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1 Signal Processing and Information Systems Laboratory, Sabanci University, Orhanli, Tuzla,
34956 Istanbul, Turkey
2 Department of Electrical and Electronic Engineering, Universidad del Norte, Barranquilla, Colombia

E-mail: delgado@sabanciuniv.edu and mcetin@sabanciuniv.edu

Received 16 November 2011
Accepted for publication 8 February 2012
Published 14 March 2012
Online at stacks.iop.org/JNE/9/026020

Abstract
We consider the problem of classification of imaginary motor tasks from
electroencephalography (EEG) data for brain–computer interfaces (BCIs) and propose a new
approach based on hidden conditional random fields (HCRFs). HCRFs are discriminative
graphical models that are attractive for this problem because they (1) exploit the temporal
structure of EEG; (2) include latent variables that can be used to model different brain states in
the signal; and (3) involve learned statistical models matched to the classification task,
avoiding some of the limitations of generative models. Our approach involves spatial filtering
of the EEG signals and estimation of power spectra based on autoregressive modeling of
temporal segments of the EEG signals. Given this time–frequency representation, we select
certain frequency bands that are known to be associated with execution of motor tasks. These
selected features constitute the data that are fed to the HCRF, parameters of which are learned
from training data. Inference algorithms on the HCRFs are used for the classification of motor
tasks. We experimentally compare this approach to the best performing methods in BCI
competition IV as well as a number of more recent methods and observe that our proposed
method yields better classification accuracy.

(Some figures may appear in colour only in the online journal)

1. Introduction

A brain–computer interface (BCI) is a system that provides
an alternative communication pathway for patients who have
lost their ability to perform motor tasks due to disease or
accident [4]. In addition, applications for healthy subjects
in the fields of multimedia and gaming have started to
incorporate these technologies in recent years as well [15].
BCIs aim to use brain signals to help subjects control external
devices and interact with their environment. In the case of
execution of (real or imaginary) motor tasks, it is known
that electroencephalography (EEG) signals measured over
the motor cortex exhibit changes in power related to the
movements. These changes primarily involve increase and
decrease of power in the alpha (8–13 Hz), sigma (11–15 Hz),

beta (18–26 Hz) and low gamma (25–35 Hz) frequency
bands [23]. These phenomena are known as event-related
synchronization and desynchronization [20]. This information
can be used to classify different imaginary motor tasks by
comparison of the power levels of the EEG signals recorded in
a number of positions on the scalp. In particular, changes of the
signal power in different frequency bands with time provide
useful information. Based on this observation, methods based
on time–frequency analysis of the EEG signals have been
proposed [13, 17, 31]. Furthermore, algorithms involving
stochastic time series models taking into account changes of
the signal power with time, such as hidden Markov models
(HMMs) [16, 29, 2, 6], have been used in combination with
features describing the temporal behavior of the EEG signals
[10, 30]. We share the perspective with this latter body of
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work that changes in the power of the signals during execution
of motor tasks reflect the underlying states in the brain and
that the sequence of states provides useful information for
discrimination of different imaginary motor tasks. Previous
work based on HMMs has shown that this approach provides
good results [16, 29, 2, 6]. Nevertheless, if the EEG signal
is modeled by an HMM, which is a generative model, the
distribution of the data must be estimated and conditional
independence assumptions of the data given the underlying
states should be incorporated in order to make the inference
problem tractable. A remedy for this problem is the use of
conditional random fields (CRFs) [12]. Although this is a
discriminative model that does not require the estimation of
the distribution of the data, there is one more issue for the
case of the BCI applications, where, unlike the analysis of
sleep EEG signals based on CRFs as proposed in [8], the
sequence of states is unknown. A modified CRF method has
been proposed for BCI in [3] where the classes are associated
with states in the CRF. However, this method does not utilize
intermediate states in the EEG signal related to each mental
state, which have been proved to increase the performance in
HMM-based approaches [16, 29, 2]. This motivates the use of
hidden states in CRF. Gunawardana et al [9] have proposed
a hidden-state CRF with application to phone classification
which has been generalized by Sugiura et al in [28] to the
so-called hierarchical hidden state CRF (HHCRF). Sugiura
et al have presented an application of HHCRF in EEG signal
segmentation in an asynchronous BCI application exhibiting
advantages when compared to the generative counterpart, the
hierarchical HMM. However, the model proposed in [28]
is based on a complicated structure making the parameter
estimation and state sequence approximation computationally
expensive. Quattoni et al [21] have proposed a hidden
conditional random field (HCRF) model that uses hidden
variables to model the latent structure of the input domain and
defines a joint conditional distribution over the class labels
and the hidden variables given the observations. Contrary to
the work in [9], the HCRF model defined by Quattoni et al does
not fix the sufficient statistics used in the potential function of
the CRF and does not assume Gaussianity of the data, which
leads to a more flexible model selection process.

Motivated by the work in [21], we present an HCRF-
based approach for classification of imaginary motor tasks
in a synchronous BCI scenario, where the labels do not
change with time, making it unnecessary to define a top
layer with different states as in HHCRF. In our approach, the
collected EEG data are first spatially filtered using the common
spatial pattern (CSP) technique. We perform feature extraction
through time–frequency analysis of the spatially filtered
signals based on auto-regressive modeling. Autoregressive
models of 1 s intervals of the filtered EEG signals are used
to estimate their power spectra, obtaining a representation in
time and frequency. Feature selection is performed by selection
of frequency bands related to the execution/imagination of
motor tasks (alpha, sigma, beta, low gamma). These extracted
features constitute the data to be fed to the HCRF. Intermediate
brain states are defined and represented by latent variables in
the HCRF model. Model parameters are learned from labeled

training data, and inference algorithms on HCRFs are used for
classification. We present experimental results demonstrating
the improvements provided by our HCRF-based approach over
the best-performing method in BCI competition IV as well as
over the HMM-based method, a CRF-based method, and the
recently proposed bispectrum-based approach in [26].

2. HCRFs for BCI

In the task of labeling sequence data, one of the most widely
used tools is the HMM [22], a finite automaton which contains
discrete-valued states Q emitting a data vector X at each
time point; the distribution of the data at each time point
depends on the current state. Given that models of this
kind are generative, they require computation of the joint
probability density function of the observed data samples
over multiple time points. In order to make the inference
problem tractable, assumptions about independence of the data
at each time point conditioned on the states should be made.
Such assumptions are violated in many practical scenarios.
CRFs are discriminative models that overcome these issues
[12], avoiding the need to explicitly model the data distribution
as well as the need for the independence assumptions. For
linear-chain CRFs, Lafferty et al [12] define the probability of
a particular label sequence y given an observation sequence x
to be of the form

Pθ (y|x) ∝ exp

{∑
l∈L1

m∑
j=1

f1,l(y j−1, y j, x, j)θ1,l

+
∑
l∈L2

m∑
j=1

f2,l(y j, x, j)θ2,l

}
, (1)

where j represents the discrete time index, m is the length
of the sequence x, f1,l and f2,l are the CRF features3 related
to the edges and nodes of the graph, respectively, and are
given and fixed. L1 and L2 denote the sets of indices for the
CRF features. One has to estimate the parameters θ1,l and θ2,l

based on training data. A more detailed description of CRFs is
beyond the scope of this paper, for which we refer the reader
to [12].

This approach overcomes the problems stated above for
HMMs. However, CRFs focus on assigning a label for each
observation (e.g. each time point in a sequence), and they
neither capture hidden states nor directly provide a way to
estimate the conditional probability of a class label for an
entire sequence. In the BCI problem, which is of interest
in this paper, labels are not available for temporal segments
of (training) EEG data recorded during the execution of a
motor task, and the central problem of interest is to assign
a class label for an entire sequence. As a result, it would be
necessary to use a model that facilitates classifying an entire
sequence and that involves hidden states. Such a model has
been proposed in [21] and is called the HCRF. HCRFs are
able to capture intermediate structures through hidden states,
combined with the power of discriminative models provided

3 These are simply called features in the CRF literature. However, to
distinguish them from features to be extracted from the EEG signal, we call
them CRF features.
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Figure 1. Dynamical statistical models. (a) HCRF model. (b) CRF model. (c) HMM. Dashed lines indicate the possibility of including long
range dependences between the input data and the nodes.

by CRFs. Furthermore, unlike CRFs, they also provide a way
to estimate the conditional probability of a class label for an
entire sequence. An HCRF is constructed as follows. The task
is to infer the class y from the data x, where y is an element
of the set Y of possible labels for the entire data and x is the
set of vectors of temporal EEG features x = {x1, x2, . . . , xm}.
The subindex m represents the number temporal observations.
The training data consist of a set of labeled samples (xi, yi)

for i = 1, . . . , n where yi ∈ Y and xi = {xi,1, xi,2, . . . , xi,m}.
For any xi, a vector of latent variables h = {h1, h2, . . . , hm}
is assumed, providing the state sequence of the data. Each
possible value for h j is a member of a finite set H of possible
hidden states. The joint probability of the labels and the states
given the data is described as

P(y, h|x, θ ) = exp(�(y, h, x; θ ))∑
y′,h exp(�(y′, h, x; θ ))

, (2)

where θ are the parameters of the models and �(y, h, x; θ ) is
a potential function ∈ R. The conditional probability of the
labels given the data can be found by marginalizing out h:

P(y|x, θ ) =
∑

h

P(y, h | x, θ ) =
∑

h exp(�(y, h, x; θ ))∑
y′,h exp(�(y′, h, x; θ ))

.

(3)

Following [21], the estimation of parameter values, using
the training data, can be performed by maximizing the
following objective function:

L(θ ) =
∑

i

log P(yi|xi, θ ) − 1

2σ 2
‖θ‖2 , (4)

where the first term in (4) is the log-likelihood of the
data. The second term is the log of a Gaussian prior with
variance σ 2. Given this objective function, various nonlinear
optimization algorithms can be used to search for the optimal
parameter values θ∗ = arg maxθ L(θ ). In our work, we use a
quasi-Newton algorithm using Hessian updates based on the
Broyden–Fletcher–Goldfarb–Shanno (BFGS) formula. Given
a new test example x and parameter values θ∗ induced from
the training set, the label for the example is taken to be
arg maxy∈Y P(y|x, θ∗)

HCRFs use undirected graphical structures, with the graph
defined by G = (V, E ) where V denotes the vertices in the

graph and E denotes the edges. Based on this, the potential
function �(y, h, x; θ ) is defined as

�(y, h, x; θ ) =
m∑

j=1

∑
l∈L1

f1,l( j, y, h j, x)θ1,l

+
∑

( j,k)∈E

∑
l∈L2

f2,l( j, k, y, h j, hk, x)θ2,l, (5)

where f1,l and f2,l are the HCRF features related to the nodes
and edges of the graph, respectively, and are given and fixed.
L1 and L2 denote the sets of indices for the HCRF features.
It is important to note that �(y, h, x; θ ) is decomposed into a
series of potentially local functions of the hidden variables.
This property is the key for efficient inference over such
models. If the set of hidden states forms a tree-structured graph,
then exact methods for inference and parameter estimation can
be used. In particular, the belief propagation algorithm [18] can
be used to compute the marginal distributions of hidden states
given the data, which can in turn be used in the solution of
the classification problem defined above [21]. If the graph G
contains cycles, approximate methods such as loopy belief
propagation can be used for approximate inference.

Figure 1 shows an HCRF graphical model. The graphical
structure of this model encodes which variables are involved
in each of the functions defining the HCRF features in
�(y, h, x; θ ) in equation (5). For example, the chain structure
of the hidden variables in the particular graphical model in
figure 1 implies that the only hidden variables appearing in
the edge HCRF features f2,l in equation (5) are those with
adjacent indices, i.e. with | j − k| = 1. Likewise, in the case in
which the possible edges indicated by dashed lines in figure 1
are missing, the node HCRF features in equation (5) for
the graph in figure 1 would take the form f1,l( j, y, h j, x j).
Furthermore, since y and x j are not directly connected, but
connected through h j, f1,l would further decompose into two
functions, one expressing the compatibility between y and hj,
and the other between hj and x j. Hence, the graphical model
contains information directly related to the decomposition of
the potential function �(y, h, x; θ ), which in turn specifies
how the posterior probability of the labels in equation (3) is
expressed in terms of local functions.
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(a) (b)

Figure 2. (a) Montage used to extract the signal on C3, C4 and Cz.
(b) EOG channels [19].

Figure 3. Time scheme for the experimental procedure.

3. Description of the proposed method and
experiments

3.1. Problem and data set description

In typical BCI applications based on the imagination of
motor activity, the subject is requested to execute imaginary
motor tasks following a visual cue. It is known that the
imagination of motor activities produces synchronization
and/or desynchronization of the electrical signals recorded
over the motor cortex and that this process has an asymmetrical
spatial distribution during the imagination of the motor task
(e.g. imagination of movement of a particular leg produces
changes in the power of electrical signals in the contralateral
region of the brain). Given a number of training sessions
containing data from multiple trials in which the subject has
been requested to imagine several motor tasks, the first task
is to learn a model. Then, given some new (test) data, the task
is to run an inference algorithm to perform classification of the
imaginary motor task.

In this work, data set 2b of BCI competition IV [19],
which consists of bipolar EEG recordings over scalp positions
for electrodes C3, Cz and C4 (see figure 2(a)) in nine subjects,
was used. The cue-based BCI paradigm involved two classes,
represented by the imagination of the movement of the left
hand and the right hand, respectively. The time scheme of the
sessions is depicted in figure 3. At the beginning of each trial, a
fixation cross and a warning tone are presented. Three seconds
later, a cue (indicating left or right movement) is presented and
the subject is requested to perform the imaginary movement
of the corresponding hand. The data set contains five sessions,
three for training and the remaining two for testing. Some
of these sessions involved feedback, indicating to the subject
how well the imagination of the motor task has been executed,
and others did not. In our work, we have used the sessions

with feedback. Temporal behavior of the EEG signals could
be modified due to the feedback influence [14].

3.2. Artifact reduction

In order to reduce the interference of electrooculographic
(EOG) signals in the EEG recordings, linear regression was
employed, using the EOG data recorded at N = 3 channels
using electrode locations shown in figure 2(b). In this approach,
the signal recorded by the EEG electrodes is modeled as
the summation of the actual underlying EEG signal and the
noise, represented by a linear combination of the EOG signals
interfering into the EEG electrodes [24]:

w(n) = s(n) + u(n).b, (6)

where n represents the discrete time index, w(n) and s(n)

represent the noisy and the actual EEG signals at M
electrodes, and u(n) represents the EOG signal at N electrodes.
Representing w(n), s(n) and u(n) at a particular time point as
row vectors of appropriate dimensions, b is an unknown matrix
of size N × M representing the set of coefficients that explain
how the EOG signals have propagated by volume conduction
to each of the points on the scalp where the EEG measurements
are made. The problem is to recover s(n) from measurements
of w(n) and u(n). Given that the EOG signals are large in
magnitude compared to the EEG signals, the interference
of EEG in the EOG recordings u(n) can be neglected [24].
If we knew b, the original EEG signal could be found by
s(n) = w(n) − u(n).b. We describe a procedure to estimate
b, which can then be used in this equation to estimate s(n).
Multiplying the signal w(n) by u(n)T and taking expectation,
we obtain

E[u(n)T w(n)] = E[u(n)T s(n)] + E[u(n)T u(n)b]. (7)

Under the assumption that there is no correlation between
the EEG signal s(n) and the EOG signals u(n), we obtain an
expression for estimating the coefficient matrix b:

b̂ = E[u(n)T u(n)]−1E[u(n)T w(n)]. (8)

We learn the correlation matrices above and compute b̂
using a set of EOG and EEG measurements available in the
data set for each one of the subjects as described in [24].
These measurements involve the execution of different ocular
movements enabling the estimation of b before the start of the
motor task classification sessions. We then use the estimated
b in our experiments to estimate s(n) based on data w(n) and
u(n) recorded by EEG and EOG electrodes, respectively. The
obtained signals are then bandpass filtered in the frequency
band of interest for real/imaginary motor activity (8–35 Hz).

3.3. Feature extraction

3.3.1. Spatial filtering. CSPs are spatial filters that are
well suited to discriminate mental states characterized by
ERS/ERD phenomena [7]. Given the bandpass filtered,
labeled EEG signals s(n) (1 × M row vectors at each time
point n) from the training set for each of the two classes C1

and C2, we estimate the M × M sample spatial covariance
matrices �C1 and �C2 of the EEG signals for the two classes.
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CSP performs the simultaneous diagonalization of �C1 and
�C2 in such a way that the eigenvalues of the diagonalized
matrices sum to 1, that is,

V T �C1V = D and V T (�C1 + �C2 )V = I, (9)

where V is the matrix of generalized eigenvectors, D is a
diagonal matrix of eigenvalues and I is the identity matrix.
Hence, the EEG signal s(n) at each time point can be
transformed from the electrode space to the CSP space through
s(n)V . We can focus on the jth CSP component by using
the filter Vj ( jth column of V ) and the resulting projected
signals s(n)Vj. If the signal is from class 1, the variance of the
projected signal will beV T

j �C1Vj = d j (d j is the corresponding
eigenvalue for the eigenvector Vj). Likewise, for signals from
class 2, the variance of the projected signal will be 1−dj. Since
we are interested in the discrimination of the two classes,
it makes sense to use CSP components that emphasize the
contrast between the classes. As observed, the filters Vj that
provide the best contrast between the two classes are those
with large eigenvalues and low eigenvalues, producing large
variance for class 1 and low variance for class 2, and vice versa.
Then, choosing those particular components corresponding to
high and low eigenvalues only, the spatial filtered signal is
obtained as follows:

c(n) = s(n)W, (10)

where W is a matrix whose columns are composed of a
subset of the eigenvectors Vj, in particular those with relatively
large and small eigenvalues. In our experiments, we linearly
transform the EEG signals at M = 3 electrodes into two
CSP-filtered EEG signals using the largest and the smallest
eigenvalues. Once the filters are designed based on the training
data in this manner, they are applied on the test data.

3.3.2. Power spectral density estimation using auto-
regressive parameters. The power spectrum of the signal is
computed by parametric methods involving the calculation of
autoregressive (AR) models of the signal. In this paper, we use
Burg’s method for AR model estimation because it provides
better stability than the Yule–Walker method by minimizing
the error in the backward and in the forward direction [27].
The power spectrum of the EEG signal is estimated as the
frequency response of the auto-regressive model:

ci(n) =
p∑

k=1

akci(n − k) + g(n), (11)

where the subindex i represents each of the CSP components,
n represents the discrete time index, p is the model order, ak

is the kth coefficient of the model and g(n) is the system input
or noise function. Then, we can compute the system function
in the z-domain:

Hi(z) = Ci(z)

G(z)
=

(
1 −

p∑
k=1

akz−k

)−1

. (12)

The AR spectrum can be obtained by evaluating Hi(z) on the
unit circle where z = exp(jω) [11].

For estimating the AR parameters, we use a 1 s sliding
window, over the spatial filtered signals c(n). For each signal

Table 1. Selected frequency bands used as features for the HCRF
model.

EEG rhythm Frequency band (Hz)

Alpha 08–13
Sigma 11–15
Low beta 18–23
High beta 21–26
Low gamma 25–35

segment of 1 s, the model is estimated and the frequency
response is obtained. The overlap of the segments was fixed
to 90% of the window length. This produces a time–frequency
map for each signal. From this time–frequency representation,
the features used as input for the HCRF model are selected
based on physiological information of the frequency bands
related to execution/imagination of motor tasks. Table 1
shows the selected frequency bands used in this work. The
features are calculated by taking the average power across
frequency and the indicated frequency bands. The frequency
resolution used in this work was 1 Hz.

3.4. Model selection and classification

EEG feature vectors obtained using the auto-regressive power
spectrum as described previously constitute the data x to be fed
to the HCRF-based inference algorithm to be labeled. Since
we use five frequency bands and two CSP components, the
component x j of the vector x at time point j is ten dimensional.

The particular HCRF model used in our work is a
special case of the general form appearing in equation (5).
In particular, we use a model represented by the graphical
structure in figure 1(a), without the presence of the long
range dependences indicated by the dashed lines. This leads
to decoupling and a number of simplifications in the potential
function �(y, h, x; θ ) of equation (5). First, since y and x
are only connected through h, the node potential function
decomposes into two terms, one relating y and h, and the other
one relating h and x. Second, since long range dependences
are not present, only x j (rather than the past and future
values present in the input sequence x) is involved in the
potential function for h j. Third, the edge potential function
involves cliques formed by consecutive nodes hj and hk (where
| j − k| = 1) and the label y. Putting all of this together, we
obtain the following potential function used in our work:

�(y, h, x; θ ) =
∑

j

f1,1(x j) · θh[h j] +
∑

j

f1,2(y, h j) · θl

+
∑

( j,k)∈E

f2,1(y, h j, hk) · θe, (13)

where we have the node-data HCRF feature function
f1,1(x j) = x j. The dot product f1,1(x j) · θh[h j] measures
the compatibility between the current EEG feature and the
state h j, where θh[h j] are the weights associated with h j.
The second term, which involves f1,2(y, h j) · θl measures
the compatibility between the current state hj and the motor
task (label) y. Each element of the node-label weight vector
θl contains a weight for a particular pair of values for the
label and the hidden state. Hence, θl contains weights for all
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possible values of these variables. The HCRF-feature function
f1,2(y, h j) is an indicator vector, with a value of 1 for the
entry corresponding to the particular set of values (y, hj), and
0 for all the other entries. Hence, the dot product f1,2(y, h j) · θl

simply produces the weight for the particular pair of label
and the hidden state (y, h j). Similarly, the third term, which
involves f2,1(y, h j, hk) · θe measures the compatibility of the
state transition from h j to hk and the motor task y. Each
element of the edge weight vector θe contains a weight for
a particular triple of hidden state pairs and label. The HCRF-
feature function f2,1(y, h j, hk) is an indicator vector, with a
value of 1 for the entry corresponding to the particular set of
values (y, h j, hk), and 0 for all the other entries. As the potential
function in (13) can be written in the same form as (5) and the
graphical structure modeling the hidden state transitions is a
chain, algorithms such as belief propagation can be used for
inference [21, 5].

One important issue in the BCI problem treated here is
that the number of different brain states encountered during
the execution or imagination of motor tasks is not obvious. In
order to find the number of states that explain the signal well,
a fourfold cross validation is performed over the training data,
with possible values of 2, 3 and 4 for the number of distinct
states4. From this set of models, with different numbers of
hidden states, the model which provides the best classification
accuracy after the cross-validation process, over the training
data, is selected.

Once the model is selected, classification is performed by
assigning the label y for a test sequence x as follows:

ŷ = arg max
y∈Y

P(y/x; θ∗). (14)

4. Results

We evaluate the performance of the HCRF-based approach
presented above on BCI Competition IV data set 2b. The
number of hidden states in the HCRF model was selected using
a fourfold cross-validation on the training data. Table 2 shows
the final selection of the number of hidden states in the HCRF
model for each subject. The selected model for each subject
was used to classify the data in the test sessions identified in
the data set as B0X04E and B0X05E, with X indicating the
respective subject.

We compare the results of our approach to the top three
results in the competition for this data set. In addition, we
also present a comparison with an HMM-based approach with
Gaussian outputs and with a CRF-based method (using the
same features employed for the HCRF model).

For the case of HMM, the number of hidden states and
the number of Gaussian mixtures were selected by cross-
validation. The graph for the HMM is depicted in figure 1(c).
For the CRF model, there are no hidden states and the number
of states is equal to the number of labels, as in the previous
work on CRFs for BCI applications [3]. The CRF graphical
model used here is depicted in figure 1(b). Given this graph

4 The value of 1 was not considered because it is physically inconsistent with
phenomena involving changes (synchronization and desynchronization) in the
EEG signal.

Table 2. Cross-validation accuracy (correct classification
percentage) on training data and the number of states used for
HCRFs, CRFs and HMMs. Note that in the HCRFs and HMMs the
number of states makes reference to hidden states and is selected by
cross-validation. For the CRF model, there are no hidden states, and
the number of states is equal to the number of labels, in this case two
(left- and right-hand motor imagery).

HCRF CRF HMM

Subject CV-Acc states CV-Acc states CV-Acc states

B01 83 2 80 2 79 2
B02 68 3 57 2 61 2
B03 50 3 45 2 54 2
B04 99 2 99 2 100 2
B05 95 2 89 2 96 2
B06 85 2 84 2 82 2
B07 90 2 91 2 90 2
B08 87 3 87 2 89 2
B09 87 2 89 2 90 3

Table 3. Comparison of the proposed HCRF-based approach with
the top three methods in BCI competition IV as well as with HMM-
and CRF-based techniques in terms of classification accuracy (kappa
values). Bold is used to indicate the highest average rate obtained.

Subject Chin. Gan Coyle HMM CRF HCRF

B01 0.40 0.42 0.19 0.43 0.49 0.60
B02 0.21 0.21 0.12 0.16 0.23 0.32
B03 0.22 0.14 0.12 0.08 −0.03 0.06
B04 0.95 0.94 0.77 0.94 0.94 0.97
B05 0.86 0.71 0.57 0.86 0.73 0.87
B06 0.61 0.62 0.49 0.66 0.73 0.78
B07 0.56 0.61 0.38 0.63 0.46 0.63
B08 0.85 0.84 0.85 0.80 0.70 0.88
B09 0.74 0.78 0.61 0.71 0.48 0.81

Average 0.60 0.58 0.46 0.59 0.53 0.66

structure, two class of feature functions are used, node features
and edge features, as shown in equation (1). The parameters in
the CRF model are learned through a quasi-Newton algorithm
using Hessian updates based on the BFGS formula, which is
the same procedure we use for HCRFs. As the BCI competition
rules require, the HMM, CRF and HCRF models all produce an
output (predicted class) for each time point. Table 2 shows the
cross-validation accuracy for the HMM and the CRF model,
as well as the number of states selected and used.

All methods used for comparison in table 3 use spatial
filters (CSP) in the pre-processing stage or as for the case of
the winner of the competition, an enhanced version of it, the
filter bank CSP (FBCSP) [1]. Furthermore, a comparison with
a recently published method based on the bispectrum of the
EEG signal [26] is presented in table 4.

Following the methodology used in the competition, we
use the kappa values [25] as the metric for comparing different
methods:

κ = C × Pcc − 1

C − 1
, (15)

where C is the number of classes and Pcc is the probability of
correct classification5. Relatively larger kappa values indicate

5 Equation (15) takes this simple form given that the same number of samples
for each class is available for each subject in each session.
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Table 4. Comparison between the bispectrum + LDA approach and
the proposed HCRF-based approach. 04E and 05E denote two
distinct sessions in the test data. Max kappa refers to picking the
best kappa value for each subject across the two sessions (following
the analysis in [26]). Bold is used to indicate the highest average
rate obtained.

Shahid et al [26] HCRF

Subject 04E 05E Max kappa 04E 05E Max kappa

B01 0.64 0.44 0.64 0.70 0.51 0.70
B02 0.33 0.25 0.33 0.33 0.38 0.38
B03 0.29 0.15 0.29 0.11 0.00 0.11
B04 0.96 0.89 0.96 1.00 0.94 1.00
B05 0.60 0.68 0.68 0.88 0.86 0.88
B06 0.64 0.73 0.73 0.74 0.85 0.85
B07 0.43 0.57 0.57 0.56 0.75 0.75
B08 0.69 0.94 0.94 0.79 0.96 0.96
B09 0.81 0.68 0.81 0.84 0.78 0.84

Average 0.60 0.59 0.66 0.66 0.67 0.72

Table 5. Student’s t-test results (p-values) evaluating the statistical
significance of the difference between the performance of the
proposed HCRF-based method and the other methods based on the
results in table 3.

Subject p-Value

HCRF versus Chin 0.0683
HCRF versus Gan 0.0178
HCRF versus Coyle 0.0013
HCRF versus HMM 0.0076
HCRF versus CRF 0.0011

better performance. According to the competition rules, the
time course of the kappa value is calculated and the maximum
kappa value is selected in reporting the results for each
method.

The results of our experiments are shown in table 3. We
observe that the method proposed in this paper provides higher
kappa values than the top algorithms in the BCI competition,
and the dynamic classifiers based on HMMs and CRFs. The
proposed method outperforms all three algorithms from the
BCI competition in eight out of nine subjects and produces an
average kappa value of 0.66 compared to 0.60 for the winner
of the competition. Table 5 presents the results of Student’s
t-test to evaluate the statistical significance of the difference
between the performance of our approach and the methods
of the BCI competition as well as the CRF- and HMM-based
methods.

The methods from BCI competition IV we have compared
against do not use the EOG data for artifact removal. Chin
et al and Gan et al filter the EEG data for EOG artifact
removal without using the EOG data, and Coyle et al do
not perform EOG artifact removal at all. In order to ensure
fairness in our comparisons with these methods, we have
repeated our experiments without any EOG artifact removal. In
this case, our HCRF-based approach has produced an average
kappa value of 0.65. Note that our average kappa value with
EOG artifact reduction was 0.66. Thus, our approach without
EOG artifact reduction still performs better than the top three

methods from the BCI competition which we compare against,
two of which perform EOG artifact reduction using the EEG
data.

The time course of the kappa value produced by our
approach for each subject in each evaluation session is shown
in figure 4. Given the structure of the model as depicted in
figure 1(a), the HCRF model does not provide output for
each sample point. Then, the plots in figure 4 are obtained
by simulating an online experiment where data from the
beginning of a trial to the current time point are used. In this
way, the model calculates the likelihood of the sequence for
each class and provides an output for each sample point. (Note
that the evaluation requirements in the competition require that
the algorithms provide outputs for each sample point.) The
discussion on the time course of the kappa values also helps
us contrast HCRFs with CRFs for synchronous BCI problems.
If we plotted similar time courses for the CRF-based method
whose results were presented in table 3 in comparison with our
HCRF-based approach, we would observe that the time course
is constant. CRFs are sequential labeling models able to model
the extrinsic dynamics of the labels given the data. However,
there is no label dynamics in a synchronous BCI paradigm,
that is, during a trial no transitions among class labels occur.
This will be learned by the CRF model generating a strong
bias to remain in the same label during the trial. Then, an error
in the label based on information at the beginning of a trial
will propagate in time to the end of the trial. This explains why
CRFs are not well suited for synchronous BCI applications and
is also the reason for their rather poor performance, presented
in table 3. A solution for this is proposed by [3] where the
transitions are not modeled directly. However, as the signals
(or EEG features) obtained during each trial are assumed
to belong to the same state (which is also the label in this
case), temporal intrinsic dynamics of data for each class are
not exploited, contrary to what is actually achieved by the
HCRF-based approach proposed in this paper. In this paper,
we have compared the HCRF- and CRF-based models using
one particular type of feature and one particular classification
methodology. While we have not chosen these pieces to
favor one model versus the other, we acknowledge that other
choices (e.g. as in [3]) might lead to different performance
results.

We also compare our HCRF-based approach to the
recent work in [26] where a high order statistic method
involving the bispectrum of the EEG signal, together with the
linear discriminant analysis (LDA) was used for classification
of motor imaginary tasks. The results are presented in
table 4 following the methodology employed in [26]. These
results demonstrate that our proposed HCRF-based approach
outperforms the method in [26] on the BCI competition data
set.

It is important to note that for dynamic models presented
here (HCRF, CRF and HMM), and contrary to what is observed
in LDA classifiers, the higher accuracy is obtained toward the
end of the trial, which means that the time point of good
performance is known a priori and the algorithm does not
have to be optimized for a specific trial length.
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Figure 4. Time course of the kappa values for the proposed method in evaluation sessions 04E and 05E.

5. Conclusion

We have proposed a new method for classification of imaginary
motor tasks, based on HCRFs. The autoregressive modeling
of the CSP components, followed by the computation of the
power spectrum and the selection of the frequency bands
according to neurophysiological information, produces the
feature vector that is fed to the HCRF-based classifier.
Although subject-dependent selection of the frequency bands
could lead to higher accuracy, we have opted here for
common frequency bands for all subjects making the approach
more general, which, given the performance obtained, shows
the robustness of this method. Furthermore, the discriminative
nature of the model proposed makes it unnecessary to
model the distribution of the data or make assumptions
about independence. Experimental results demonstrate the
improvements in the classification accuracy provided by this
approach over other methods. In addition, this method is
based on modeling the temporal changes of the EEG signal
and the analysis of the state sequences could provide insights
into the physical phenomena underlying the execution of the
imaginary motor tasks. This last point raises an interesting
question about the physiological meaning of the states, which
is the focus of our future work. One potential disadvantage of
the proposed HCRF-based method (as well as the CRF- and
HMM-based methods considered in our experiments) is the
higher computational load as compared to simple classifiers
used in BCI, such as the LDA. This is because the calculation
of the likelihoods of sequences is computationally costly as
compared to simple linear classification. Algorithmic and

computational improvements are needed for applicability of
these methods in real-time BCI applications.
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