3 research outputs found

    Block-level test scheduling under power dissipation constraints

    Get PDF
    As dcvicc technologies such as VLSI and Multichip Module (MCM) become mature, and larger and denser memory ICs arc implemented for high-performancc digital systems, power dissipation becomes a critical factor and can no longer be ignored cither in normal operation of the system or under test conditions. One of the major considerations in test scheduling is the fact that heat dissipated during test application is significantly higher than during normal operation (sometimes 100 - 200% higher). Therefore, this is one of the recent major considerations in test scheduling. Test scheduling is strongly related to test concurrency. Test concurrency is a design property which strongly impacts testability and power dissipation. To satisfy high fault coverage goals with reduced test application time under certain power dissipation constraints, the testing of all components on the system should be performed m parallel to the greatest extent possible. Some theoretical analysis of this problem has been carried out, but only at IC level. The problem was basically described as a compatible test clustering, where the compatibility among tests was given by test resource and power dissipation conflicts at the same time. From an implementation point of view this problem was identified as an Non-Polynomial (NP) complete problem In this thesis, an efficient scheme for overlaying the block-tcsts, called the extended tree growing technique, is proposed together with classical scheduling algorithms to search for power-constrained blocktest scheduling (PTS) profiles m a polynomial time Classical algorithms like listbased scheduling and distribution-graph based scheduling arc employed to tackle at high level the PTS problem. This approach exploits test parallelism under power constraints. This is achieved by overlaying the block-tcst intervals of compatible subcircuits to test as many of them as possible concurrently so that the maximum accumulated power dissipation is balanced and does not exceed the given limit. The test scheduling discipline assumed here is the partitioned testing with run to completion. A constant additive model is employed for power dissipation analysis and estimation throughout the algorithm

    Constraint-driven RF test stimulus generation and built-in test

    Get PDF
    With the explosive growth in wireless applications, the last decade witnessed an ever-increasing test challenge for radio frequency (RF) circuits. While the design community has pushed the envelope far into the future, by expanding CMOS process to be used with high-frequency wireless devices, test methodology has not advanced at the same pace. Consequently, testing such devices has become a major bottleneck in high-volume production, further driven by the growing need for tighter quality control. RF devices undergo testing during the prototype phase and during high-volume manufacturing (HVM). The benchtop test equipment used throughout prototyping is very precise yet specialized for a subset of functionalities. HVM calls for a different kind of test paradigm that emphasizes throughput and sufficiency, during which the projected performance parameters are measured one by one for each device by automated test equipment (ATE) and compared against defined limits called specifications. The set of tests required for each product differs greatly in terms of the equipment required and the time taken to test individual devices. Together with signal integrity, precision, and repeatability concerns, the initial cost of RF ATE is prohibitively high. As more functionality and protocols are integrated into a single RF device, the required number of specifications to be tested also increases, adding to the overall cost of testing, both in terms of the initial and recurring operating costs. In addition to the cost problem, RF testing proposes another challenge when these components are integrated into package-level system solutions. In systems-on-packages (SOP), the test problems resulting from signal integrity, input/output bandwidth (IO), and limited controllability and observability have initiated a paradigm shift in high-speed analog testing, favoring alternative approaches such as built-in tests (BIT) where the test functionality is brought into the package. This scheme can make use of a low-cost external tester connected through a low-bandwidth link in order to perform demanding response evaluations, as well as make use of the analog-to-digital converters and the digital signal processors available in the package to facilitate testing. Although research on analog built-in test has demonstrated hardware solutions for single specifications, the paradigm shift calls for a rather general approach in which a single methodology can be applied across different devices, and multiple specifications can be verified through a single test hardware unit, minimizing the area overhead. Specification-based alternate test methodology provides a suitable and flexible platform for handling the challenges addressed above. In this thesis, a framework that integrates ATE and system constraints into test stimulus generation and test response extraction is presented for the efficient production testing of high-performance RF devices using specification-based alternate tests. The main components of the presented framework are as follows: Constraint-driven RF alternate test stimulus generation: An automated test stimulus generation algorithm for RF devices that are evaluated by a specification-based alternate test solution is developed. The high-level models of the test signal path define constraints in the search space of the optimized test stimulus. These models are generated in enough detail such that they inherently define limitations of the low-cost ATE and the I/O restrictions of the device under test (DUT), yet they are simple enough that the non-linear optimization problem can be solved empirically in a reasonable amount of time. Feature extractors for BIT: A methodology for the built-in testing of RF devices integrated into SOPs is developed using additional hardware components. These hardware components correlate the high-bandwidth test response to low bandwidth signatures while extracting the test-critical features of the DUT. Supervised learning is used to map these extracted features, which otherwise are too complicated to decipher by plain mathematical analysis, into the specifications under test. Defect-based alternate testing of RF circuits: A methodology for the efficient testing of RF devices with low-cost defect-based alternate tests is developed. The signature of the DUT is probabilistically compared with a class of defect-free device signatures to explore possible corners under acceptable levels of process parameter variations. Such a defect filter applies discrimination rules generated by a supervised classifier and eliminates the need for a library of possible catastrophic defects.Ph.D.Committee Chair: Chatterjee, Abhijit; Committee Member: Durgin, Greg; Committee Member: Keezer, David; Committee Member: Milor, Linda; Committee Member: Sitaraman, Sures
    corecore