5 research outputs found

    Compiler optimization and ordering effects on VLIW code compression

    Get PDF

    Compiler optimization and ordering effects on VLIW code compression

    Get PDF
    Code size has always been an important issue for all embedded applications as well as larger systems. Code compression techniques have been devised as a way of battling bloated code; however, the impact of VLIW compiler methods and outputs on these compression schemes has not been thoroughly investigated. This paper describes the application of single- and multipleinstruction dictionary methods for code compression to decrease overall code size for the TI TMS320C6xxx DSP family. The compression scheme is applied to benchmarks taken from the Mediabench benchmark suite built with differing compiler optimization parameters. In the single instruction encoding scheme, it was found that compression ratios were not a useful indicator of the best overall code size – the best results (smallest overall code size) were obtained when the compression scheme was applied to sizeoptimized code. In the multiple instruction encoding scheme, changing parallel instruction order was found to only slightly improve compression in unoptimized code and does not affect the code compression when it is applied to builds already optimized for size

    Huffman-based Code Compression Techniques for Embedded Systems

    Get PDF

    A simple and fast scheme for code compression for VLIW processors

    No full text
    Summary form only given. A scheme for code compression that has a fast decompression algorithm, which can be implemented using simple hardware, is proposed. The effectiveness of the scheme on the TMS320C62x architecture that includes the overheads of a line address table (LAT) is evaluated and obtained compression rates ranging from 70% to 80%. Two schemes for decompression are proposed. The basic idea underlying the scheme is a simple clustering algorithm that partially maps a block of instructions into a set of clusters. The clustering algorithm is a greedy algorithm based on the frequency of occurrence of various instructions
    corecore