4,823 research outputs found

    A Constant-Factor Approximation for Wireless Capacity Maximization with Power Control in the SINR Model

    Full text link
    In modern wireless networks, devices are able to set the power for each transmission carried out. Experimental but also theoretical results indicate that such power control can improve the network capacity significantly. We study this problem in the physical interference model using SINR constraints. In the SINR capacity maximization problem, we are given n pairs of senders and receivers, located in a metric space (usually a so-called fading metric). The algorithm shall select a subset of these pairs and choose a power level for each of them with the objective of maximizing the number of simultaneous communications. This is, the selected pairs have to satisfy the SINR constraints with respect to the chosen powers. We present the first algorithm achieving a constant-factor approximation in fading metrics. The best previous results depend on further network parameters such as the ratio of the maximum and the minimum distance between a sender and its receiver. Expressed only in terms of n, they are (trivial) Omega(n) approximations. Our algorithm still achieves an O(log n) approximation if we only assume to have a general metric space rather than a fading metric. Furthermore, by using standard techniques the algorithm can also be used in single-hop and multi-hop scheduling scenarios. Here, we also get polylog(n) approximations.Comment: 17 page

    Leveraging Physical Layer Capabilites: Distributed Scheduling in Interference Networks with Local Views

    Full text link
    In most wireless networks, nodes have only limited local information about the state of the network, which includes connectivity and channel state information. With limited local information about the network, each node's knowledge is mismatched; therefore, they must make distributed decisions. In this paper, we pose the following question - if every node has network state information only about a small neighborhood, how and when should nodes choose to transmit? While link scheduling answers the above question for point-to-point physical layers which are designed for an interference-avoidance paradigm, we look for answers in cases when interference can be embraced by advanced PHY layer design, as suggested by results in network information theory. To make progress on this challenging problem, we propose a constructive distributed algorithm that achieves rates higher than link scheduling based on interference avoidance, especially if each node knows more than one hop of network state information. We compare our new aggressive algorithm to a conservative algorithm we have presented in [1]. Both algorithms schedule sub-networks such that each sub-network can employ advanced interference-embracing coding schemes to achieve higher rates. Our innovation is in the identification, selection and scheduling of sub-networks, especially when sub-networks are larger than a single link.Comment: 14 pages, Submitted to IEEE/ACM Transactions on Networking, October 201

    Topology-aware GPU scheduling for learning workloads in cloud environments

    Get PDF
    Recent advances in hardware, such as systems with multiple GPUs and their availability in the cloud, are enabling deep learning in various domains including health care, autonomous vehicles, and Internet of Things. Multi-GPU systems exhibit complex connectivity among GPUs and between GPUs and CPUs. Workload schedulers must consider hardware topology and workload communication requirements in order to allocate CPU and GPU resources for optimal execution time and improved utilization in shared cloud environments. This paper presents a new topology-aware workload placement strategy to schedule deep learning jobs on multi-GPU systems. The placement strategy is evaluated with a prototype on a Power8 machine with Tesla P100 cards, showing speedups of up to ≈1.30x compared to state-of-the-art strategies; the proposed algorithm achieves this result by allocating GPUs that satisfy workload requirements while preventing interference. Additionally, a large-scale simulation shows that the proposed strategy provides higher resource utilization and performance in cloud systems.This project is supported by the IBM/BSC Technology Center for Supercomputing collaboration agreement. It has also received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 639595). It is also partially supported by the Ministry of Economy of Spain under contract TIN2015-65316-P and Generalitat de Catalunya under contract 2014SGR1051, by the ICREA Academia program, and by the BSC-CNS Severo Ochoa program (SEV-2015-0493). We thank our IBM Research colleagues Alaa Youssef and Asser Tantawi for the valuable discussions. We also thank SC17 committee member Blair Bethwaite of Monash University for his constructive feedback on the earlier drafts of this paper.Peer ReviewedPostprint (published version

    Low-feedback multiple-access and scheduling via location and geometry information

    Get PDF
    • 

    corecore