2,123 research outputs found

    On interference among moving sensors and related problems

    Full text link
    We show that for any set of nn points moving along "simple" trajectories (i.e., each coordinate is described with a polynomial of bounded degree) in d\Re^d and any parameter 2kn2 \le k \le n, one can select a fixed non-empty subset of the points of size O(klogk)O(k \log k), such that the Voronoi diagram of this subset is "balanced" at any given time (i.e., it contains O(n/k)O(n/k) points per cell). We also show that the bound O(klogk)O(k \log k) is near optimal even for the one dimensional case in which points move linearly in time. As applications, we show that one can assign communication radii to the sensors of a network of nn moving sensors so that at any given time their interference is O(nlogn)O(\sqrt{n\log n}). We also show some results in kinetic approximate range counting and kinetic discrepancy. In order to obtain these results, we extend well-known results from ε\varepsilon-net theory to kinetic environments

    Tighter Estimates for ϵ-nets for Disks

    Get PDF
    International audienceThe geometric hitting set problem is one of the basic geometric combinatorial optimization problems: given a set P of points, and a set D of geometric objects in the plane, the goal is to compute a small-sized subset of P that hits all objects in D. In 1994, Bronniman and Goodrich [5] made an important connection of this problem to the size of fundamental combinatorial structures called ϵ-nets, showing that small-sized ϵ-nets imply approximation algorithms with correspondingly small approximation ratios. Very recently, Agarwal and Pan [2] showed that their scheme can be implemented in near-linear time for disks in the plane. Altogether this gives O(1)-factor approximation algorithms in O(n) time for hitting sets for disks in the plane. This constant factor depends on the sizes of ϵ-nets for disks; unfortunately, the current state-of-the-art bounds are large – at least 24/ϵ and most likely larger than 40/ϵ. Thus the approximation factor of the Agarwal and Pan algorithm ends up being more than 40. The best lower-bound is 2/ϵ, which follows from the Pach-Woeginger construction [32] for halfplanes in two dimensions. Thus there is a large gap between the best-known upper and lower bounds. Besides being of independent interest, finding precise bounds is important since this immediately implies an improved linear-time algorithm for the hitting-set problem. The main goal of this paper is to improve the upper-bound to 13.4/ϵ for disks in the plane. The proof is constructive, giving a simple algorithm that uses only Delaunay triangulations. We have implemented the algorithm, which is available as a public open-source module. Experimental results show that the sizes of-nets for a variety of data-sets is lower, around 9/ϵ
    corecore