3,387 research outputs found

    Discriminative Tandem Features for HMM-based EEG Classification

    Get PDF
    Abstract—We investigate the use of discriminative feature extractors in tandem configuration with generative EEG classification system. Existing studies on dynamic EEG classification typically use hidden Markov models (HMMs) which lack discriminative capability. In this paper, a linear and a non-linear classifier are discriminatively trained to produce complementary input features to the conventional HMM system. Two sets of tandem features are derived from linear discriminant analysis (LDA) projection output and multilayer perceptron (MLP) class-posterior probability, before appended to the standard autoregressive (AR) features. Evaluation on a two-class motor-imagery classification task shows that both the proposed tandem features yield consistent gains over the AR baseline, resulting in significant relative improvement of 6.2% and 11.2 % for the LDA and MLP features respectively. We also explore portability of these features across different subjects. Index Terms- Artificial neural network-hidden Markov models, EEG classification, brain-computer-interface (BCI)

    A latent discriminative model-based approach for classification of imaginary motor tasks from EEG data

    Get PDF
    We consider the problem of classification of imaginary motor tasks from electroencephalography (EEG) data for brain-computer interfaces (BCIs) and propose a new approach based on hidden conditional random fields (HCRFs). HCRFs are discriminative graphical models that are attractive for this problem because they (1) exploit the temporal structure of EEG; (2) include latent variables that can be used to model different brain states in the signal; and (3) involve learned statistical models matched to the classification task, avoiding some of the limitations of generative models. Our approach involves spatial filtering of the EEG signals and estimation of power spectra based on auto-regressive modeling of temporal segments of the EEG signals. Given this time-frequency representation, we select certain frequency bands that are known to be associated with execution of motor tasks. These selected features constitute the data that are fed to the HCRF, parameters of which are learned from training data. Inference algorithms on the HCRFs are used for classification of motor tasks. We experimentally compare this approach to the best performing methods in BCI competition IV as well as a number of more recent methods and observe that our proposed method yields better classification accuracy

    Decoding Complex Imagery Hand Gestures

    Full text link
    Brain computer interfaces (BCIs) offer individuals suffering from major disabilities an alternative method to interact with their environment. Sensorimotor rhythm (SMRs) based BCIs can successfully perform control tasks; however, the traditional SMR paradigms intuitively disconnect the control and real task, making them non-ideal for complex control scenarios. In this study, we design a new, intuitively connected motor imagery (MI) paradigm using hierarchical common spatial patterns (HCSP) and context information to effectively predict intended hand grasps from electroencephalogram (EEG) data. Experiments with 5 participants yielded an aggregate classification accuracy--intended grasp prediction probability--of 64.5\% for 8 different hand gestures, more than 5 times the chance level.Comment: This work has been submitted to EMBC 201

    Hidden conditional random fields for classification of imaginary motor tasks from EEG data

    Get PDF
    Brain-computer interfaces (BCIs) are systems that allow the control of external devices using information extracted from brain signals. Such systems find application in rehabilitation of patients with limited or no muscular control. One mechanism used in BCIs is the imagination of motor activity, which produces variations on the power of the electroencephalography (EEG) signals recorded over the motor cortex. In this paper, we propose a new approach for classification of imaginary motor tasks based on hidden conditional random fields (HCRFs). HCRFs are discriminative graphical models that are attractive for this problem because they involve learned statistical models matched to the classification problem; they do not suffer from some of the limitations of generative models; and they include latent variables that can be used to model different brain states in the signal. Our approach involves auto-regressive modeling of the EEG signals, followed by the computation of the power spectrum. Frequency band selection is performed on the resulting time-frequency representation through feature selection methods. These selected features constitute the data that are fed to the HCRF, parameters of which are learned from training data. Inference algorithms on the HCRFs are used for classification of motor tasks. We experimentally compare this approach to the best performing methods in BCI competition IV and the results show that our approach overperforms all methods proposed in the competition. In addition, we present a comparison with an HMM-based method, and observe that the proposed method produces better classification accuracy

    Supervised estimation of Granger-based causality between time series

    Get PDF
    Brain effective connectivity aims to detect causal interactions between distinct brain units and it is typically studied through the analysis of direct measurements of the neural activity, e.g., magneto/electroencephalography (M/EEG) signals. The literature on methods for causal inference is vast. It includes model-based methods in which a generative model of the data is assumed and model-free methods that directly infer causality from the probability distribution of the underlying stochastic process. Here, we firstly focus on the model-based methods developed from the Granger criterion of causality, which assumes the autoregressive model of the data. Secondly, we introduce a new perspective, that looks at the problem in a way that is typical of the machine learning literature. Then, we formulate the problem of causality detection as a supervised learning task, by proposing a classification-based approach. A classifier is trained to identify causal interactions between time series for the chosen model and by means of a proposed feature space. In this paper, we are interested in comparing this classification-based approach with the standard Geweke measure of causality in the time domain, through simulation study. Thus, we customized our approach to the case of a MAR model and designed a feature space which contains causality measures based on the idea of precedence and predictability in time. Two variations of the supervised method are proposed and compared to a standard Granger causal analysis method. The results of the simulations show that the supervised method outperforms the standard approach, in particular it is more robust to noise. As evidence of the efficacy of the proposed method, we report the details of our submission to the causality detection competition of Biomag2014, where the proposed method reached the 2nd place. Moreover, as empirical application, we applied the supervised approach on a dataset of neural recordings of rats obtaining an important reduction in the false positive rate
    corecore