9 research outputs found

    A simple finite volume method for adaptive viscous liquids

    Get PDF
    © Christopher Batty & Ben Houston | ACM 2011. This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version of Record was published in SCA '11: Proceedings of the 2011 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, http://dx.doi.org/10.1145/2019406.2019421We present the first spatially adaptive Eulerian fluid animation method to support challenging viscous liquid effects such as folding, coiling, and variable viscosity. We propose a tetrahedral node-based embedded finite volume method for fluid viscosity, adapted from popular techniques for Lagrangian deformable objects. Applied in an Eulerian fashion with implicit integration, this scheme stably and efficiently supports high viscosity fluids while yielding symmetric positive definite linear systems. To integrate this scheme into standard tetrahedral mesh-based fluid simulators, which store normal velocities on faces rather than velocity vectors at nodes, we offer two methods to reconcile these representations. The first incorporates a mapping between different degrees of freedom into the viscosity solve itself. The second uses a FLIP-like approach to transfer velocity data between nodes and faces before and after the linear solve. The former offers tighter coupling by enabling the linear solver to act directly on the face velocities of the staggered mesh, while the latter provides a sparser linear system and a simpler implementation. We demonstrate the effectiveness of our approach with animations of spatially varying viscosity, realistic rotational motion, and viscous liquid buckling and coiling

    Codimensional non-Newtonian fluids

    Full text link

    Discrete viscous sheets

    Get PDF
    © Christopher Batty, Andres Uribe, Basile Audoly, Eitan Grinspun | ACM 2012. This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version of Record was published in ACM Transactions on Graphics, http://dx.doi.org/10.1145/2185520.2185609.We present the first reduced-dimensional technique to simulate the dynamics of thin sheets of viscous incompressible liquid in three dimensions. Beginning from a discrete Lagrangian model for elastic thin shells, we apply the Stokes-Rayleigh analogy to derive a simple yet consistent model for viscous forces. We incorporate nonlinear surface tension forces with a formulation based on minimizing discrete surface area, and preserve the quality of triangular mesh elements through local remeshing operations. Simultaneously, we track and evolve the thickness of each triangle to exactly conserve liquid volume. This approach enables the simulation of extremely thin sheets of viscous liquids, which are difficult to animate with existing volumetric approaches. We demonstrate our method with examples of several characteristic viscous sheet behaviors, including stretching, buckling, sagging, and wrinkling.This research is supported in part by the Sloan Foundation, the NSF (grants CMMI-11-29917, IIS-11-17257, IIS-10-48948, IIS- 09-16129, CCF-06-43268), and generous gifts from Adobe, Au- todesk, Intel, mental images, NVIDIA, Side Effects Software, and The Walt Disney Company. The first author is supported by a Bant- ing Postdoctoral Fellowship

    Variational Stokes: A Unified Pressure-viscosity Solver for Accurate Viscous Liquids

    Get PDF
    © ACM, 2017. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published in Larionov, E., Batty, C., & Bridson, R. (2017). Variational Stokes: A Unified Pressure-viscosity Solver for Accurate Viscous Liquids. ACM Trans. Graph., 36(4), 101:1–101:11. https://doi.org/10.1145/3072959.3073628We propose a novel unsteady Stokes solver for coupled viscous and pressure forces in grid-based liquid animation which yields greater accuracy and visual realism than previously achieved. Modern fluid simulators treat viscosity and pressure in separate solver stages, which reduces accuracy and yields incorrect free surface behavior. Our proposed implicit variational formulation of the Stokes problem leads to a symmetric positive definite linear system that gives properly coupled forces, provides unconditional stability, and treats difficult boundary conditions naturally through simple volume weights. Surface tension and moving solid boundaries are also easily incorporated. Qualitatively, we show that our method recovers the characteristic rope coiling instability of viscous liquids and preserves fine surface details, while previous grid-based schemes do not. Quantitatively, we demonstrate that our method is convergent through grid refinement studies on analytical problems in two dimensions. We conclude by offering practical guidelines for choosing an appropriate viscous solver, based on the scenario to be animated and the computational costs of different methods.Natural Sciences and Engineering Research Council of Canad

    A Physically Consistent Implicit Viscosity Solver for SPH Fluids

    Get PDF
    In this paper, we present a novel physically consistent implicit solver for the simulation of highly viscous fluids using the Smoothed Particle Hydrodynamics (SPH) formalism. Our method is the result of a theoretical and practical in‐depth analysis of the most recent implicit SPH solvers for viscous materials. Based on our findings, we developed a list of requirements that are vital to produce a realistic motion of a viscous fluid. These essential requirements include momentum conservation, a physically meaningful behavior under temporal and spatial refinement, the absence of ghost forces induced by spurious viscosities and the ability to reproduce complex physical effects that can be observed in nature. On the basis of several theoretical analyses, quantitative academic comparisons and complex visual experiments we show that none of the recent approaches is able to satisfy all requirements. In contrast, our proposed method meets all demands and therefore produces realistic animations in highly complex scenarios. We demonstrate that our solver outperforms former approaches in terms of physical accuracy and memory consumption while it is comparable in terms of computational performance. In addition to the implicit viscosity solver, we present a method to simulate melting objects. Therefore, we generalize the viscosity model to a spatially varying viscosity field and provide an SPH discretization of the heat equation

    An Efficient Geometric Multigrid Solver for Viscous Liquids

    Get PDF
    We present an efficient geometric Multigrid solver for simulating viscous liquids based on the variational approach of Batty and Bridson [2008]. Although the governing equations for viscosity are elliptic, the strong coupling between different velocity components in the discrete stencils mandates the use of more exotic smoothing techniques to achieve textbook Multigrid efficiency. Our key contribution is the design of a novel box smoother involving small and sparse systems (at most 9 x 9 in 2D and 15 x 15 in 3D), which yields excellent convergence rates and performance improvements of 3.5x - 13.8x over a naĂŻve Multigrid approach. We employ a hybrid approach by using a direct solver only inside the box smoother and keeping the remaining pipeline assembly-free, allowing our solver to efficiently accommodate more than 194 million degrees of freedom, while occupying a memory footprint of less than 16 GB. To reduce the computational overhead of using the box smoother, we precompute the Cholesky factorization of the subdomain system matrix for all interior degrees of freedom. We describe how the variational formulation, which requires volume weights computed at the centers of cells, edges, and faces, can be naturally accommodated in the Multigrid hierarchy to properly enforce boundary conditions. Our proposed Multigrid solver serves as an excellent preconditioner for Conjugate Gradients, outperforming existing state-of-the-art alternatives. We demonstrate the efficacy of our method on several high resolution examples of viscous liquid motion including two-way coupled interactions with rigid bodies.This work was supported in part by the Rutgers University start-up grant, the Ralph E. Powe Junior Faculty Enhancement Award, and the Natural Sciences and Engineering Research Council of Canada (RGPIN-04360-2014, CRDPJ-499952-2016)

    An adaptive variational finite difference framework for efficient symmetric octree viscosity

    Get PDF
    While pressure forces are often the bottleneck in (near-)inviscid fluid simulations, viscosity can impose orders of magnitude greater computational costs at lower Reynolds numbers. We propose an implicit octree finite difference discretization that significantly accelerates the solution of the free surface viscosity equations using adaptive staggered grids, while supporting viscous buckling and rotation effects, variable viscosity, and interaction with scripted moving solids. In experimental comparisons against regular grids, our method reduced the number of active velocity degrees of freedom by as much as a factor of 7.7 and reduced linear system solution times by factors between 3.8 and 9.4. We achieve this by developing a novel adaptive variational finite difference methodology for octrees and applying it to the optimization form of the viscosity problem. This yields a linear system that is symmetric positive definite by construction, unlike naive finite difference/volume methods, and much sparser than a hypothetical finite element alternative. Grid refinement studies show spatial convergence at first order in L∞ and second order in L1, while the significantly smaller size of the octree linear systems allows for the solution of viscous forces at higher effective resolutions than with regular grids. We demonstrate the practical benefits of our adaptive scheme by replacing the regular grid viscosity step of a commercial liquid simulator (Houdini) to yield large speed-ups, and by incorporating it into an existing inviscid octree simulator to add support for viscous flows. Animations of viscous liquids pouring, bending, stirring, buckling, and melting illustrate that our octree method offers significant computational gains and excellent visual consistency with its regular grid counterpart.This work was supported in part by the Natural Sciences and Engineering Research Council of Canada (RGPIN-04360-2014, CRDPJ-499952-2016) and the Rutgers University start-up grant

    Efficient Liquid Animation: New Discretizations for Spatially Adaptive Liquid Viscosity and Reduced-Model Two-Phase Bubbles and Inviscid Liquids

    Get PDF
    The work presented in this thesis focuses on improving the computational efficiency when simulating viscous liquids and air bubbles immersed in liquids by designing new discretizations to focus computational effort in regions that meaningfully contribute to creating realistic motion. For example, when simulating air bubbles rising through a liquid, the entire bubble volume is traditionally simulated despite the bubble’s interior being visually unimportant. We propose our constraint bubbles model to avoid simulating the interior of the bubble volume by reformulating the usual incompressibility constraint throughout a bubble volume as a constraint over only the bubble’s surface. Our constraint method achieves qualitatively similar results compared to a two-phase simulation ground-truth for bubbles with low densities (e.g., air bubbles in water). For bubbles with higher densities, we propose our novel affine regions to model the bubble’s entire velocity field with a single affine vector field. We demonstrate that affine regions can correctly achieve hydrostatic equilibrium for bubble densities that match the surrounding liquid and correctly sink for higher densities. Finally, we introduce a tiled approach to subdivide large-scale affine regions into smaller subregions. Using this strategy, we are able to accelerate single-phase free surface flow simulations, offering a novel approach to adaptively enforce incompressibility in free surface liquids without complex data structures. While pressure forces are often the bottleneck for inviscid fluid simulations, viscosity can impose orders of magnitude greater computational costs. We observed that viscous liquids require high simulation resolution at the surface to capture detailed viscous buckling and rotational motion but, because viscosity dampens relative motion, do not require the same resolution in the liquid’s interior. We therefore propose a novel adaptive method to solve free surface viscosity equations by discretizing the variational finite difference approach of Batty and Bridson (2008) on an octree grid. Our key insight is that the variational method guarantees a symmetric positive definite linear system by construction, allowing the use of fast numerical solvers like the Conjugate Gradients method. By coarsening simulation grid cells inside the liquid volume, we rapidly reduce the degrees-of-freedom in the viscosity linear system up to a factor of 7.7x and achieve performance improvements for the linear solve between 3.8x and 9.4x compared to a regular grid equivalent. The results of our adaptive method closely match an equivalent regular grid for common scenarios such as: rotation and bending, buckling and folding, and solid-liquid interactions

    EFFICIENT PARTICLE-BASED VISCOUS FLUID SIMULATION WITH VIDEO-GUIDED REAL-TO-VIRTUAL PARAMETER TRANSFER

    Get PDF
    Viscous fluids, such as honey and molten chocolate, are common materials frequently seen in our daily life. These viscous fluids exhibit characteristic behaviors. Capturing and understanding such dynamics have been required for various applications. Although recent research made advances in simulating the viscous fluid dynamics, still many challenges are left to be addressed. In this dissertation, I present novel techniques to more efficiently and accurately simulate viscous fluid dynamics and propose a parameter identification framework to facilitate the tedious parameter tuning steps for viscous materials. In fluid simulation, enforcing the incompressibility robustly and efficiently is essential. One known challenge is how to set appropriate boundary conditions for free surfaces and solid boundaries. I propose a new boundary handling approach for an incompressible particle-based solver based on the connectivity analysis for simulation particles. Another challenge is that previously proposed techniques do not scale well. To address this, I propose a new multilevel particle-based solver which constructs the hierarchy of simulation particles. These techniques improve the robustness and efficiency achieving the nearly linear scaling unlike previous approaches. To simulate characteristic behaviors of viscous fluids, such as coiling and buckling phenomena and adhesion to other materials, it is necessary to develop a specialized solver. I propose a stable and efficient particle-based solver for simulating highly viscous fluids by using implicit integration with the full form of viscosity. To simulate more accurate interactions with solid objects, I propose a new two-way fluid-solid coupling method for viscous fluids via the unified minimization. These approaches also improve the robustness and efficiency while generating rotational and sticky behaviors of viscous fluids. One important challenge for the physically-based simulation is that it is not obvious how to choose appropriate material parameters to generate our desirable behaviors of simulated materials. I propose a parameter identification framework that helps to tune material parameters for viscous fluids with example video data captured from real world fluid phenomena. This framework identifies viscosity parameters for the real viscous fluids while estimating the hidden variables for the fluids, and enables the parameter transfer from the real world to virtual environment.Doctor of Philosoph
    corecore