3,993 research outputs found

    Large-scale Reservoir Simulations on IBM Blue Gene/Q

    Full text link
    This paper presents our work on simulation of large-scale reservoir models on IBM Blue Gene/Q and studying the scalability of our parallel reservoir simulators. An in-house black oil simulator has been implemented. It uses MPI for communication and is capable of simulating reservoir models with hundreds of millions of grid cells. Benchmarks show that our parallel simulator are thousands of times faster than sequential simulators that designed for workstations and personal computers, and the simulator has excellent scalability

    Modeling the Internet of Things: a simulation perspective

    Full text link
    This paper deals with the problem of properly simulating the Internet of Things (IoT). Simulating an IoT allows evaluating strategies that can be employed to deploy smart services over different kinds of territories. However, the heterogeneity of scenarios seriously complicates this task. This imposes the use of sophisticated modeling and simulation techniques. We discuss novel approaches for the provision of scalable simulation scenarios, that enable the real-time execution of massively populated IoT environments. Attention is given to novel hybrid and multi-level simulation techniques that, when combined with agent-based, adaptive Parallel and Distributed Simulation (PADS) approaches, can provide means to perform highly detailed simulations on demand. To support this claim, we detail a use case concerned with the simulation of vehicular transportation systems.Comment: Proceedings of the IEEE 2017 International Conference on High Performance Computing and Simulation (HPCS 2017

    Performance evaluation of multi-core multi-cluster architecture

    No full text
    A multi-core cluster is a cluster composed of numbers of nodes where each node has a number of processors, each with more than one core within each single chip. Cluster nodes are connected via an interconnection network. Multi-cored processors are able to achieve higher performance without driving up power consumption and heat, which is the main concern in a single-core processor. A general problem in the network arises from the fact that multiple messages can be in transit at the same time on the same network links. This paper considers the communication latencies of a multi-core multi-cluster architecture will be investigated using simulation experiments and measurements under various working conditions

    NeuroFlow: A General Purpose Spiking Neural Network Simulation Platform using Customizable Processors

    Get PDF
    © 2016 Cheung, Schultz and Luk.NeuroFlow is a scalable spiking neural network simulation platform for off-the-shelf high performance computing systems using customizable hardware processors such as Field-Programmable Gate Arrays (FPGAs). Unlike multi-core processors and application-specific integrated circuits, the processor architecture of NeuroFlow can be redesigned and reconfigured to suit a particular simulation to deliver optimized performance, such as the degree of parallelism to employ. The compilation process supports using PyNN, a simulator-independent neural network description language, to configure the processor. NeuroFlow supports a number of commonly used current or conductance based neuronal models such as integrate-and-fire and Izhikevich models, and the spike-timing-dependent plasticity (STDP) rule for learning. A 6-FPGA system can simulate a network of up to ~600,000 neurons and can achieve a real-time performance of 400,000 neurons. Using one FPGA, NeuroFlow delivers a speedup of up to 33.6 times the speed of an 8-core processor, or 2.83 times the speed of GPU-based platforms. With high flexibility and throughput, NeuroFlow provides a viable environment for large-scale neural network simulation
    corecore