Harvesting Receiver Design in MIMO Systems

    Full text link
    In this paper, we investigate a multiple-input multiple-output (MIMO) system with simultaneous information detection (ID) and energy harvesting (EH) receiver. This point-to-point system operates in the vicinity of active interfering nodes. The receiver performs power splitting where a portion of received signal undergoes analog energy harvesting circuitry. Further, the information content of the other portion is extracted after performing digital beamforming. In this MIMO system, information carrier eigen-modes are not necessarily the eigen-modes with the strongest energy level. Hence, it is beneficial to perform independent beamforming at the receiver of MIMO-P2P channel. Here, we utilize a hybrid analog/digital beamforming for the purpose of simultaneous ID and EH in such scenarios. This design, provides extra design degrees-of-freedom in eigen-mode selection for ID and EH purposes independently. Worst-case performance of this receiver structure is discussed. Finally, its benefits is compared to the classical receiver structure and the gains are highlighted

    Wireless information and power transfer: from scientific hypothesis to engineering practice

    No full text
    Recently, there has been substantial research interest in the subject of Simultaneous Wireless Information andPower Transfer (SWIPT) owing to its cross-disciplinary appeal and its wide-ranging application potential, whichmotivates this overview. More explicitly, we provide a brief survey of the state-of-the-art and introduce severalpractical transceiver architectures that may facilitate its implementation. Moreover, the most important link-levelas well as system-level design aspects are elaborated on, along with a variety of potential solutions and researchideas. We envision that the dual interpretation of Radio Frequency (RF) signals creates new opportunities as wellas challenges requiring substantial research, innovation and engineering efforts

    Wireless Information and Power Transfer: Architecture Design and Rate-Energy Tradeoff

    Full text link
    Simultaneous information and power transfer over the wireless channels potentially offers great convenience to mobile users. Yet practical receiver designs impose technical constraints on its hardware realization, as practical circuits for harvesting energy from radio signals are not yet able to decode the carried information directly. To make theoretical progress, we propose a general receiver operation, namely, dynamic power splitting (DPS), which splits the received signal with adjustable power ratio for energy harvesting and information decoding, separately. Three special cases of DPS, namely, time switching (TS), static power splitting (SPS) and on-off power splitting (OPS) are investigated. The TS and SPS schemes can be treated as special cases of OPS. Moreover, we propose two types of practical receiver architectures, namely, separated versus integrated information and energy receivers. The integrated receiver integrates the front-end components of the separated receiver, thus achieving a smaller form factor. The rate-energy tradeoff for the two architectures are characterized by a so-called rate-energy (R-E) region. The optimal transmission strategy is derived to achieve different rate-energy tradeoffs. With receiver circuit power consumption taken into account, it is shown that the OPS scheme is optimal for both receivers. For the ideal case when the receiver circuit does not consume power, the SPS scheme is optimal for both receivers. In addition, we study the performance for the two types of receivers under a realistic system setup that employs practical modulation. Our results provide useful insights to the optimal practical receiver design for simultaneous wireless information and power transfer (SWIPT).Comment: to appear in IEEE Transactions on Communication
    corecore