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ABSTRACT

Tetsuya Takahashi: Efficient Particle-based Viscous Fluid Simulation with Video-Guided Real-to-Virtual
Parameter Transfer. (Under the direction of Ming C. Lin)

Viscous fluids, such as honey and molten chocolate, are common materials frequently seen in our daily

life. These viscous fluids exhibit characteristic behaviors. Capturing and understanding such dynamics have

been required for various applications. Although recent research made advances in simulating the viscous

fluid dynamics, still many challenges are left to be addressed. In this dissertation, I present novel techniques

to more efficiently and accurately simulate viscous fluid dynamics and propose a parameter identification

framework to facilitate the tedious parameter tuning steps for viscous materials.

In fluid simulation, enforcing the incompressibility robustly and efficiently is essential. One known

challenge is how to set appropriate boundary conditions for free surfaces and solid boundaries. I propose

a new boundary handling approach for an incompressible particle-based solver based on the connectivity

analysis for simulation particles. Another challenge is that previously proposed techniques do not scale well.

To address this, I propose a new multilevel particle-based solver which constructs the hierarchy of simulation

particles. These techniques improve the robustness and efficiency achieving the nearly linear scaling unlike

previous approaches.

To simulate characteristic behaviors of viscous fluids, such as coiling and buckling phenomena and

adhesion to other materials, it is necessary to develop a specialized solver. I propose a stable and efficient

particle-based solver for simulating highly viscous fluids by using implicit integration with the full form

of viscosity. To simulate more accurate interactions with solid objects, I propose a new two-way fluid-

solid coupling method for viscous fluids via the unified minimization. These approaches also improve the

robustness and efficiency while generating rotational and sticky behaviors of viscous fluids.

One important challenge for the physically-based simulation is that it is not obvious how to choose

appropriate material parameters to generate our desirable behaviors of simulated materials. I propose a

parameter identification framework that helps to tune material parameters for viscous fluids with example

video data captured from real world fluid phenomena. This framework identifies viscosity parameters for the

iii



real viscous fluids while estimating the hidden variables for the fluids, and enables the parameter transfer

from the real world to virtual environment.
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CHAPTER 1: INTRODUCTION

Our world is surrounded by numerous fluid materials. From honey poured onto a pancake, paint used to

color walls, to mechanical oils used as a lubricant, we see many different types of fluid materials in various

aspects of our everyday life. These complex and fascinating behaviors have captivated many researchers,

including mathematicians, physicists, computer scientists, artists, and many others. Significant efforts have

been devoted to analyze, understand, and simulate the dynamics of fluids over the decades.

In computer graphics, our primary focus is on how to reproduce or simulate fluids on a computer,

typically with specific needs, e.g., fluid behaviors as close as possible to real world counterparts or fluid

effects intentionally emphasized for computer animation purposes. There are various ways to generate fluid

effects, e.g., procedural animations. However, manually manipulating the fluids to generate sequence of

configurations is not practical, unlike rigid body or human animations, because of the extremely high degrees

of freedoms for fluids. Thus, it is common to rely on approaches that can automate the sequence generations,

e.g., physically-based simulation. To generate fluid effects using physically-based simulation, we typically

model the fluids based on the Navier-Stokes equations:

ρ
du

dt
= −∇p+∇ · s +

ρ

m
Fext, (1.1)

s = µ
(
∇u + (∇u)T

)
, (1.2)

where ρ denotes fluid density, t time, u velocity, p pressure, s viscous stress tensor, m mass, Fext external

force, and µ dynamic viscosity. The Navier-Stokes equations describe how fluid velocity changes preserving

the momentum. For simulating fluid dynamics, this physically-based simulation approach has been used

in various applications, such as video games, virtual reality, medical training, robotics, and mechanical

engineering, and is considered as a standard way for generating fluid animation in the literature.
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1.1 Fluid Simulation

To numerically simulate the dynamics of fluids based on the Navier-Stokes equations, it is necessary

to discretize these equations. As for the temporal discretization, we typically use implicit integration for

robustness and otherwise explicit integration for simplicity. For the spatial discretization, in the computer

graphics literature on fluid simulation, there are two commonly used approaches: Eulerian discretization and

Lagrangian discretization. These discretization differences characterize the simulation methodologies, and

there are advantages and disadvantages over the other.

1.1.1 Eulerian Approach

With the Eulerian approach, simulation domain is discretized as a grid, and physical variables are

statically defined at a point on the grid. Then, following the Navier-Stokes equations, we forward the

simulation, updating the velocity variables representing the fluid flow.

One important advantage of the Eulerian approach is that we can consistently evaluate the spatial

derivatives, e.g., using the staggered grid. Because of the static grid points, we can accurately and efficiently

evaluate the spatial derivatives, i.e., gradient, divergence, and Laplacian. This fact makes the results computed

with the Eulerian approach consistent and accurate.

Another important advantage for the Eulerian approach lies in enforcing the incompressibility of fluids.

In fluid simulation, it is necessary to preserve the volume of fluids for realistic behaviors. In the Eulerian

approach, this can be formulated with the divergence free condition:

∇ · u = 0. (1.3)

With this condition, we arrive at the pressure Poisson equation, and then apply pressure gradient after the

pressure solve to obtain the divergence-free velocity fields. This procedure can be done by solving a linear

system, and is simpler and in general more efficient than the counterpart for the Lagrangian approach.
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1.1.2 Lagrangian Approach

With the Lagrangian approach, fluid volumes are discretized with a set of particles, and these particles

store the physical quantities. To forward the fluid simulation, these particles are advected with their physical

variables following the Navier-Stokes equations.

One important advantage of the Lagrangian approach over the Eulerian approach is that since fluids

are directly discretized with a set of particles, the particles need to exist only for places where fluids exist

unlike the Eulerian approach which requires the entire simulation domain to be discretized. Because of

this advantage, the computational cost and memory usage for the Lagrangian approach can be significantly

smaller than those for the grid-based approach.

While the Lagrangian approach can be attractive in terms of the computational cost and memory usage,

this approach involves some complexities due to the irregularly distributed particles. One known challenge

is that since the evaluations of the spatial derivatives must be performed on moving particles, results can

be less accurate and inconsistent. Because of these issues, it is not straightforward to enforce the fluid

incompressibility, and various specialized approaches have been actively proposed while still how to handle

these problems remains a computational challenge.

1.2 Enforcing Fluid Incompressibility

To simulate realistic fluid behaviors, one of the most important components is to enforce the incompress-

ibility of fluids. Since most liquid materials, such as water, are visually incompressible, we observe that

materials that changes their volumes are unrealistic. In the literature, because of the two distinct, Eulerian and

Lagrangian discretization, approaches to enforcing the fluid incompressibility differ from each other. With the

Eulerian discretization, the most popular approach is to enforce the divergence-free velocity fields following

the continuity equation. With this approach, we can formulate a pressure Poisson equation and enforce

the divergence-free velocity fields by applying the negative pressure gradient to the velocity fields after the

pressure solve. As done in various works, this is relatively straightforward to enforce the incompressibility

because of the regular grid structures. On the other hand, with the Lagrangian approach, fluids are typically

discretized with a set of particles, and how to enforce the incompressibility for such irregularly distributed

particles has been a challenging problem over the decades.
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To efficiently enforce the incompressibility of fluids for particle-based methods, various methods have

been proposed, e.g., (Koshizuka et al., 1996; Cummins and Rudman, 1999; Premoze et al., 2003; Shao and

Lo, 2003; Solenthaler and Pajarola, 2009; He et al., 2012a; Bodin et al., 2012; Macklin and Müller, 2013;

Ihmsen et al., 2014a; Kang and Sagong, 2014; Bender and Koschier, 2016). Among these methods, some

researchers found that solving a pressure Poisson equation on the particles can be also effective, as done

in (Koshizuka et al., 1996; Cummins and Rudman, 1999; Shao and Lo, 2003; Premoze et al., 2003; He

et al., 2012a; Ihmsen et al., 2014a). While it is common that this approach requires solving a sparse linear

system, variations in discretization of the Laplacian operator lead to the different sparsity of the system and

pressure solve. Incompressible SPH (ISPH) (Cummins and Rudman, 1999; Shao and Lo, 2003) and Moving

Particle Semi-implicit (MPS) (Koshizuka et al., 1996; Premoze et al., 2003) directly discretize the Laplacian,

while a current state-of-the-art particle-based solver, Implicit Incompressible SPH (IISPH) (Ihmsen et al.,

2014a) decomposes the Laplacian into divergence and gradient, and then discretizes these operators applying

SPH formulations to both operators. When a (weighted) Jacobi method is used, IISPH outperforms ISPH in

convergence rate and computational efficiency (Ihmsen et al., 2014a) since IISPH can propagate updated

pressures faster by including farther particles with the decomposed operators. However, for ISPH and MPS,

we can use a more efficient Conjugate Gradient (CG) method, which is a Krylov subspace method that

generally shows faster convergence than stationary iterative methods (e.g., Jacobi and Gauss-Seidel methods),

and thus ISPH and MPS can possibly offer performance advantages over IISPH by employing CG. However,

ISPH and MPS unfortunately suffer from several stability issues, which make them undesirable for fluid

simulation.

When solving the pressure Poisson equation, previously proposed ISPH and MPS methods suffer from

experience numerical instabilities because of inaccurately set Dirichlet boundary condition for free surfaces

and Neumann boundary condition for solid boundaries. Consequently, to ensure the stable simulations, these

methods require smaller time steps, negatively affecting the performance gain due to the fast CG solver. Thus,

how to appropriately define boundary conditions for these particle-based solvers remains as a computational

challenge.

While employing CG in the pressure solve improves the efficiency significantly over the Jacobi method,

several researchers pointed out that CG does not scale well, and the computational cost increases superlinearly

with respect to the simulation resolution. In computer graphics, since we generally prefer to generate highly

detailed fluid effects within the computation budgets, this superlinearly is undesirable.
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In the Eulerian grid-based approach, scalable multigrid methods have been used to address this problem

taking advantage of the regular Cartesian grid, which can be used to construct the hierarchy (McAdams et al.,

2010; Chentanez and Müller, 2011; Chentanez and Müller, 2012; Ferstl et al., 2014; Weber et al., 2015).

This multilevel approach is also adopted for deformable body simulation by constructing the hierarchy from

embedded grid structures (Zhu et al., 2010; McAdams et al., 2011) or computing nearly optimal coarser-level

structures from finer-levels (Müller, 2008; Wang et al., 2010). Unlike deformable objects, however, it is

difficult to apply the multilevel approach to particle-based methods because the connectivity of particles

changes at every simulation step, requiring expensive remeshing to keep the quality of coarser-level meshes

and to avoid mesh tangling. Thus, how to use the concept of the multilevel solver within the particle-based

fluid simulation has not yet been addressed before.

Since how to efficiently and scalably enforce the fluid incompressibility has been a challenging problem

for particle-based fluids, this dissertation proposes novel algorithms to address these issues, and demonstrate

the effectiveness of the proposed algorithms.

1.3 Simulating Viscous Fluids

Because of the increasing demand for simulating fluids in various applications, approaches to simulating

liquids have been developed over the years. In particular, methodologies for simulating incompressible

inviscid liquids have been mainly investigated and adopted in practical applications for visual effects and

virtual reality. Because of the recent progress in liquid simulations, researchers also started focusing on

different types of materials, such as viscous fluids. In general, these fluids have properties different from

inviscid fluids, and simulation techniques developed for inviscid fluids are not necessarily applicable. As

such, how to effectively simulate viscous fluids remains a major challenge in computer graphics.

One major challenge is that the behaviors of viscous fluids are significantly different from those of

inviscid fluids. For example, viscous fluids exhibit damped motions and generate rotational behaviors, such

as coiling and buckling phenomena, while inviscid fluids dynamically flow making some splashes. Thus, it is

necessary to develop a simulation method for capturing such behaviors unique to viscous fluids. Previously,

although some researchers have attempted to simulate viscous fluids using particle-based methods, their

approaches typically compromised one of the two aspects: capability or robustness. Some works achieved

interesting coiling and buckling effects using an accurate viscosity model, whereas these works use explicit
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integration because of the simplicity, and thus suffering from the numerical stability issues. By contrast, other

works focus on the numerical stability adopting implicit integration while giving up the capability for the

rotational viscous fluid behaviors. Thus, it is required to satisfy both capability and robustness requirements

for a practical viscous fluid simulator.

Another important problem on capturing the behaviors of viscous fluids arises in the interactions between

viscous fluids and solid objects. In the recent works, several compelling viscous fluid behaviors have been

demonstrated focusing primarily on simulating the intriguing behaviors of viscous fluids induced by the

gravitational forces with static or prescribed solid boundaries. However, mutual interactions between viscous

fluids and solid objects gather little attentions. In the literature, there are various approaches presented to

simulate the interactions of inviscid fluids and solids objects, and these approaches achieve the two-way

interactions between fluids and solid objects with pressure forces, which play roles of drag and buoyancy

forces. The pressure forces can be sufficient to simulate the interactions between nearly inviscid fluids

and solid objects. However, since viscous fluids can exert viscosity forces to solid objects, simulating the

interactions between highly viscous fluids and solid objects with only pressure forces leads to fluid and solid

behaviors significantly different from those observed in the real world, and it is necessary to consider viscosity

forces to correctly account for the two-way interactions. In the previous works, how to incorporate the

viscosity forces into the fluid simulation has not yet investigated, and thus simulating the two-way interactions

between viscous fluids and solid objects has been one important challenge.

To generate plausible and convincing fluid behaviors, physically-based simulation approaches are

indispensable because the physically-based simulation can automatically generate the sequence of fluid con-

figurations with appropriately set simulation conditions, such as initial fluid configurations, solid boundaries,

simulation parameters, and material parameters. Because of this advantage, physically-based approaches

have been extensively used to simulate fluid effects, which are nearly impossible to sufficiently describe with

manual approaches due to the very high degrees of freedoms for fluids. However, while physically-based

approaches can effectively simulate viscous fluids based on the physical properties of fluids, one known

challenge is that it is not clear how to choose appropriate material parameters. It can be very difficult,

time-consuming, and tedious to choose appropriate parameters to generate desirable fluid behaviors, e.g., ap-

proximating behaviors of viscous fluids observed in the real world. If physical parameters are not ideal, these

approaches would generate visually disconcerting results, which negatively impact our sense and recognition

of the fluid materials and dampen our experience in various applications, such as video games, movies, and
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virtual reality. Even worse, such parameters would cause simulation failure leading to unpredictable results.

Consequently, it is necessary to manually tune parameters through tedious trial-and-error processes until we

obtain satisfactory visual results. In practice, fluid simulation can take several hours or more, requiring many

hours of waiting time to check intermediate results. Thus, such manual parameter-tuning is beyond practical.

In addition, from a viewpoint of artists, physical parameters are not necessarily intuitive enough to generate

their conceived fluid effects because changes in physical parameters modify fluid flows in a complex and

unpredictable way, and the same material parameters can lead to different behaviors depending on simulation

scales.

To address these challenges, this dissertation presents several novel algorithms for improving the

efficiency and capability of viscous fluid simulators, and propose a parameter identification framework based

on real-world captured videos to facilitate the parameter tuning.

1.4 Thesis Statement

My thesis statement is as follows:

Complex dynamics of viscous fluids and their interactions with solid objects can be efficiently and

scalably simulated by exploiting regularizers, multilevel representations, and variational principles, and can

be effectively reproduced via data-driven simulation with real-world examples.

To support this thesis, I present five methods: a boundary handling method for incompressible particle-

based solvers, a multilevel particle-based solver, an implicit viscosity formulation for particle-based methods,

a two-way fluid-solid coupling method for viscous fluids, and a video-guided parameter identification

framework for real-to-virtual parameter transfer.

1.5 Main Results

The thesis presents the five applications to support each component of the proposed approaches. I list the

main results obtained within these applications below.

1.5.1 Boundary Handling for Incompressible Particle-based Solvers

Enforcing the incompressibility of fluids for particle-based methods has been a computational challenge

because of the irregular structures of simulation particles. In the literature, a simple Jacobi solver has been
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adopted to address the incompressibility problem. However, because of the slow convergence of the Jacobi

solver, the computational cost is expensive. Although there is a better solver, such as Conjugate Gradient

(CG), to enforce the incompressibility, CG was not applicable to particle-based methods because of the lack

of effective boundary handling methods.

In Chapter 2, I propose a boundary handling method for particle-based solver based on incompressible

SPH methods to robustly and efficiently simulate incompressible fluids. The main contributions of this work

include:

• A free surface boundary handling that appropriately classifies particle roles in the pressure solve based

on the particle connectivity analysis, and thus improves the robustness without introducing artifacts.

• A solid boundary handling that introduces a new regularizer term to ensure the solvability of the linear

system regardless of the particle configuration. This scheme further improves the robustness and accuracy

while enabling the simulation of solid objects floating in the air.

• Kernel blending. This scheme blends densities computed with a smooth kernel and a spiky kernel to

improve the robustness of the solver.

By integrating these techniques with the incompressible SPH solver, my method outperforms one of

the state-of-the-art fluid solver, IISPH by a factor of 3.78. These results were published in (Takahashi et al.,

2016).

1.5.2 Multilevel Particle-based Solver

Enforcing the incompressibility for particle-based fluids can be computationally expensive. This becomes

more noticeable when we simulate fluids at a high-resolution since the computational cost for solving

incompressibility constraints increases superlinearly. For linear scalability, multigrid methods have been

adopted for grid-based simulations. However, how to extend the multigrid methods has been a computational

challenge.

In Chapter 3, I proposed a geometric multilevel solver for efficiently solving linear systems arising from

particle-based methods. The main contributions of this work include:

• A hierarchy construction method that uses simulation particles and auxiliary grids, and establishes the

correspondence between solutions at the particle and grid levels.
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• A coarsening scheme that takes simulation elements into account and ensures the solvability of the linear

system at coarser levels.

• A solid boundary handling that can be unified with a pressure Poisson equation.

By combining these schemes, my method achieves the nearly linear scaling with respect to the particle

resolutions, and outperforms the state-of-the-art fluid solver, IISPH, by a factor of up to 10.0. These results

were published in (Takahashi and Lin, 2016).

1.5.3 Implicit Viscosity Formulation for Particle-based Methods

Unlike inviscid fluids, viscous fluids exhibit characteristic behaviors, such as coiling and buckling

phenomena. To faithfully simulate such viscous fluid behaviors, it is necessary to develop a specialized

technique for this purpose. In the literature, however, researchers have relied on either a simplified viscosity

model, which cannot capture rotational behaviors of viscous materials, or explicit time integration with the

full form of viscosity, compromising the robustness of the solver. Thus, there is no effective particle-based

solvers for robustly and accurately simulating highly viscous fluids.

In Chapter 4, I propose a new formulation with the full form of viscosity and implicit integration to

robustly and efficiently simulate viscous fluids without compromising the capability for the rotational viscous

fluid behaviors. The main contributions of this work include:

• A new implicit viscosity formulation that is based on the variational principle and improves the robustness

and efficiency while allowing for rotational viscous fluid motions.

• A coefficient extraction method that assembles the entries of linear system by accessing the neighbor

particles’ neighbor particles.

By combining these techniques, my method achieves 3.4x performance gain over previous methods that

use explicit integration while achieving the characteristic coiling and buckling behaviors. These results were

published in (Takahashi et al., 2015).

1.5.4 Two-Way Fluid-Solid Coupling Method for Viscous Fluids

While various approaches have been proposed to simulate viscous fluids due to the high demand in a

wide range of applications, few research has been conducted to simulate how viscous fluids interact with
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solid objects. Although some researchers proposed two-way fluid-solid coupling method via pressure forces,

considering only pressure forces is insufficient for highly viscous fluids, which can exert viscosity forces to

solid objects.

In Chapter 5, I propose a grid-based fluid solver for simulating viscous materials and their interactions

with solid objects. The main contributions of this work include:

• A geometrically consistent volume fraction estimation that utilizes the supersampling to improve the

accuracy while avoiding the dangling artifacts near free surfaces and solid objects with very little

additional cost.

• A two-way fluid-solid coupling method that robustly and correctly accounts for the dynamics of both

viscous fluids and solid objects simultaneously through their interactions.

• A position-correction method that uses density constraints to enforce the uniform distributions of particles

to avoid non-physical volume changes.

I integrate these techniques with a viscous fluid solver and achieve up to 10% relative errors, as compared

to the analytical solution in the ball falling test, which is several orders of magnitude more accurate than

previous methods. These results were published in (Takahashi and Lin, 2019a).

1.5.5 Video-Guided Real-to-Virtual Parameter Transfer

In physically-based simulation, it is essential to choose appropriate material parameters to generate

desirable simulation results. In many cases, however, appropriately choosing material parameters is very

challenging, and often tedious trial-and- error parameter tuning steps are inevitable. Since fluid simulation

would take a couple of hours to check the intermediate results, requiring us to wait, the manual parameter

tuning is beyond practical.

In Chapter 6, I propose a real-to-virtual parameter transfer framework for facilitating the parameter

identification of viscous fluids with example video data captured from real-world phenomena. The main

contributions of this work include:

• A parameter optimization framework that identifies the viscosity parameters for fluids based on example

videos captured from real-world fluid phenomena, simultaneously inferring hidden physical quantities of

fluids.
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• Screen space evaluation that allows for measuring differences between the example data and simulation

results without reconstructing 3D data.

• Parameter transfer from real to virtual environments. My work introduces a new data-driven approach

for fluid animation and enables us to reproduce fluid behaviors in the virtual environment, preserving the

observed fluid properties in the real world.

I present a parameter identification framework for fluids based on guiding examples, videos captured

from real world fluid phenomena, and demonstrated that the identified parameters can be used in novel

scenarios, achieving the real-to-virtual parameter transfer. These results were published in (Takahashi and

Lin, 2019b).

1.6 Organization

The remainder of this dissertation is organized as follows. The discussion on the boundary handling

method for particle-based methods is given in Chapter 2. This is followed by my work on the scalable

multilevel particle-based solver in Chapter 3. Then, I discuss an implicit viscosity formulation for particle-

based methods in Chapter 4, and explain how to improve the accuracy of two-way fluid-solid coupling for

hybrid Eulerian-Lagrangian methods in Chapter 5. Finally, I present a parameter tuning framework for fluid

materials based on video guiding in Chapter 6. Chapter 7 concludes this dissertation by presenting a summary

of these works, their contributions, and discussions of future work.
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CHAPTER 2: An Efficient Hybrid Incompressible SPH Solver with Interface Handling for
Boundary Conditions

2.1 Introduction

Particle-based methods, such as Smoothed Particle Hydrodynamics (SPH), have been widely used to

generate visual effects of fluids in computer graphics due to advantages of Lagrangian representations (Ihmsen

et al., 2014b; Macklin et al., 2014). In these methods, however, enforcing fluid incompressibility has been

a computational challenge, and various methods have been proposed to address this problem (Koshizuka

et al., 1996; Cummins and Rudman, 1999; Premoze et al., 2003; Shao and Lo, 2003; Solenthaler and Pajarola,

2009; He et al., 2012a; Bodin et al., 2012; Macklin and Müller, 2013; Ihmsen et al., 2014a; Kang and Sagong,

2014; Bender and Koschier, 2016). Among these methods, solving a Pressure Poisson Equation (PPE) has

been shown to be an effective approach (Koshizuka et al., 1996; Cummins and Rudman, 1999; Shao and Lo,

2003; Premoze et al., 2003; He et al., 2012a; Ihmsen et al., 2014a). While it is common that this approach

requires solving a sparse linear system, variations in discretization of the Laplacian operator lead to the

different sparsity of the system and pressure solve. Incompressible SPH (ISPH) (Cummins and Rudman,

1999; Shao and Lo, 2003) and Moving Particle Semi-implicit (MPS) (Koshizuka et al., 1996; Premoze

et al., 2003) directly discretize the Laplacian, while a current state-of-the-art particle-based solver, Implicit

Incompressible SPH (IISPH) (Ihmsen et al., 2014a) decomposes the Laplacian into divergence and gradient,

Figure 2.1: A large scale corridor flood simulated with my solver, where 1.40 M fluid particles and 0.29
M solid particles are used. (Left) opaque mesh view. (Middle) particle view, where cyan, magenta, and
yellow particles represent Poisson, Dirichlet, and Neumann particles, respectively (see § 2.4.1). (Right) final
rendered view.
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and then discretizes these operators applying SPH formulations to both operators. When a (weighted) Jacobi

method is used, IISPH outperforms ISPH in convergence rate and computational efficiency (Ihmsen et al.,

2014a) since IISPH can propagate updated pressures faster by including farther particles with the decomposed

operators. However, for ISPH and MPS, we can use a more efficient Conjugate Gradient (CG) method, which

is a Krylov subspace method that generally shows faster convergence than stationary iterative methods (e.g.,

Jacobi and Gauss-Seidel methods). CG is inapplicable to IISPH, as pointed out in (Ihmsen et al., 2014a),

due to the non-positive-definite property of the coefficient matrix (see § 2.6.1 for details). Additionally, the

number of Jacobi iterations for IISPH increases super-linearly with time steps making the use of larger time

steps ineffective. Because of these issues, ISPH and MPS can possibly offer performance advantages over

IISPH by employing CG.

However, ISPH and MPS unfortunately have several issues, which make them undesirable for fluid

simulation. First, ISPH uses a smooth kernel to compute the particle density in the source term. The resulting

particle density is smooth and does not significantly increase although particles are almost overlapped.

Consequently, ISPH with this smooth kernel is more likely to fail to prevent fluid-solid particle penetrations.

On the other hand, MPS uses a spiky kernel for the density computation. Thus, as particles approach others, the

resulting density rapidly increases effectively preventing fluid-solid particle penetrations. However, because

of the rapid density changes, the spiky kernel tends to cause instabilities when fluid-fluid collisions occur.

Second, previously proposed free surface handling methods for specifying Dirichlet boundary conditions

are likely to undergo numerical instabilities mainly because of rough estimates of physical values. The

density-based (Koshizuka et al., 1996; Premoze et al., 2003; Shao and Lo, 2003) and surface-based (He et al.,

2012b) methods do not take into consideration the predicted density and actual pressures of neighboring

particles while the ghost-particle-based method (Nair and Tomar, 2014) relies on very rough estimates and

assumptions based on ghost particles. Though the source-term-based method (which depends purely on the

source term) considers the predicted density, this method disregards actual pressures of neighbor particles.

Third, the previously used solid boundary handling for Neumann boundary conditions (Koshizuka et al.,

1996; Premoze et al., 2003; Shao and Lo, 2003), which treats solid particles as fluid ones, results in a much

larger system of equations thereby increasing the overall computational cost, and erroneously estimates

particle pressures to ensure the solvability of the linear system. Furthermore, even though this approach is

used, the system can become unsolvable due to objects floating in the air.
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I propose a hybrid SPH solver with a new interface handling method for addressing the three aforemen-

tioned problems. The main results of this work are as follows:

• A hybrid solver that blends the particle density computed with a smooth and a spiky kernel to take

advantage of the specific properties of these kernels. This improves the robustness for both fluid-fluid

and fluid-solid collisions while taking larger time steps and thus leading to more efficient simulation.

• A free surface handling method for Dirichlet boundary conditions that appropriately determines fluid

particles by employing Jacobi-based pressure prediction. This takes into account not only the predicted

density but also pressures of neighboring particles, to improve the robustness.

• A solid boundary handling method for Neumann boundary conditions, which introduces a new term

to ensure the solvability of the linear system. This new term offers three advantages over the previous

methods. First, I can completely exclude solid particles treated as unknown variables from the PPE

thereby significantly reducing the size of the system and thus computational cost. Second, my solid

boundary handling can avoid underestimation of particle pressures enabling the use of larger time steps.

Third, I can handle objects floating in the air with the direct Laplacian discretization making it possible

to simulate two-way interactions, which frequently cause objects floating in the air because of fluid-solid

and solid-solid collisions.

By taking advantage of these, I demonstrate that my solver outperforms other particle-based solvers. Figure 2.1

illustrates a large-scale corridor flood scene involving two-way fluid-solid interactions, simulated with my

method.

2.2 Related Work

Many particle-based methods have been proposed in Computational Fluid Dynamics (CFD) and computer

graphics. I refer readers to (Monaghan, 2005) for a survey on SPH in CFD and (Ihmsen et al., 2014b) for

applications of particle-based methods in computer graphics. Below I focus my discussions on particle-based

methods most closely related to mine.

ISPH. ISPH was originally proposed by Cummins and Rudman (Cummins and Rudman, 1999) introduc-

ing an idea of the pressure projection (which is commonly used in the Eulerian approach (Bridson, 2008)) into

SPH. In this method, the divergence of velocity is used as a source term in the PPE. However, errors to the
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divergence-free velocity field can accumulate, leading to volume changes. To address this, Shao and Lo (Shao

and Lo, 2003) proposed a new source term using the rest density (known as the density invariance source

term), which prevents the error accumulation, also presenting free surface handling for Dirichlet boundary

conditions to keep the PPE solvable with the modified source term, which does not satisfy the compatibility

condition (Bridson, 2008). In addition, Shao and Lo (Shao and Lo, 2003) replaced a mirroring solid boundary

handling method, used in (Cummins and Rudman, 1999), with a method that uses solid boundary particles to

handle complex geometry. Nair and Tomar (Nair and Tomar, 2014) proposed a new surface handling method

for ISPH, adapting an idea of ghost particles, and ensured solvable linear systems without Dirichlet boundary

conditions at the expense of difficult parameter tuning and inaccurately estimated pressures. Cummins and

Rudman (Cummins and Rudman, 1999) applied a multigrid approach to the ISPH. However, this approach is

imported from the grid-based approach, and cannot handle irregular domains. Additionally, their application

is limited to fluid simulation without free surfaces (Dirichlet boundary condition) and complex solid objects

(Neumann boundary condition).

MPS. MPS is a particle-based pressure projection method proposed in (Koshizuka et al., 1996; Premoze

et al., 2003). In the algorithm level, MPS and ISPH (presented in (Shao and Lo, 2003)) are the same, and the

differences lie in two aspects: (1) the (number) density computation for the source term, and (2) discretization

for spatial derivatives. To compute the density, MPS uses a spiky kernel whose values rapidly increase when

particles are close. This effectively prevents fluid-solid particle penetrations whereas the rapidly increased

density tends to cause stability issues with fluid-fluid collision shocks. On the other hand, ISPH uses a smooth

kernel, which leads to the smooth density distribution. This is more robust against fluid-fluid collisions

whereas ISPH is more likely to fail to prevent fluid-solid particle penetrations. In MPS, since the gradient

formulation is not anti-symmetric, and thus pressure forces computed with the gradient do not preserve fluid

momentum.

IISPH. IISPH is a recently proposed particle-based method that uses the pressure projection with

divergence and gradient operators instead of the Laplacian (Ihmsen et al., 2014a). IISPH includes farther

particles to faster propagate pressure updates with weighted Jacobi than ISPH and MPS. Additionally, to

improve the robustness, Ihmsen et al. (Ihmsen et al., 2014a) proposed adopting a velocity-based density

estimation (which uses the continuity equation with predicted particle velocities) instead of the position-

based density estimation (which uses the summation approach with predicted particle positions) adopted in
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Table 2.1: Feature comparison for density blending.

Method Fluid-fluid collision Fluid-solid collision

Smooth kernel (Müller et al., 2003) Robust Weak
Spiky kernel (Koshizuka et al., 1996) Weak Robust
My method Robust Robust

Table 2.2: Feature comparison for free surface handling.

Method Robustness

Density-based (Koshizuka et al., 1996) Weak
Surface-based (He et al., 2012b) Weak
Ghost-particle-based (Nair and Tomar, 2014) Weak
Source-term-based Moderate
My method Robust

ISPH (Shao and Lo, 2003) and MPS. In IISPH, Ihmsen et al. used a clamping approach with weighted Jacobi

for free surface handling and mirrored hydrodynamic forces (Akinci et al., 2012) for solid boundary handling.

There are some techniques for accelerating the pressure solve. Kang and Sagong (Kang and Sagong, 2014)

and Bender and Koschier (Bender and Koschier, 2016) adjusted particle velocities after fluid incompressibility

is enforced to reduce the deviation of particle density at the next step. Adams et al. (Adams et al., 2007) and

Solenthaler and Gross (Solenthaler and Gross, 2011) used adaptive particles to allocate more computational

resources to important regions. These techniques are orthogonal and can be combined with my method for

better performance.

I combine different advantages of ISPH, MPS, and IISPH to achieve optimal performance with my new

interface handling method, which allows us to use CG with direct Laplacian discretization. Therefore, my

method outperforms the previous particle-based fluid solvers including variants of ISPH with CG. For clarity,

features of previous approaches and my method are summarized in Tables 2.1, 2.2, and 2.3, in terms of the

density blending, free surface handling, and solid boundary handling, respectively.

Table 2.3: Feature comparison for solid boundary handling.

Method System size Pressure Solid floating in the air

Previous method (Koshizuka et al., 1996) Large Inaccurate 7

My method Small More accurate 3
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2.3 Hybrid Incompressible SPH Solver

I first explain formulations of my hybrid fluid solver, which takes advantages of ISPH, MPS, and IISPH

to improve the robustness and efficiency, adopting the fluid-solid coupling method (Akinci et al., 2012). Then,

I present my interface handling method in § 2.4.

Incompressible flows in the Lagrangian setting can be described by the continuity equation dρi
dt + ρi∇ ·

ui = 0, and the Navier-Stokes equations dui
dt = − 1

ρi
∇pi +

Fv
i

mi
+

Fext
i
mi

, where ρi denotes density of particle i,

t time, ui velocity, pi pressure, Fv
i viscosity force, mi mass, and Fext

i external force. First, I compute density

ρi and number density ni by using the summation approach with a smooth kernel Wij and a spiky kernel wij ,

respectively, with solid particles:

ρi =
∑
j

mjWij + ρ0

∑
s

VsWis, (2.1)

ni =
∑
j

wij +
1

V0

∑
s

Vswis, (2.2)

where j and s denote neighbor fluid and solid particles, respectively, ρ0 the rest density, Vi the volume,

and V0 the rest volume defined as V0 = 1∑
j Wij

at the initial setting. I use Vi = mi
ρi

for the fluid particle

volume, while I define the solid particle volume as Vi = 1∑
sWis

(see (Akinci et al., 2012)). Note that I

initialize particle mass by mi = ρ0∑
j Wij

and compute the rest number density n0 by n0 =
∑

j wij with the

initial particle configuration to enforce ρi
ρ0

= ni
n0

to hold, making density and number density in the different

dimensions interchangeable with just scaling while achieving the equilibrium state with the initial setup. I

use kernels (including a smooth kernel) proposed in (Müller et al., 2003) for SPH discretization, and a spiky

kernel used in (Koshizuka et al., 1996; Premoze et al., 2003).

I estimate intermediate velocity u∗i with viscosity and external forces. To take advantage of both of the

kernels, I blend ρi and ni with scaling as

ρ̃i = (1− ζi)ρi + ζi
ρ0

n0
ni, (2.3)

ζi =


0 Mi < α

Mi−α
β−α α ≤Mi < β

1 β ≤Mi

,
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where ρ̃i denotes blended density, Mi the number of neighbor solid particles, and α and β are tunable

parameters (I typically use α = 5 and β = 15). To interpolate ρi and ni in Eq. (2.3), I compute ζi such that

ρi and ni become dominant inside of the fluid volume and near solids, respectively. Since ρi and ni are more

robust against fluid-fluid and fluid-solid collisions, respectively, the blended density with ζi takes advantages

of both kernels, and is more robust than non-blended densities. Then, I compute intermediate density ρ∗i

using the continuity equation as in (Ihmsen et al., 2014a):

ρ∗i = ρ̃i + ∆t

∑
j

mju
∗
ij∇Wij + ρ0

∑
s

Vsu
∗
is∇Wis

 , (2.4)

where ∆t denotes time step, and u∗ij = u∗i − u∗j .

Next, I solve the PPE to obtain a pressure field that enforces fluid incompressibility. Assuming that

the density change in the continuity equation is caused by the pressure forces, I formulate the PPE for

the fluid domain Ω as ∇2pi =
ρ0−ρ∗i

∆t2
in Ω with Dirichlet boundary condition pi = 0 on F and Neumann

boundary condition dpi
dn̂i

= 0 on S, where F and S denote domain boundaries in contact with free surfaces

and solid objects, respectively, and n̂i is the normal to S. In particle-based methods, negative pressures which

can occur because of the positive source term if the PPE is solved without special cares produce attractive

forces between particles leading to tensile instability (Monaghan, 2000). Thus, we need to satisfy pi ≥ 0

while solving the PPE, and this is a Linear Complementarity Problem (LCP), e.g., solved to avoid particle

adhesion (Adams and Wicke, 2009; Narain et al., 2010; Alduán and Otaduy, 2011; Ihmsen et al., 2013;

Gerszewski and Bargteil, 2013; Ihmsen et al., 2014a).

After the PPE is solved by using a CG solver, satisfying the boundary conditions and constraint on

pressure with my interface handling (see § 2.4), I compute pressure forces, and then integrate particle

velocities and positions using the semi-implicit Euler method.

I summarize the algorithm for my hybrid incompressible SPH solver in Algorithm 1. An algorithm for

solving the PPE (line 9 in Algorithm 1) is given in Algorithm 2 (§ 2.4.6).

2.4 Interface Handling

In this section, I concisely describe boundary conditions in the PPE (§ 2.4.1). Next, I clarify problems on

Dirichlet (§ 2.4.2) and Neumann (§ 2.4.3) boundary conditions in the ISPH and MPS setting, and then explain
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Algorithm 1 Hybrid incompressible SPH solver

1: for all particle i do
2: find neighbor particles
3: for all fluid particle i do
4: compute ρi and ni with Eqs. (2.1) and (2.2)
5: for all particle i do
6: compute intermediate velocity u∗i
7: for all fluid particle i do
8: estimate ρ∗i with Eq. (2.4)
9: solve the PPE (Algorithm 2)

10: for all fluid particle i do
11: compute pressure force Fp

12: for all fluid particle i do
13: integrate velocity ut+1

i and position xt+1
i

my interface handling consisting of free surface handling (§ 2.4.4) and solid boundary handling (§ 2.4.5).

Finally, I give an algorithm for solving the PPE (§ 2.4.6).

I use my solid boundary handling method for Neumann boundary conditions in the PPE and employ the

work of Akinci et al. (Akinci et al., 2012) to resolve collisions between fluid and solid particles. (Akinci et al.,

2012) is also suitable for my free surface handling method since it allows for accurate density estimates even

with complex geometry. My free surface handling is for Dirichlet boundary conditions and is orthogonal to

other free surface handling methods that consider air domains, e.g., (Schechter and Bridson, 2012; He et al.,

2014). Thus, these methods can be combined with mine.

In my experiments, quantities computed with SPH and MPS discretization for the Laplacian operator are

almost the same and are virtually interchangeable. However, since the gradient formulation in MPS is not

anti-symmetric, I use SPH discretization for consistency to compute the spatial derivatives.

2.4.1 Boundary Conditions in PPE

To aid in my description, I call fluid and solid particles included in the PPE as unknown variables Poisson

particles, fluid particles used for Dirichlet boundary condition Dirichlet particles, and solid particles for

Neumann boundary condition Neumann particles.
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Figure 2.2: Illustration of particle configurations. Red arrows represent particle velocities. (a) Configuration
of fluid particles, unsolvable configuration of Poisson particles, and solvable configuration of Poisson and
Dirichlet particles due to the newly set Dirichlet boundary condition, from left to right. (b) Configuration
of fluid and solid particles, unsolvable configuration of Poisson and Neumann particles, and solvable
configuration of Poisson, Dirichlet, and Neumann particles. (c) Configuration of fluid particles, and solvable
configuration of Poisson and Dirichlet particles. (d) Configuration of fluid and solid particles, unsolvable
configuration of Poisson, Dirichlet, and Neumann particles, and solvable configuration of Poisson and
Dirichlet particles due to the new Poisson particles converted from the Neumann particles. (e) Configuration
of fluid and solid particles, and unsolvable configuration of Poisson and Dirichlet particles due to the group
of isolated Poisson particles without Dirichlet particles.

To solve the PPE, I can discretize ∇2pi using the SPH formulation taking solid particles into account

with the assumption of virtually existing solid particle’s pressure ps:

∇2pi = ∇2pfluid
i +∇2psolid

i

=
∑
j

aij(pi − pj) +
∑
s

ais(pi − ps), (2.5)

where aij = VijŴij , Vij = (Vi + Vj)/2, Ŵij = 2
xij ·∇Wij

‖xij‖2+0.01h2 , xij = xi − xj (xi: particle position), and h

denotes kernel radius. aij < 0 because of the kernel definition (Müller et al., 2003). For Neumann boundary

condition ( dpidni
= 0), pi = ps must be satisfied, and thus the PPE becomes

∇2pi =
∑
j

aij(pi − pj) = ci,

where ci =
ρ0−ρ∗i

∆t2
. Unlike the Eulerian fluid simulation, which uses the divergence of velocity as a source

term, the density invariance source term generally does not satisfy the compatibility condition (even if the

source term is not blended), i.e.,
∑

i∈ΩP ci 6= 0, where ΩP denotes a set of Poisson particles. Therefore, this

form of the PPE without Dirichlet boundary conditions is unsolvable because of the rank deficient coefficient

matrix (see (Bridson, 2008) for more details). Figure 2.2 (a) illustrates a particle configuration without solid
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particles for an unsolvable setting consisting of Poisson particles only, and a solvable setting due to Dirichlet

particles. Figure 2.2 (b) illustrates a similar situation with solid Neumann particles.

2.4.2 Problems on Dirichlet Boundary Condition

Unlike Eulerian fluid simulation, negative pressures almost always work negatively, causing the tensile

instability (Monaghan, 2000) in particle-based fluid simulation. Thus, it is essential to avoid negative

pressures, and formally, we need to solve an LCP. With (weighted) Jacobi method, this step can be easily

achieved by clamping negative pressures to zero in each iteration, whereas CG does not allow us to perform

such an operation in its iterations (Ihmsen et al., 2014a). More expensive LCP solvers have been used in

the Eulerian methods (Narain et al., 2010; Gerszewski and Bargteil, 2013). By contrast, in Lagrangian

particle-based methods, I approximately solve the LCP to avoid using the costly LCP solvers by solving the

PPE with Dirichlet boundary conditions, which are set to particles whose pressures should be negative after

the PPE is solved (See Figure 2.2). Previously, the density-based (Koshizuka et al., 1996; Premoze et al.,

2003; Shao and Lo, 2003) or surface-based (He et al., 2012b) method has been used to determine Dirichlet

particles. However, since predicted density and pressures of fluid particles are neglected, these methods tend

to fail to appropriately determine Dirichlet particles, i.e., fluid particles whose pressures should be positive

(negative) after the PPE is solved could be erroneously treated as Dirichlet (Poisson) particles consequently

leading to stability issues. The source-term-based method takes the predicted density into account, and thus

its stability is improved. However, disregarded neighbor particles’ pressures still negatively affect the stability

of the simulation.

The ghost-particle-based method (Nair and Tomar, 2014) can change an unsolvable system consisting

of Poisson and Neumann particles only (without Dirichlet particles) to a solvable one by setting Dirichlet

boundary conditions to ghost particles, assuming that they virtually exist outside of the fluid domain. When

the particle uniformity is disturbed, however, the linear system can be not diagonally-dominant, and thus not

positive-definite. Consequently, we fail to solve the system using CG. Although taking larger diagonal entries

can ensure the diagonal dominance of the linear system, resultant pressures can be much smaller failing to

prevent particle penetrations with mirrored hydrodynamic forces (Akinci et al., 2012).
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2.4.3 Problems on Neumann Boundary Condition

When Poisson particles have a channel to at least one Dirichlet particle directly or via other Poisson

particles, the solvability of the PPE is ensured. In liquid simulations, however, fluid particles can be separated

from the fluid bulk that has Dirichlet particles (see Figures 2.2 (c) and (d)). If there is no neighboring solid

particle, I can appropriately set Dirichlet boundary conditions with a free surface handling method ensuring

the solvability of the system, as illustrated in Figure 2.2 (c). In this case, although pressure forces of Dirichlet

particles do not resolve their collisions because of the zero-pressures, artificial viscosity force, which is

necessary to stabilize particle behaviors, can prevent fluid particle penetrations. On the other hand, if fluid

particles have neighboring solid particles (see Figure 2.2 (d)), I cannot set Dirichlet boundary condition

(pi = 0) to the fluid particles except the cases, where fluid particles do not move toward solid particles. This

is because pressures of fluid particles must be valid for (Akinci et al., 2012), and I need to treat the fluid

particles as Poisson particles. In this case, the resulting linear system is unsolvable because of isolated groups

of Poisson particles without Dirichlet particles (see Figure 2.2 (d)). To avoid this unsolvable configuration, I

tested pressures computed with an equation of state instead of setting pi = 0 and artificial viscosity excluding

Poisson particles that contact with Neumann particles from the system, I could not determine appropriate

parameters and experienced significant fluid energy dissipations.

This problem was partially addressed in (Koshizuka et al., 1996; Premoze et al., 2003; Shao and Lo,

2003) by treating solid particles as Poisson particles in the PPE (see Figure 2.2 (d)). This approach can

connect separated fluid Poisson particles to Dirichlet particles via solid Poisson particles which are originally

Neumann particles, and thus can change an unsolvable PPE to a solvable one. However, this approach

brings about several other problems. First, solid Poisson particles newly included in the PPE significantly

increase the size of the system and thus computational cost and memory usage. Second, this approach tends

to underestimate pressures requiring smaller time steps to ensure no fluid-solid particle penetrations because

solid Poisson particles newly generate shorter channels between fluid Poisson particles and Dirichlet particles

limiting the pressures of the fluid Poisson particles to lower values. Most importantly, this approach cannot

handle solid objects floating in the air, which frequently occur in the two-way solid-fluid coupling (see

Figure 2.1 and accompanying video), since solid particles of these objects may not have channels to Dirichlet

particles (see Figure 2.2 (e)).
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Figure 2.3: Cutaway views for a dam break scene. Dirichlet particles are appropriately set near free surfaces
and cavities inside of the fluid.

2.4.4 Free Surface Handling

I aim to approximately solve the LCP by appropriately setting Dirichlet boundary conditions to particles,

whose pressures would be negative after the PPE is solved. To estimate particle pressures, I compute a pseudo

particle pressure p̃i using the projected Jacobi method based on Eq. (2.5):

p̃l+1
i = max

(
0,
ci +

∑
j aij p̃

l
j + p̃li

∑
s ais∑

j aij +
∑

s ais

)
, (2.6)

where l denotes iteration count, and the initial pseudo pressures are set as p̃0
i = γpti with a tunable parameter

γ. Then, if p̃li = 0, I treat the fluid particle i as a Dirichlet particle, otherwise a Poisson particle. I use

a projected Jacobi method, not Jacobi method, since Jacobi method excessively increases the number of

Dirichlet particles propagating negative pressures. Note that since my Jacobi-based prediction includes

pressures of neighboring particles and the source term, which is based on the predicted density ρ∗i and thus

density ρi, I can appropriately set Dirichlet boundary conditions to particles, e.g., on free surfaces and near

cavities inside of fluid, as shown in Figure 2.3.

Since repeatedly applying Eq. (2.6) means solving the PPE using the projected Jacobi method as

in (Ihmsen et al., 2014a), I can obtain more accurate particle pressures to determine Dirichlet particles with

many iterations. However, using many iterations did not significantly improve the stability. Additionally,

since all particle pressures are zero or positive, repeatedly applying Eq. (2.6) generally increases pseudo

pressures and thus decreases the number of Dirichlet particles. Whereas Dirichlet particles can cause stability

issues if they are excessive and inappropriately set, they can reduce the number of Poisson particles in the

system improving computational efficiency and memory usage and accelerate the convergence of CG because
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of their fixed pressure values and the decreased system size. Taking these into account, I use Eq. (2.6) only

once with γ = 0.5 not to excessively decrease the number of Dirichlet particles.

Since negative pressures can still occur with Dirichlet particles specified using my free surface handling,

I clamp negative pressures to zero to prevent the tensile instability (Monaghan, 2000) after the PPE is solved.

It is worth noting that an ad-hoc technique, clamping the positive source term to zero, can completely

prevent negative pressures. However, using this technique with my method entirely and excessively increases

particle pressures leading to stability problems or surface artifacts (Ihmsen et al., 2014a).

2.4.5 Solid Boundary Handling

To handle solid objects including isolated ones without treating solid particles as Poisson particles in

the PPE, I aim to compute the Laplacian without including the term pi − ps, ensuring the solvability of the

linear system even with Neumann boundary condition dpi
dni

= 0, i.e., pi = ps applied. Inspired by IISPH, I

decompose the Laplacian operator for solid particles into divergence and gradient as

∇2psolid
i ≈ ∇ · ∇psolid

i = −
∑
s

Vis
∇pi +∇ps

2
· ∇Wis. (2.7)

Assuming ∇pi = ∇ps when pi = ps (Neumann boundary condition) within a local domain because of the

smoothed distribution of physical quantities in the SPH setting (Solenthaler and Pajarola, 2009), I obtain

∑
s

Vis
∇pi +∇ps

2
· ∇Wis = ∇pi ·

∑
s

Vis∇Wis. (2.8)

By using the SPH formulation, I can compute∇pi by

∇pi =
∑
j

Vij
pi + pj

2
∇Wij +

∑
s

Vis
pi + ps

2
∇Wis.

Again, because of the smoothed pressures of fluid particles within their local domain (Solenthaler and

Pajarola, 2009), I assume pi = pj . Combining this assumption and Neumann boundary condition, I obtain

∇pi = pi

∑
j

Vij∇Wij +
∑
s

Vis∇Wis

 . (2.9)

24



I did not gain any improvement in the robustness even if the PPE is solved with pi 6= pj , and the matrix

construction cost significantly increased because of the coefficient of pj . With Eqs. (2.7), (2.8), and (2.9), I

obtain

∇2psolid
i = bipi,

bi = −

∑
j

Vij∇Wij +
∑
s

Vis∇Wis

 ·∑
s

Vis∇Wis. (2.10)

Since my solid boundary handling introduces a new term bipi into the PPE when fluid Poisson particles

are in contact with Neumann particles, I can change an unsolvable system to a solvable one. For example,

when there are two fluid particles i and j touching each other and a solid particle s touching at least one of i

and j, the PPE for i and j without my solid handling can be written as aij(pi−pj) = ci and aji(pj−pi) = cj ,

respectively, where aij = aji 6= 0. Therefore, ci + cj = 0 must hold to ensure the solvability of the PPE for

the compatibility condition (Bridson, 2008). In general, however, ci + cj 6= 0 with the density invariance

source term, and thus the linear system is unsolvable. On the other hand, with my solid boundary handling, I

can write the PPE as aij(pi − pj) + bipi = ci and aji(pj − pi) + bjpj = cj , where at least one of bi 6= 0 and

bj 6= 0 holds, and therefore this system is solvable (pi =
aij(ci+cj)+bjci
aij(bi+bj)+bibj

and pj =
aij(ci+cj)+bicj
aij(bi+bj)+bibj

).

It is worth noting that bi is generally negative when particle i is compressed toward solid particles, and

thus my solid boundary handling is likely to lead to smaller pressures near solid objects, as pi without my

solid handling can be computed by pi =
ci+

∑
j aijpj∑
j aij

, and pi =
ci+

∑
j aijpj∑

j aij+bi
with my solid handling, where

aij is also negative because of the kernel definition (Müller et al., 2003). However, the blended density can

increase particle pressures near solid objects because of the spiky kernel, and effectively prevent particle

penetrations.

My solid boundary handling is decoupled from pressures of neighbor fluid and solid particles. This

decoupling allows us to significantly simplify my implementation and efficiently compute contributions from

solid particles without multiple access to fluid and solid particles and matrix structures specialized for sparse

linear systems. In addition, my method does not increase the size of the linear system nor CG iterations,

unlike the solid handling used in (Koshizuka et al., 1996; Premoze et al., 2003; Shao and Lo, 2003).

My solid boundary handling is numerically equivalent to implicitly adding Dirichlet boundary condition

to the system, to make the system solvable. Thus, in this perspective, my method and the ghost-particle-based
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method (Nair and Tomar, 2014) share the same idea. However, my method cannot handle isolated fluid

Poisson particles with no channels to Dirichlet particles (this case is handled by setting Dirichlet boundary

condition to such particles with my free surface handling), and needs the fluid Poisson particles to be touching

Neumann particles to ensure the solvability. On the other hand, the ghost-particle-based method can handle

fluid Poisson particles without Neumann and Dirichlet particles at the expense of difficult parameter tuning

and underestimated pressures.

2.4.6 PPE Solve

Algorithm 2 summarizes an algorithm for solving the PPE. Since my free surface and solid boundary

handling can be incorporated into the originally existing particle loops, the additional cost is trivial.

Algorithm 2 PPE solve
1: for all fluid particle i do
2: compute source term ci
3: determine Dirichlet particles with Eq. (2.6)
4: if i is Dirichlet particle then
5: pi = 0
6: else
7: for all fluid particle j do
8: compute aij for the matrix
9: compute Vij∇Wij

10: for all solid particle s do
11: compute Vis∇Wis

12: compute bi with Eq. (2.10) for the matrix
13: solve the linear system using a CG solver
14: for all fluid particle i do
15: if pi < 0 then
16: pi = 0

2.5 Results

I implemented my algorithm with artificial viscosity (Monaghan, 1992), and used incomplete Cholesky

CG for solving the linear system. In my method, I use h = 2d (d: initial particle spacing). Light blue

and green particles represent fluid and solid particles, respectively. Cyan, magenta, and yellow particles

represent Poisson, Dirichlet, and Neumann particles, respectively. I measured computational time for a PC

with 4-core 3.40 GHz CPU and RAM 16.0 GB, excluding the surface reconstruction and rendering from the

measurement. N f and N s denote the number of fluid and solid particles, respectively. NP, ND, and NN
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denote the averaged number of Poisson, Dirichlet, and Neumann particles, respectively. lavg denotes the

averaged number of CG iterations per simulation step. tp and tf denote averaged computational time for

solving the PPE and for the frame, respectively. Particles are rendered at 60 Hz, and the result of the last

simulation step in the frame is used for the color code of particle rendering.

2.5.1 Convergence Criterion

While the residual is commonly used in the Eulerian fluid simulation, a density-based criterion, based

on the positive density error (ρerr
i )l = max(0, ρli − ρ0) (ρli: estimated density after l iterations), which

represents the level of fluid compression, is traditionally used as a convergence criteria in the SPH fluid

simulations (Solenthaler and Pajarola, 2009; Ihmsen et al., 2014a). Ihmsen et al. (Ihmsen et al., 2014a)

proposed using the average density error, not the maximum one, to keep fluid volumes constant. For the

intuitiveness and fair comparison with previous methods, I use the density-based criterion with the averaged

positive density error.

In each CG iteration, I can obtain the residual rli without explicitly computing it, following its definition

given as rli =
ρ0−(ρ∗i )l

∆t2
−∇2pli. Since the estimated density ρli can be computed by ρli = (ρ∗i )

l+∆t2∇2pli (Ihm-

sen et al., 2014a), I can obtain the positive density error with the residual rli as (ρerr
i )l = max(0, ρli − ρ0) =

max(0,−rli∆t2). Then, I compute the averaged, positive density error (ρ̂err)l = 1
N

∑
i∈ΩP (ρerr

i )l (N : the

number of Poisson particles). If (ρ̂err)l/ρ0 < η (η: error threshold), I terminate the CG iterations. I use

η = 0.01% in all the scenarios.

2.5.2 Density Blending

I tested my density blending scheme by comparing my method with the density blending and without it

(i.e., my method using a smooth or spiky kernel only). Particles are color-coded based on ζi (when ρi (ni)

computed with the smooth (spiky) kernel is dominant, particle colors approach white (blue)).

Comparison with the smooth kernel. Figure 2.4 compares my method using the density blending and a

smooth kernel only. When the time step is large, my method with the smooth kernel suffers from particle

penetrations, as shown in Figure 2.4 (b). My method with density blending can prevent penetrations because

of the rapidly increased pressure by the spiky kernel, as shown in Figure 2.4 (c), taking 1.36x larger time

steps.
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Figure 2.4: Stability test with a bunny drop, where averaged particle spacing is 1.50 × 10−2 m. Smooth
kernel with (a) ∆t = 1.03× 10−3 s and (b) ∆t = 1.40× 10−3 s, where particle penetrations occur as noted
by a red circle. (c) Blended density with ∆t = 1.40× 10−3 s.

Figure 2.5: Stability test with a fluid column, where averaged particle spacing is 1.50× 10−2 m. Spiky kernel
with (a) ∆t = 0.73× 10−3 s and (b) ∆t = 1.07× 10−3 s, where particle penetrations occur. (c) Blended
density with ∆t = 1.07× 10−3 s.

Comparison with the spiky kernel. Figure 2.5 compares my method using the density blending and a spiky

kernel only, where very large time steps are chosen to clearly show the differences in the robustness. When

the time step is large, my method with the spiky kernel can become unstable and causes particle penetrations,

as shown in Figure 2.5 (b). My method with density blending does not cause particle penetrations because of

the blended smooth kernel, as shown in Figure 2.5 (c), taking 1.46x larger time steps.

2.5.3 Free Surface Handling

I tested my free surface handling to demonstrate its robustness with a simple scene, where a cubed fluid

is dropped from a lower position to make the free surface handling crucial in determining time steps (see

Figure 2.6 (a) for the initial setup). I compared my method with the density-based (Koshizuka et al., 1996;

Premoze et al., 2003; Shao and Lo, 2003), surface-based (He et al., 2012b), ghost-particle-based (Nair and

Tomar, 2014), and source-term-based method, which treats fluid particles as Dirichlet particles if ρ0−ρ∗i ≥ 0,
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Figure 2.6: Comparison for free surface handling, where averaged particle spacing is 1.50×10−2 m. Different
frames are chosen for illustration. (a) Initial setup. Density-based with (b) ∆t = 0.75× 10−3 s (stable) and
(c) ∆t = 1.68× 10−3 s (unstable). Density-based (clamped) with (d) ∆t = 0.75× 10−3 s (stable) and (e)
∆t = 1.68× 10−3 s (unstable). (f) Surface-based with ∆t = 0.35× 10−3 s (unstable). (g) Surface-based
(clamped) with ∆t = 0.35× 10−3 s (unstable). Ghost-particle-based with (h) ∆t = 0.42× 10−3 s (stable)
and (i) ∆t = 1.68× 10−3 s (unstable). Ghost-particle-based (clamped) with (j) ∆t = 0.52× 10−3 s (stable)
and (k) ∆t = 1.68 × 10−3 s (unstable). Source-term-based with (l) ∆t = 1.20 × 10−3 s (stable) and (m)
∆t = 1.68 × 10−3 s (unstable). (n) Mine with ∆t = 1.68 × 10−3 s (stable). (o) Mine (clamped) with
∆t = 1.68× 10−3 s (unstable).

combining the clamping approach (Ihmsen et al., 2014a). For the comparisons, I used my solid boundary

handling. Figure 2.6 illustrates the results of my method and others.

Density-based method. While the density-based method with a small time step as in Figure 2.6 (b)

generates plausible fluid behaviors, the method suffered from a stability problem with a large time step seen

in Figure 2.6 (c). The clamping did not improve nor deteriorate the robustness of this method (see Figure 2.6

(d) and (e)).

Surface-based method. The surface-based method sets Dirichlet particles only near surfaces, and

consequently particle pressures are likely to be excessively high inside of the fluid volume. Thus, this method

failed to perform a stable simulation even with a small time step as shown in Figure 2.6 (f). Since the

clamping approach increases particle pressures, this technique did not improve the stability as shown in

Figure 2.6 (g).

Ghost-particle-based method. Because of the underestimated pressures, a small time step was necessary

to ensure no particle penetrations as in Figure 2.6 (h). This method failed with a large time step as in Figure 2.6
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Table 2.4: Performance comparison for Figure 2.6. My method achieves the best performance, taking the
largest time step due to the improved robustness.

Figure Method N f N s NP ND NN ∆t(s) lavg tp (s) tf (s)

2.6 (b) Density-based 42.2k 21.8k 40.0k 2.3k 21.8k 0.75 ×10−3 2.92 4.79 6.64
2.6 (j) Ghost-particle-based (clamped) 42.2k 21.8k 42.2k 0.0k 21.8k 0.52 ×10−3 0.99 5.95 8.85
2.6 (l) Source-term-based 42.2k 21.8k 32.0k 10.3k 21.8k 1.20 ×10−3 1.96 2.20 3.23
2.6 (n) Mine 42.2k 21.8k 28.3k 14.0k 21.8k 1.68 ×10−3 4.66 2.16 2.97

(i). The increased pressure using the clamping slightly improved the robustness of this method, allowing

for the use of a larger time step as seen in Figure 2.6 (j). The clamping was insufficient to take a very larger

time step as in Figure 2.6 (k). For all the scenes, I observed the volume change (fluid oscillation) because of

underestimated pressures even though the convergence criterion is satisfied.

Source-term-based method. The source-term-based method can perform a stable simulation with a

moderately large time step as in Figure 2.6 (l) while the simulation becomes unstable with a large time

step as in Figure 2.6 (m). The clamping approach is ineffective for this method because Dirichlet particles

determined by the source term are excluded from the system.

My method. My method can perform a stable simulation with a large time step as in Figure 2.6 (n),

while the clamping introduced stability issues due to increased pressures (see Figure 2.6 (o)).

Table 2.4 shows simulation conditions and performance for Figures 2.6 (b), (j), (l), and (n), where the

density-based, ghost-particle-based, source-term-based, and my method generate plausible fluid behaviors

with their best performance, respectively. Since my method can take larger time steps than the others, my

method outperformed the others regardless of the more iterations required for convergence, amortizing

the increased cost of the pressure solve. When I need additional computations, e.g., for viscosity, stress,

temperature, and surface tension, taking larger time steps can further increase the performance gain of my

method.

The number of Poisson (Dirichlet) particles with my method is smaller (larger) than that of the source-

term-based method in Table 2.4. However, this is due to different time steps, and the number of Poisson

and Dirichlet particles was 34.4k (> 32.0k) and 7.8k (< 10.3k), respectively, when the same time step as in

Figure 2.6 (l) was used with my method.
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Figure 2.7: Comparison for solid boundary handling, where averaged particle spacing is 1.29× 10−2 m. (a)
Initial setup. Previous method with (b) ∆t = 0.51× 10−3 s and (c) with ∆t = 1.09× 10−3 s, where particle
penetrations occur as noted by a red circle; and (d) with particles color coded based on their pressures. (e)
My method with ∆t = 1.09× 10−3 s, and (f) with particles color coded based on their pressures. Red and
white particles represent high and low pressures, respectively.

2.5.4 Solid Boundary Handling

I tested my solid handling method to demonstrate its robustness and efficiency with a dam break scene

with a solid dragon (see Figure 2.7 (a) for the initial setup). Note that the dragon must be connected to

the surrounding cube representing the simulation domain to ensure the solvability of the linear system for

(Koshizuka et al., 1996; Premoze et al., 2003; Shao and Lo, 2003). I compare these methods in Figure 2.7,

adopting my free surface handling for both methods, and show simulation conditions and performance in

Table 2.5.

While both methods can generate plausible fluid behaviors, the increased number of Poisson particles

with the previous method leads to a larger size of the linear system, requiring more computations. Additionally,

the previous method erroneously underestimates particle pressures, and the averaged maximum pressure

was 1.88 × 104 and 2.32 × 104 kg/(m · s2) in Figures 2.7 (d) and (f), respectively, with the same time

step ∆t = 1.09× 10−3 s. Thus, the previous method (Koshizuka et al., 1996; Premoze et al., 2003; Shao

and Lo, 2003) needed to use smaller time steps than those for my method to prevent particle penetrations.

Consequently, my method outperformed the previous method by a factor of 2.20.
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Table 2.5: Performance comparison for Figure 2.7. My method outperforms the previous method by taking a
2.14x larger time step, and achieves the performance gain by a factor of 2.20.

Figure Method N f N s NP ND NN ∆t(s) lavg tp (s) tf (s)

2.7 (b) Previous method 76.6k 57.1k 90.6k 43.1k 0.0k 0.51 ×10−3 2.26 16.62 26.37
2.7 (e) My method 76.6k 57.1k 59.1k 17.5k 57.1k 1.09 ×10−3 4.39 6.99 11.97

Figure 2.8: A fluid drop with a floating solid bunny.

Additionally, my method can handle solid objects floating in the air (see Figure 2.8).

2.5.5 Comparison with IISPH

I compare my method with IISPH (Ihmsen et al., 2014a) using a dam break scenario, as shown in

Figure 2.9 for the fluid behaviors and Figure 2.10 for their performance of the pressure solve. While both

methods generate comparable results, my method outperformed by a factor of 3.78 in the pressure solve

(IISPH used 86.73 s while mine used 22.95 s) because of the fast convergence of CG.

2.5.6 Time Step Scaling

To compare the performance with different time steps, I experimented with a dam break scene, shown in

Figure 2.9. For this comparison, averaged particle spacing was 1.80× 10−2 m. Table 2.6 shows performance

results with different time steps. With my method, the number of iterations increases sublinearly according

to time steps. The sublinearity offers an advantage that my method generally achieves the best performance

with the largest available time steps, simplifying a process of finding optimal time steps. By contrast, the

number of iterations for IISPH with weighted Jacobi increases superlinearly (Ihmsen et al., 2014a), and thus

IISPH needs to take into account various factors, e.g., pressure solve and neighbor search, to determine time

steps for the optimal performance of IISPH.
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Figure 2.9: Comparison of fluid behaviors. (Left) IISPH. (Right) My method.

Table 2.6: Performance results with different time steps. With my method, lavg increases sublinearly w.r.t.
time steps.

∆t(s) lavg tp(s) tf(s)

0.20× 10−3 0.99 12.27 24.93
1.60× 10−3 6.69 2.96 4.69

2.6 Discussions and Limitations

In this section, I discuss applicability of CG to IISPH (§ 2.6.1), and limitations of my solver (§ 2.6.2).

2.6.1 CG for IISPH

In (Ihmsen et al., 2014a), the authors attempted to solve the PPE using CG with the assumption of

uniformly constant particle mass and density to make the system symmetric. With the IISPH discretization,

however, the system can be not diagonally dominant and thus not positive definite.

The left hand side of the PPE in the IISPH can be written as

−m
2

ρ2
0

∑
j

∑
j

(pi + pj)∇Wij −
∑
k

(pj + pk)∇Wjk

∇Wij (2.11)

(j: first-ring neighbors and k: second-ring neighbors), including second-ring neighbors. According to (Taka-

hashi et al., 2015), I can separately write terms on pi, pj , and pk with ωij =
∑

j ∇Wij as −m2

ρ2
0
‖ωij‖2pi,

−m2

ρ2
0

∑
j ∇Wij(ωij − ωjk)pj , and −m2

ρ2
0
ωij
∑

k∇Wjkpk, respectively, and the diagonal component is the

coefficient of pi, which is −m2

ρ2
0
ωij · (ωij +

∑
j ∇Wji) taking contributions of k into account (particle k can
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Figure 2.10: Comparison of pressure solve time for Figure 2.9. My method outperforms IISPH by a factor of
3.78.

be particle i). When particle i has a completely uniform neighbor particles (ωij = 0) and j does not have

(ωjk 6= 0), this system is not diagonally dominant. Therefore, this system cannot be solved with CG.

It is worth noting that Jacobi method also cannot solve a non-diagonally-dominant system, and thus

weighted Jacobi method is used in (Ihmsen et al., 2014a).

2.6.2 Limitations

My density blending and interface handling methods significantly improve the stability, and the improved

robustness of my solver can be comparable to IISPH depending on scenarios. However, my solver can be

less robust than IISPH when very large time steps and high resolutions are used, since IISPH considers

pressure forces with farther particles in the PPE, generating more reliable pressures. Although there are many

situations where my method is more advantageous (e.g., when I cannot use very large time steps because of

fast moving particles), the weaker robustness is a limitation and should be investigated to make my solver

more robust. Additionally, IISPH can be advantageous for relatively smaller scenarios consisting of shallow

water only, with a soft constraint on volume changes, because fewer Jacobi iterations can be sufficient to

converge, and thus my method cannot benefit from CG, which shows a fast, superlinear convergence in the

latter phase.
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my density blending uses two tunable parameters. Although I was able to use constant values (as

suggested in Section 2.3) in my scenarios, when the distributions of solid particles are highly irregular, it

would be necessary to take into account actual contributions from solid particles. Other than blending, it

might also be possible to design a new shape of kernels to address this issue.

2.7 Conclusions and Future Work

I proposed a hybrid incompressible SPH solver with a new interface handling method. My density

blending improves the stability for both fluid-fluid and fluid-solid collisions. My free surface handling

improves the robustness by appropriately setting Dirichlet particles with Jacobi-based pressure prediction

while my solid boundary handling introduces a new term to ensure the solvability of the linear system even

with objects floating in the air, without sacrificing memory and computational efficiency. Several examples

demonstrated the effectiveness of my method.

In general, my solver becomes more efficient as I take larger time steps unlike IISPH with weighted

Jacobi since required iterations sublinearly increase according to time steps. Adopting a more effective

preconditioner would further accelerate my method, solving the linear system with fewer iterations even

if larger time steps make the system ill-conditioned. Additionally, such a preconditioner might allow us to

handle larger scale scenarios with deep water depth, for which both of my solver with CG and IISPH with

weighted Jacobi show a poor scalability.

It is interesting to adopt different approaches to ensure the solvability of the linear system. I plan to use

ghost SPH (Schechter and Bridson, 2012) to generate particles outside of fluid volumes, which can be used

for Dirichlet boundary condition. Though this is similar to (Nair and Tomar, 2014), I can use better sampled

particles with the ghost SPH, and this would further improve the robustness. To simulate fluids with my

method in a closed container, i.e., Neumann boundary condition only (without free surfaces, i.e., Dirichlet

boundary condition), adopting the source term correction approach described in (Bridson, 2008) would be

promising.
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CHAPTER 3: A Multilevel SPH Solver with Unified Solid Boundary Handling

3.1 Introduction

Lagrangian particle-based methods, such as Smoothed Particle Hydrodynamics (SPH), have become

popular because of the attractive advantages of particles, e.g., conceptually simpler discretization and

collision handling at the particle level, and thus particle-based methods have been extensively adopted in fluid

simulation (Ihmsen et al., 2014b). To generate realistic liquid behaviors, enforcing liquid incompressibility is

essential, and various particle-based methods have been proposed (Koshizuka et al., 1996; Cummins and

Rudman, 1999; Becker and Teschner, 2007b; Sin et al., 2009; Solenthaler and Pajarola, 2009; Raveendran

et al., 2011; He et al., 2012a; Bodin et al., 2012; Macklin and Müller, 2013; Ihmsen et al., 2014a; Bender and

Koschier, 2015). In particular, solving a pressure Poisson equation (PPE) has been proven to be an effective

approach, and the PPE is commonly solved with a stationary iterative solver (e.g., Jacobi method) or Krylov

method (e.g., Conjugate Gradient (CG)). In addition to enforcing the incompressibility, discretizing fluids

at a high resolution is also important and contributes to the quality of liquid behaviors avoiding numerical

dissipations and producing fine details near fluid surfaces. However, enforcing the incompressibility under

high-resolution discretization is likely to be computationally challenging because previously used solvers

(e.g., Jacobi method and CG) do not scale well and require more iterations to solve the PPE as the number of

particles increases.

Figure 3.1: High-resolution incompressible fluids simulated with my multilevel solver. My method outper-
forms other particle-based solvers in the pressure solve, and its computational cost scales nearly linearly with
respect to the number of particles.
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To address this problem, in the Eulerian grid-based approach, scalable multigrid (MG) methods have

been used (McAdams et al., 2010; Chentanez and Müller, 2011; Chentanez and Müller, 2012; Ferstl et al.,

2014; Weber et al., 2015) with the regular Cartesian grid, which can also be used to construct the hierarchy.

This multilevel approach is also adopted for deformable body simulation by constructing the hierarchy from

embedded grid structures (Zhu et al., 2010; McAdams et al., 2011) or computing nearly optimal coarser-level

structures from finer-levels (Müller, 2008; Wang et al., 2010). Unlike deformable objects, however, it is

difficult to apply the multilevel approach to particle-based methods because the connectivity of particles

changes at every simulation step, requiring expensive remeshing to keep the quality of coarser-level meshes

and to avoid mesh tangling. Although Cummins and Rudman (Cummins and Rudman, 1999) adopted a

fixed Cartesian grid for particle-based fluid simulation, solutions at the particle and grid levels are generally

inconsistent because of the different discretization approaches, and thus their method can diverge, stagnate,

or fail to achieve optimal efficiency of multilevel solvers.

I propose a new multilevel method for efficiently solving the PPE arising from the particle-based fluid

simulation. My method offers the following technical contributions:

• A multilevel method for particle systems that constructs hierarchies, establishes the correspondence

between solutions at the particle and grid levels, and coarsens simulation elements taking boundary

conditions into account.

• A new solid-handling method for the PPE to ensure the solvability of the system regardless of the

particle configurations while approximating the original solution to make it solvable with my multilevel

approach.

My solver is able to achieve up to one order of magnitude performance gain in the pressure solve as

compared to one of the state-of-the-art particle-based solver, implicit incompressible SPH (IISPH) (Ihmsen

et al., 2014a), and the cost of my method scales nearly linearly with respect to the number of unknowns in

the system, considerably outperforming existing particle-based methods.

3.2 Related Work

Particle-based methods have been extensively studied, and I refer to (Ihmsen et al., 2014b) for their basis

and applications. I focus my discussions on particle-based methods closely related to mine.
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3.2.1 Incompressibility

Early works used an equation of state to compute pressures from densities (Desbrun and Gascuel, 1996;

Müller et al., 2003). In particular, SPH methods using the Tait equation (Monaghan, 1994; Becker and

Teschner, 2007b), known as weakly compressible SPH (WCSPH), can generate higher pressures mitigating

the volume compression of fluids, and thus have been widely adopted even in recent SPH works because of

the simplicity and effectiveness (He et al., 2014; Ren et al., 2014). However, since WCSPH usually produces

excessively high pressures and thus strong pressure forces, smaller time steps are necessary for stable fluid

simulations. Additionally, it is also undesirable that WCSPH cannot explicitly specify the tolerance of the

fluid compression.

To address these issues, several approaches that globally solve a system with iterative methods have

been developed. Adopting the pressure projection commonly used in the Eulerian approach (Bridson, 2015),

incompressible SPH (ISPH) (Cummins and Rudman, 1999; Shao and Lo, 2003) and Moving Particle Semi-

implicit (MPS) (Koshizuka et al., 1996; Premoze et al., 2003) were proposed. Similar projection-based

approaches were also proposed using a Voronoi diagram (Sin et al., 2009) and a power diagram (de Goes

et al., 2015).

Another recent trend is to locally solve a system with iterative methods. Predictive-corrective incom-

pressible SPH (PCISPH), which iteratively predicts and corrects particle density in a Jacobi manner, was

proposed by Solenthaler and Pajarola (Solenthaler and Pajarola, 2009). This predictive-corrective scheme

was also adopted in local Poisson SPH (He et al., 2012a). Macklin and Müller (Macklin and Müller, 2013)

proposed position-based fluids (PBF) adopting position-based dynamics (PBD) (Müller et al., 2007) for

density constraints, and improved the robustness. Another constraint-based solver was also proposed by

Bodin et al. (Bodin et al., 2012) to improve the accuracy. To further improve the efficiency and robustness

compared to PCISPH, Ihmsen et al. (Ihmsen et al., 2014a) proposed IISPH, which decomposes the Laplacian

operator in the PPE into the divergence and gradient operators to accelerate the propagation of updated

pressures with the Jacobi method. However, since IISPH generates not diagonally dominant systems, it does

not produce smooth pressure fields, and CG (which is generally faster than the Jacobi method) cannot be

applied to IISPH (Takahashi et al., 2016). In (Ihmsen et al., 2014a), it is demonstrated that IISPH outperforms

ISPH when both approaches use the Jacobi method. Cornelis et al. (Cornelis et al., 2014) proposed combining

IISPH with Fluid Implicit Particle (FLIP) (Zhu and Bridson, 2005) to further improve the performance.
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Bender and Koschier (Bender and Koschier, 2015) proposed divergence-free SPH, which enforces not only

the density-invariance condition but also divergence-free condition, similar to (Kang and Sagong, 2014), to

reduce the density deviations at the next step.

3.2.2 Multilevel Particles

To improve the efficiency by reducing the number of particles, approaches using spatially adaptive

particles have been proposed. Adams et al. (Adams et al., 2007) used different sizes of particles to allocate

more computational resources to regions, which are important in terms of visual quality and fluid dynamics,

e.g., surfaces and near solid objects. This method was extended to improve the robustness by blending

particle properties over time (Orthmann and Kolb, 2012). To avoid direct interactions between particles at

different levels, Solenthaler and Gross (Solenthaler and Gross, 2011) proposed separating domains for fine-

and coarse-scale particles. Although these approaches can reduce the number of particles, energy dissipation

(i.e., damping) can be introduced into the simulation because of the coarser level particles and may negatively

affect liquid behaviors.

Cummins and Rudman (Cummins and Rudman, 1999) used MG to solve the PPE with ISPH adopting the

Cartesian grid for the hierarchy construction. However, they did not include a Dirichlet boundary condition

at all, which is necessary to handle general liquid simulation scenarios. In addition, they used a mirroring

approach for the Neumann boundary condition that copies physical quantities to the opposite side of solid

boundaries, limiting its applicability to rectangular domains only. Thus, how to address complex Dirichlet and

Neumann boundary conditions in the MG setting is unclear. Moreover, they did not address discrepancies of

solutions at the particle and grid levels, which can occur due to various factors, such as different discretization

methods, particle irregularities, and kernel definitions. Consequently, this approach can diverge, stagnate, or

fail to achieve the optimal efficiency of MG. Their experiments were limited to 2D simulations and were never

tested on fine-scale scenarios. Thus, how this method works in such scenarios was not demonstrated. The

method of Raveendran et al. (Raveendran et al., 2011) can be considered as a two-level approach consisting

of the finest particle level and the coarsest grid level, and uses the result of the pressure projection on the

grid to accelerate the convergence of an iterative solver on the particles. However, since the coarse pressure

projection is not sufficiently accurate and does not consider the solution discrepancies, this approach cannot

significantly reduce the number of solver iterations on the particles.
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3.3 SPH Fluid Simulation

I first briefly describe the simulation algorithm of my fluid solver, which is similar to that of the Eulerian

approach (Section 3.3.1), and then explain the PPE for particle-based fluids clarifying differences from the

Eulerian approach (Section 3.3.2).

As my underlying fluid solver, I employ ISPH (Cummins and Rudman, 1999; Shao and Lo, 2003) since

ISPH constructs a linear system whose matrix is symmetric positive (semi-) definite (SPD) and produces

smooth pressures allowing us to solve the system with either CG or MG. Other methods, which have

properties similar to ISPH, can be used as well.

3.3.1 Simulation Algorithm

In the Lagrangian setting, incompressible flow for particles can be described by the continuity equation

dρi
dt + ρi∇ · ui = 0, and the Navier-Stokes equations dui

dt = − 1
ρi
∇pi +

Fv
i

mi
+

Fext
i
mi

, where ρi denotes density

of particle i, t time, ui velocity, pi pressure, Fv
i viscosity force, mi mass, and Fext

i external force. Similar

to the Eulerian approach, I take the operator splitting to enforce the fluid incompressibility. First, I find

neighbor fluid and solid particles to compute the density. Then, I predict the intermediate velocity u∗i and

the intermediate density ρ∗i . Next, I solve the PPE to obtain pressure. Finally, I compute pressure forces

and integrate velocities and positions. For more algorithm details, I refer to Section 3.4 of the survey paper

(Ihmsen et al., 2014b).

3.3.2 PPE for Particle-based Methods

Unlike the traditional Eulerian approach that enforces the divergence-free condition (Bridson, 2015), I

use the density-invariance condition to avoid the volume drift, as commonly employed in the particle-based

methods (Koshizuka et al., 1996; Shao and Lo, 2003; Ihmsen et al., 2014a; Bender and Koschier, 2015) . By

combining the velocity change caused by pressure forces dui
dt = − 1

ρt+1
i

∇pi and the density prediction based

on the continuity equation ρt+1
i −ρ∗i

∆t = −ρt+1
i ∇·u∗i , (∆t: time step), I obtain the PPE as −∇2pi =

ρ∗i−ρ0

∆t2
(ρ0:

rest density) with Dirichlet boundary condition pi = 0 on free surfaces and Neumann boundary condition

dpi
dni

= 0 (ni: normal) on solid boundaries (Shao and Lo, 2003). This PPE can be rewritten in the matrix

form as Ap = b, where A denotes a coefficient matrix, and p and b concatenation of pressures and source

terms (right hand side of the PPE), respectively. Since the PPE uses the density-invariance condition, which
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generally does not satisfy the compatibility condition (i.e., the summation of right hand side is not equal

to 0), and A has null-space (i.e., A is rank deficient) when a standard Laplacian discretization is used (as

done in (Cummins and Rudman, 1999; Shao and Lo, 2003; Koshizuka et al., 1996; Premoze et al., 2003)), a

Dirichlet boundary condition is necessary for each of the groups consisting of neighboring particles to ensure

the solvability of the PPE (Bridson, 2015; Takahashi et al., 2016).

Because of the negative source term, which is likely to occur at particles with a smaller number of

neighbor particles (e.g., near free surfaces), solving the PPE without special care generates negative pressures

leading to the tensile instability in particle-based methods (Monaghan, 2000; Schechter and Bridson, 2012;

He et al., 2014). Therefore, p ≥ 0 must be simultaneously enforced to avoid the tensile instability turning the

linear system Ap = b into a Linear Complementarity Problem (LCP) Ap = b ⊥ p ≥ 0. Although stationary

iterative methods can relatively easily solve the LCP with the clamping approach (e.g., projected Jacobi),

solving the LCP is numerically more difficult than linear systems, especially with Krylov methods, which

prohibit clamping negative pressures in each iteration (Ihmsen et al., 2014a), and thus require specialized

techniques (Dostal and Schoberl, 2005). Even with MG solvers, convergence can be delayed (Chentanez and

Müller, 2012).

Since solving the LCP is more costly and complex, I approximate the solutions of the LCP by solving

a linear system with appropriately set a Dirichlet boundary condition, similar to (Koshizuka et al., 1996;

Shao and Lo, 2003). To ensure p ≥ 0, I treat fluid particles whose source term is negative as Dirichlet

boundary condition (see (Takahashi et al., 2016)). Note that this treatment enforces b ≥ 0, and thus p ≥ 0 is

guaranteed. In practice, I set particles as a Dirichlet boundary condition if ρ∗i < 0.99ρ0 to avoid erroneous

classifications because of the particle irregularity and clamp negative pressures to 0 after the pressure solve to

avoid the tensile instability and particle adhesion.

3.4 Solid Boundary Handling

I first describe the PPE discretization based on ISPH, its issues, and previous approaches (Section 3.4.1),

and then present my solid boundary handling method (Section 3.4.2). Note that my solid boundary handling

can be used without MG while it allows us to solve the PPE with MG by approximating the original solution.

To solve the PPE with solid boundaries on moving particles, it is necessary to adaptively assign roles to

the particles, and I classify particles as follows. I call solid particles for the Neumann boundary condition
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Neumann particles (rendered as beige), fluid particles without any neighbors isolated particles (magenta),

fluid particles used for the Dirichlet boundary condition pi = 0 (i.e., if ρ∗i < 0.99ρ0) Dirichlet particles

(blue), fluid particles without fluid neighbors and with solid neighbors separated particles (green), and

otherwise Poisson particles (cyan). Since isolated particles always satisfy the condition of Dirichlet particles,

I set pressures of isolated particles as 0, similar to Dirichlet particles. While I analytically set pressures of

separated particles excluding them from the linear system (see Section 3.4.2), I treat pressures of Poisson

particles as unknown variables.

3.4.1 ISPH Discretization

According to (Ihmsen et al., 2014b), −∇2pi is discretized as
∑

j aij(pi − pj), where aij = −(Vi +

Vj)
xij ·∇Wij

‖xij‖2+0.01h2 > 0 with the kernel definition in (Müller et al., 2003) (j: index for fluid neighbors, V :

volume, xij = xi − xj , and h: kernel radius). When I consider fluid and solid particles assuming that solid

particle pressures are definable, −∇2pi = −∇2pfluid
i −∇2psolid

i =
∑

j aij(pi − pj) +
∑

s ais(pi − ps) (s:

index for solid neighbors). When Neumann boundary condition dpi
dni

= 0, i.e., pi = ps, is applied, I obtain

−∇2pi =
∑

j aij(pi − pj).

With this formulation, unfortunately, particle configurations that cannot determine pi occur because the

PPE does not satisfy the compatibility condition. Specifically, pi cannot be determined, when particle i is a

separated particle, or a Poisson particle with no channel (via other neighboring Poisson particles) to at least

one Dirichlet particle (Takahashi et al., 2016). One possible approach is to separately address these particles

after I check particle connectivities. However, it is hard to efficiently and exactly check particle connectivities

(e.g., using the flood fill) because we need to propagate geometric information one by one over all particles.

If particle pressures cannot be determined, for example, a widely used collision handling method proposed in

(Akinci et al., 2012), which depends on fluid particle pressures, cannot be used.

Some previous works (Koshizuka et al., 1996; Premoze et al., 2003; Shao and Lo, 2003) converted

Neumann particles to Poisson particles to make the PPE solvable by connecting Poisson and separated

particles via converted Poisson particles. However, this approach has some limitations (Takahashi et al.,

2016). First, since Neumann particles are incorporated into the linear system, the size of the system

becomes larger leading to increased memory and computation cost. Second, due to the solid particles newly

incorporated in the system, pressures can be underestimated resulting in particle penetrations with (Akinci

et al., 2012). Third, this approach cannot solve a linear system with solid objects floating in the air, which
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can frequently occur in two-way interactions of fluids and solids, because converted Poisson particles in the

objects may not have a channel to Dirichlet particles.

To address these issues, Takahashi et al. (Takahashi et al., 2016) proposed introducing a new pressure

term, which generally increases the diagonal components, to make the system solvable. However, their

approach does not ensure the diagonal dominance of the resulting linear system, and thus MG and CG may

fail to converge. Additionally, the increased diagonal components may erroneously underestimate pressures.

3.4.2 Unified Handling for Solid Boundary

To handle various simulation scenarios, I take an approach that can always ensure the solvability of

the linear system in a unified manner regardless of particle configurations. My method introduces a new

term, which increases the diagonal component, into the left hand side of the PPE to make it solvable while

amplifying the right hand side to counteract underestimated pressures compared to the solutions, which can

be obtained from the original linear system.

For my solid boundary handling scheme, I employ the method of (Akinci et al., 2012). This method

puts one layer of particles on solid boundaries defining δi = 1∑
sWis

, which adjusts the contribution of solid

particles based on their sampling density to alleviate over sampling (see (Akinci et al., 2012) for details).

According to (Ihmsen et al., 2014a), when the incompressibility is enforced by the pressure force from solid

particles Fp,solid
i , the continuity equation can be discretized as

ρ0 − ρ∗i
∆t

=
∑
s

ρ0

δs
∆ui · ∇Wis = ρ0∆ui ·

∑
s

1

δs
∇Wis, (3.1)

where ∆ui denotes the velocity change due to Fp,solid
i (i.e., ∆ui =

Fp,solid
i
mi

∆t). In (Akinci et al., 2012), the

pressure force from solid particles is defined as Fp,solid
i = −mi

∑
s
ρ0

δs
pi
ρ2
i
∇Wis = −mi

ρ0

ρ2
i
pi
∑

s
1
δs
∇Wis,

and thus I obtain the following relation from Eq. (3.1), ∆ui and Fp,solid
i :

ρ2
0

ρ2
i

‖
∑
s

1

δs
∇Wis‖2pi =

ρ∗i − ρ0

∆t2
.
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Figure 3.2: Dam break. Without the source term amplification, pressures can be underestimated, failing
to prevent particle penetrations, as noted by red circles, (left), whereas with the source term amplification,
particle penetrations are prevented (right).

Since −∇2psolid
i can be reformulated as − ρi

mi
∇ ·
(
mi
ρi
∇psolid

i

)
, which corresponds to the combination of the

continuity equation and pressure force, I obtain −∇2psolid
i =

ρ2
0

ρ2
i
‖
∑

s
1
δs
∇Wis‖2pi and

∑
j

aij(pi − pj) + αipi = bi, (3.2)

where αi =
ρ2

0

ρ2
i
‖
∑

s
1
δs
∇Wis‖2 ≥ 0 and bi =

ρ∗i−ρ0

∆t2
. Note that while non-negative αi ensures the diagonal

dominance of the system unlike (Takahashi et al., 2016), pi can be underestimated leading to particle

penetrations (see Figure 3.2 (left)).

To compensate the underestimation, I approximate the original solution by amplifying the source term

(right hand side) as βibi, with an amplification factor βi ≥ 1. Since pressures of the original and modified

PPE can be computed by
bi+

∑
j aijpj∑
j aij

and
βibi+

∑
j aijpj∑

j aij+αi
, respectively, pressure differences ∆pi are written as

∆pi =
bi +

∑
j aijpj∑

j aij
−
βibi +

∑
j aijpj∑

j aij + αi
.

I can exactly solve ∆pi = 0 and obtain βi as

βi =
bi
∑

j aij + αibi + αi
∑

j aijpj

bi
∑

j aij
.
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Figure 3.3: A cubed fluid dropped onto a solid dragon floating in the air. Particles are color coded based on
the classification on the left, and pressure on the right, where white and red represent low and high pressures,
respectively. With my method, particle pressures are definable regardless of the particle configurations.

Since physical values change only slightly between consecutive steps, and pressures of all particles are always

definable with my method, I can assume pi ≈ p̃i (p̃i: pressure at the previous step). Further assuming pi ≈ pj

because of the nature of the PPE’s solution, the amplified source term can be computed by

βibi =

∑
j aij + αi∑

j aij
bi + αip̃i.

When
∑

j aij is very small, βibi can be too large leading to infinitely large pressures. To avoid this, I clamp∑
j aij+αi∑

j aij
with a limiting factor γ ≥ 1 (I empirically found that γ = 5.0 works well) and finally obtain the

PPE as

∑
j

aij(pi − pj) + αipi = min

(
γ,

∑
j aij + αi∑

j aij

)
bi + αip̃i. (3.3)

For separated particles, βi cannot be defined because they have no fluid neighbors (i.e.,
∑

j aij = 0). In

this case, I directly set their pressures without including these particles in the PPE (as Dirichlet boundary

condition) based on Eq. (3.2) clamping negative values as pi = max
(

0, biαi

)
.

My solid boundary handling method introduces αipi into the left hand side of the PPE turning a Poisson

equation to a Helmholtz equation when fluid particles are contacting with solid particles. This is numerically
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Figure 3.4: Comparisons on pressure accuracy with a square domain, where positive source terms are set on
Poisson particles. In (b), (c), and (e), blue, green, and red represent low, middle, and high values, respectively,
while in (d) and (f), white and red represent low and high values, respectively. In (b), (d), (e), and (f),
Neumann particles are not visualized. (a) Scene setup. (b) Exact solution. (c) Solution obtained with the
previous approach (Shao and Lo, 2003). (d) Solution difference (b) − (c). (e) Solution obtained with my
solid boundary handling. (f) Solution difference (b) − (e).

similar to adding a Dirichlet boundary condition to the system, and thus makes the system solvable without

satisfying the compatibility condition regardless of the particle configurations. When the exact solution

cannot be globally defined, My method alters the solution based on the pressure force formulation minimizing

the errors in regions, where the exact solution can be defined. As compared to (Koshizuka et al., 1996;

Premoze et al., 2003; Shao and Lo, 2003), my method constructs smaller systems and produces more accurate

pressures. In addition, unlike these previous methods, my method can handle solid objects floating in the air

(see Figure 3.3).

Figure 3.4 compares my solid handling method (I used an exactly computed pi for p̃i in Eq. (3.3)) with a

previous method (Koshizuka et al., 1996; Premoze et al., 2003; Shao and Lo, 2003) and an exact solution.

Since it is not possible to obtain the exact solution in general fluid simulation scenarios as explained in

Section 3.4.1, I experiment with a static 2D square domain, where an exact solution can be defined. The

previous method that treats solid Neumann particles as Poisson particles connect Poisson and Dirichlet

particles, newly generating shorter paths. Consequently, pressures are restricted to low values, and this
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approach underestimates pressures (see (c) and (d)). On the other hand, my method can more accurately

compute pressures with imperceptible errors only, as shown in (e) and (f).

3.5 Multilevel Particle-based Solver

In this section, I describe my multilevel solver, which is specifically designed for particle-based methods.

For fundamentals of MG solvers, I refer to (Briggs et al., 2000; Trottenberg et al., 2000).

3.5.1 Hierarchical Structure Construction

Constructing the hierarchical structures for particle-based methods is difficult mainly because of irregular

particle positions and changing particle neighbors (i.e., connectivities). For mesh coarsening, Müller (Müller,

2008) proposed to successively coarsen finer-levels preserving only representative particles, and Sacht et

al. (Sacht et al., 2015) presented a method for constructing the hierarchy of surface meshes such that coarser

levels are contained by their finer levels. However, these approaches are essentially designed for unstructured

meshes with no frequent connectivity changes, and thus they are computationally expensive for particle-based

methods. Additionally, unstructured fine-level meshes produce unstructured coarser levels, where the number

of edges is likely to be large, thereby leading to higher smoothing and residual computation cost as compared

to structured meshes. Moreover, unstructured meshes are not suitable for parallelization since we need to use

a Jacobi smoother, which is less effective than Gauss-Seidel (GS) and Red-Black GS (RBGS) smoothers

(Briggs et al., 2000; Trottenberg et al., 2000). Taking these factors into account, I employ a static Cartesian

grid. To simplify boundary handling, I store pressures at the center of each cell.

3.5.2 Particle-Grid Correspondence

While the Cartesian grid has desirable properties for my method, unlike a carefully designed hierarchy,

this simple choice of the regular grid introduces a new problem: solutions at the particle and grid levels are

not consistent (see Figure 3.5), mainly because of the inconsistency of discretization at particle and grid

levels, particle irregularities, kernel definitions, accuracy, and parameters. For example, when I use SPH to

estimate physical values at both grid and particle levels, the estimated values cannot be consistent since grid

points are not uniformly surrounded by neighbors at the grid level. If I use Finite Difference (FD) and SPH to

estimate physical values at grid and particle levels, respectively, the estimated values can also be different
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Figure 3.5: Correspondence check with a square domain, whose central regions have positive source terms,
and whose edges are set as Dirichlet boundary condition. In (a), (b), (d), (f), and (h), blue, green, and
red represent low, middle, and high values, respectively, while in (c), (e), (g), and (i), blue, white, and red
represent low, middle, and high values, respectively. (a) Solution on the grid. (b) Solution on the particles,
which is larger than (a). (c) Solution difference (b) − (a). (d) Solution on the grid corrected with λopt

approximating (b). (e) Solution difference (b) − (d). (f) Solution on the particles, which is smaller than (a).
(g) Solution difference (f) − (a). (h) Solution on the grid corrected with λopt approximating (f). (i) Solution
difference (f) − (h).

because FD and SPH are different discretization methods. This problem is crucial, and if the solutions at the

particle and grid levels are inconsistent, MG solvers converge slowly, stagnate, or diverge. To avoid these

problems and hopefully achieve the optimal efficiency of MG solvers, solutions at the particle and grid levels

need to be consistent.

I aim to establish the correspondence between solutions at particle and grid levels by modifying the

solutions at the grid levels with a source term adjustment. Since solutions at the coarser grid levels always

agree to the finest level up to the discretization accuracy, it is sufficient to establish the correspondence

between the solutions at the particle and the finest grid levels. I use FD to estimate physical values at grid

levels since the SPH-based estimation is more costly.
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Figure 3.6: Convergence profile with different λ for V-cycle (left) and MGCG (right).

When the linear system at the particle and the finest grid levels are written as APpP = bP and

AGpG = bG, respectively, the solutions are pP = (AP)−1bP and pG = (AG)−1bG. Although it is optimal

that each particle pressure pPi agrees to the interpolated grid pressure at the particle position pGi with a scaling

parameter λi (i.e., pPi = λip
G
i ), changing connectivities makes achieving this impractical and complicated.

Instead, taking into account that the overall pressure profiles are similar at the particle and grid levels, I use a

global scaling factor λ obtaining a modified linear system as AGp̃G = λbG with modified finest grid level

pressure p̃G (i.e., p̃G = λpG). Estimating the grid pressure at particle positions by trilinear interpolation

(denoted by ÎP
G) and scaling λ, I can evaluate pressure error E by

E = ‖pP − λÎP
Gp

G‖2. (3.4)

Note that Eq. (3.4) includes pP that I aim to get and changes over time, and thus I cannot directly minimize

E in the simulation. Fortunately, an optimal λopt that minimizes E basically depends on the distributions

of particles only and is not sensitive to the simulation scenarios. Thus, I precompute λopt with pP and pG

obtained using CG, and determine λ by λ = γmint λ
t (γ: a tunable parameter) with which the MG solvers

converge achieving a nearly optimal performance (see Figure 3.6). To achieve the correspondent solutions at

particle and grid levels, I multiply λ when values at the particle level are transferred to the finest grid level

(see Section 3.5.4).

Figure 3.5 illustrates the effect of established correspondence. While I obtain the same pressure profile

with a fixed grid (see (a)), with different particle configurations, I would obtain pressures higher and lower

than (a), as shown in (b) and (f), and their differences with respect to (a) are given in (c) and (g), respectively.
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Figure 3.7: Cutaway views of fluid simulation with my coarsening scheme. Particle level, the finest grid level,
and the second finest grid level from left to right.

My method modifies the pressure on the grid approximating (b) and (f), as shown in (d) and (h), and the

differences can be largely corrected to 0, as shown in (e) and (i), respectively.

Figure 3.6 gives convergence profiles of V-cycle and MGCG for the scene shown in Figure 3.5. While

λ = λopt achieved the best performance with V-cycle, interestingly the convergence of the MGCG with λ

larger than 0.125λopt became stagnant and achieved the best performance with λ = 0.125λopt, presumably

because preconditioning on irregular particle distributions causes overshoots and negatively affects the

convergence of CG.

3.5.3 Linear System Construction

To construct linear systems at the finest grid level, I use the particle classification information. One

possible approach is to generate signed distance functions for solid objects and fluid domains following

the grid-based approaches (Bridson, 2015). However, this approach would erroneously compute fluid

domains penetrating thin solids including volumetric objects whose only surfaces are sampled with particles

as commonly done in particle-based methods (Akinci et al., 2012), and thus cannot approximate the particle

level solution. To avoid this problem, I classify grid cells as follows. First, if there is at least one Dirichlet

particle in a cell, I classify the cell as a Dirichlet cell (rendered as blue). Second, if there is at least one

Poisson particle, I classify the cell as a Poisson cell (cyan). Otherwise, I classify the cell as a Neumann cell

(beige). Since isolated and separated particles do not affect the solution of the system, I ignore these particles

in my coarsening scheme. Although this approach introduces some discrepancies at the particle and the finest

grid levels, Dirichlet boundary condition always remains at the finest grid level, and thus I can ensure the

solvability of the system.
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To obtain linear systems at coarser grid levels, I use the voxel-based approach proposed by (McAdams

et al., 2010). Figure 3.7 illustrates cutaway views of fluid simulation with my coarsening scheme, at

the particle, the finest grid, and the second finest grid levels. It is worth noting that I tested the cut-cell

approach (Weber et al., 2015). However, the convergence was not improved, unlike the case of the grid-based

simulations. This is presumably because the geometric consistency was already lost at the approximation of

particles with the finest grid. I leave this issue as future work.

3.5.4 Restriction and Interpolation

While there are several ways to do restriction and interpolation, as previously proposed (McAdams et al.,

2010; Weber et al., 2015), I need to satisfy Rl+1
l = k(I ll+1)T (Rl+1

l : restriction operator from level l + 1

to l, I ll+1: interpolation operator from level l to l + 1, and k: a constant), known as the Galerkin property

(Briggs et al., 2000; Trottenberg et al., 2000), to use V-cycle as a preconditioner of CG. Among commonly

used restriction and interpolation operations satisfying this condition are piecewise constant interpolation

and linear interpolation. In (Dick et al., 2016), it is reported that the convergence rate is faster with linear

interpolation than with piecewise interpolation, when the grid-based approaches are used. However, with

particle-based methods, I did not observe the accelerated convergence due to the solution inconsistency

between particles and grids, and the computational cost of the linear interpolation was much more expensive

than the piecewise interpolation. Thus, I use the piecewise constant interpolation.

For the restriction from the particle level to the finest grid level, I compute the average, taking λ into

account for correspondence, as φc = λ
∑

i φi∑
i

, where φ denotes an arbitrary value, and i the index of particles

in cell c. For the interpolation from the finest grid level to the particle level, I directly use the value in the cell

for the particle as φi = φc. Note that I do not use the expensive trilinear interpolation ÎP
G defined in Section

3.5.2.

3.5.5 Smoother

At the particle level, I use the weighted Jacobi method as a smoother to fully parallelize the pre- and

post-smoothing operations, whereas at the grid levels, I use RBGS by taking advantage of the regular grid

structures.

In some grid-based MG solvers, e.g., (Ferstl et al., 2014; Weber et al., 2015), CG is used to exactly

solve the system at the coarsest level. In particle-based methods, however, since I terminate solver iterations

52



0

5

10

15

20

0 50 100 150 200 250 300

It
er

at
io

ns

Frames

λ = 0.10 λ = 0.25 λ = 0.50 λ = 0.75

0

5

10

15

20

25

0 50 100 150 200 250 300

It
er

at
io

ns

Frames

λ = 0.10 λ = 0.25 λ = 0.50

λ = 0.75 λ = 1.00

Figure 3.8: Iteration profiles for different values of λ in the two scenes (left for Figure 3.1 (left) and right for
Figure 3.1 (middle)).

based on density error criteria (Solenthaler and Pajarola, 2009; Ihmsen et al., 2014a), which are much more

moderate than residual criteria used in the Eulerian method (Bridson, 2015), I do not need to obtain the exact

solution at the coarsest level, and thus use the multiple RBGS smoothing for efficiency.

3.5.6 Implementation

I define the grid width ∆x at the finest grid level as ∆x = h since it is preferable to choose a grid width

two times larger than particle distances (which are generally 0.5h when I set h = 4r, where r is the particle

radius) (Briggs et al., 2000; Trottenberg et al., 2000). Additionally, this choice allows for the reuse of the

uniform grid constructed for the neighbor search (Ihmsen et al., 2011). I did not achieve faster convergence

with a smaller grid width due to the solution gaps between particles and grids, whereas I observed slower

convergence with a larger grid width (this corresponds to the method of (Raveendran et al., 2011)) due to the

less accurate approximation. While it is possible to use the multilevel method as a stand-alone solver, I prefer

using it as a preconditioner for CG (i.e., as MGCG) to improve the robustness and efficiency (McAdams

et al., 2010; Ferstl et al., 2014).

3.6 Results

I measured the performance on a machine with 24-core CPU and 256 GB RAM. For the simulation, I

used a constant time-step based on the CFL condition, and the density deviation threshold was set to 0.01%.

In the following, I used MGCG with 1 V-cycle preconditioning using 1 pre- and post- smoothing per iteration.

Without using an appropriate scaling factor λ, my multilevel solver suffered from divergence or stagnation.
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Figure 3.9: (Left) Density error (ρerr) profile for my MGCG method, CG, ICCG, SORCG, and IISPH with
respect to time. The number in the parentheses represents the number of iterations required to converge to a
density error of less than 0.01%. (Middle) Performance profile for IISPH, ISPH with CG, and my method for
the middle image of Figure 3.1. “CG iteration” and “Ours iteration” represent the computation time for the
CG iterations only while “CG” and “Ours” includes the computation time for the system construction. My
method outperforms IISPH and CG by a factor of 7.5 and 2.3, respectively. (Right) Residual profile of CG
and mine for small, middle, and large scale scenarios with respect to iterations. The number of iterations for
CG increases depending on the simulation scale, whereas my method requires almost the same number of
iterations regardless of the simulation scale.

Influence of λ. To demonstrate the influence of λ, I tested several values of λ (0.10, 0.25, 0.50, 0.75,

and 1.0) in the two scenes shown in Figure 3.1 (left) on a grid resolution of 96x64x96 with up to 822.4k

particles and Figure 3.1 (middle) on a grid resolution of 96x64x64 with 1.0M particles. Figure 3.8 illustrates

profiles of average iterations, where the profile of λ = 1.0 for Figure 3.1 (left) is not given since my MG

solver did not converge. In my experiments, larger λ would cause failure of my solver, whereas smaller λ

weakens the effect of the MG preconditioning slowing the convergence.

Convergence speed. I compared my MGCG solver with other solvers in the convergence speed, using

the scene shown in Figure 3.1 (middle) with 3.4M particles on a grid of resolution 144x96x96. For this

comparison, I used one of the state-of-the-art particle-based solver IISPH (Ihmsen et al., 2014a), and CG

solvers commonly used in the particle-based methods: CG, Incomplete Cholesky CG (ICCG), and successive

over-relaxation CG (SORCG). I used SOR in a Jacobi way (not as in Gauss-Seidel) for parallelization while I
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Figure 3.10: Visual comparison for my method, i.e., ISPH with MGCG (left) and IISPH (right). Both methods
generate comparable fluid behaviors.

applied the IC preconditioner in a serial manner as the application of the IC is inherently serial. Figure 3.9

(left) illustrates a profile of the density error with respect to the computation time. Although IISPH converges

faster at the early stage, the convergence becomes slower at the latter stage due to the use of Jacobi method.

Consequently CG solvers become advantageous; in particular, my MGCG solver is 12x faster compared to

IISPH. Though the IC and SOR preconditioners reduce the number of CG iterations, the preconditioning

is costly and not effective enough to achieve a performance gain. As a result, CG is faster than ICCG and

SORCG. On the other hand, my MG preconditioner can significantly reduce the CG iterations and can be

efficiently applied. Consequently, my method can achieve a performance gain over CG by a factor of 4.0,

which cannot be achieved with relatively simple IC and SOR preconditioners.

Overall performance. I compared my method (ISPH with MGCG) with previous methods (IISPH

(Ihmsen et al., 2014a) and ISPH with CG) on the dam break scenario, where I used 3.4M fluid particles on a

grid of resolution 144x96x96, as shown in Figure 3.10 (since ISPH with CG and MGCG generates essentially

the same visual result, the result for CG is omitted). My method and IISPH generate comparable visual

results. Figure 3.9 (middle) shows the performance on the pressure computation, where profiles for CG and

MGCG iterations only (excluding the system construction) and the pressure solve with CG, MGCG, and

IISPH are given (IISPH does not construct the system, and thus there is no system construction cost). My

method outperforms IISPH and CG by a factor of 7.5 and 2.3 in the pressure solve, respectively, and achieves

2.6x better performance than CG in the iteration part.
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Table 3.1: Performance comparisons with different time steps for IISPH and my method for 434.7k particles
on a grid of resolution 72x48x48. l denotes Jacobi iteration for IISPH and CG iteration for my method. tp

denotes the average pressure solve time for one frame (including the system construction for my method),
and tt denotes the average total time for one frame. The best tp and tt are highlighted in red. My method
outperforms IISPH by a factor of 6.3 in the pressure solve and 5.2 in the total time for their best tp and tt,
respectively, even in a relatively small scenario.

IISPH My method
∆t(ms) l tp(s) tt(s) l tp(s) tt(s)

2.08 13.15 45.97 62.56 15.71 34.97 51.33
4.16 30.66 53.80 62.23 12.63 15.33 23.70
8.32 80.46 73.43 78.01 12.22 7.31 11.88

Time step effect. I compared my method with IISPH using different time steps on the dam break scenario,

where I used 434.7k particles on a grid of resolution 72x48x48, and summarized their performance in Table

3.1. With IISPH, using larger time steps can significantly increase the Jacobi iterations for convergence

leading to more computational cost. On the other hand, with my method, the number of CG iterations does

not increase even though larger time steps are used because of the fact that my MGCG solver can effectively

handle ill-conditioned systems. This feature of my solver makes it easier to choose appropriate time steps

since I can optimize the performance by just choosing the largest time step possible. In general, it is preferable

to use larger time steps to accelerate the entire simulation as long as the simulation is stable. With this general

rule (i.e., with ∆t = 8.32 (ms)), the gain of my method over IISPH is 10.0x in the pressure solve and 6.6x in

the total time.

Scalability. To demonstrate the effectiveness of my method on the scalability, I performed the dam break

scenario with three different scales: 123.5k particles with the grid resolution 48x32x32, 1.0M particles with

the grid resolution 96x64x64, and 3.4M particles with the grid resolution 144x96x96. For this comparison,

I used the residual of the PPE since the positive density error ρerr (commonly used in the particle-based

methods) depends on time steps (Takahashi et al., 2016) and changes according to the simulation scales, and

thus I cannot compare different scale scenarios under a fair condition. Figure 3.9 (right) demonstrates the

profile of residual over iterations to show the scalability of the solvers. With CG, the number of iterations

increases significantly as the simulation scale becomes larger. On the other hand, my method requires almost

the same number of iterations regardless of the simulation scale, as expected from the theory of the MG

solvers. Since my method scales well with respect to the number of particles unlike CG, I believe that my

method will be more advantageous with larger-scale scenarios.
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Figure 3.11: Double dam break with (left) and without (right) two-way coupled solid objects. Both scenarios
require similar iteration counts for convergence (see Figure 3.12).
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Figure 3.12: Iteration profile for Figure 3.11. Regardless of the two-way coupled solids, the number of
iterations is comparable.

Solid interaction. Figure 3.11 (left) demonstrates that my method is capable of handling two-way

coupled solid objects. Additionally, I compare the number of required iterations in Figure 3.12 for the double

dam break scenarios with and without solid cubes (see Figure 3.11), and show that the number of iterations

is comparable regardless of the additional complexity introduced by the two-way coupled solid cubes. My

method is general and can simulate further complex scenarios, such as one-way coupling of fluids with fast

moving solid bunnies (Figure 3.1 (left)) and two-way coupling of solids in multiphase flows (Figure 3.1

(right)).
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3.7 Discussions and Limitations

My particle-based method uses auxiliary grid structures, and thus my method can be considered as a

hybrid approach, such as FLIP. However, since the grid structures are used to merely accelerate the pressure

solve on particles, my method essentially differs from FLIP. It is worth noting that my multilevel solver is

an error correction approach same as other MG, and the communication between particles and grids does

not introduce any errors to the final converged solution at the particle level. Because of the auxiliary grid

structures, it may seem that my method weakens advantages of particle-based methods. However, I can

handle collision detection and resolution at the particle level allowing for the natural coupling of fluids with

solid objects (which are commonly described in the Lagrangian manner), as demonstrated in Figures 3.1

(left and right) and 3.11. In addition, the grid structures are merely auxiliary structures. Thus, I do not need

to adapt the grid structures, e.g., to free surfaces and solid boundaries, unlike the grid-based approaches,

allowing for quite simple and fast hierarchy construction.

Although the optimal complexity of the MG solvers is O(N) with the number of unknowns N , the

number of iterations slightly increases with my method as N increases. One factor for this non-optimal

complexity is due to the solution inconsistency between the particle and grid levels caused by the essentially

different discretization methods and heuristically determined scaling factor λ. These would be addressed by

using consistent discretization methods and more accurately estimating the optimal λ.

My MGCG method can outperform IISPH in certain scenarios. However, IISPH can be advantageous

when simulations are performed under low-resolution with a soft density constraint since IISPH with Jacobi

method converges faster at the early stage, and we may not be able to benefit from the fast convergence of

CG at the latter stage.

To derive my solid boundary handling formulation, I assume that pressure changes over time and space

are negligible between consecutive simulation steps, and these assumptions are used in the source term

computation only. Since pressures are globally computed by solving the PPE, slight value changes in the

source term do not significantly affect the resulting pressures. The resulting pressures are still smooth and

thus do not introduce stability issues into the simulation. This fact can also be applied to the clamping of

the source term. In the grid-based simulation literature, the source term modification is effectively used

to compensate fluid volumes (Kim et al., 2007) and to simulate compressible fluids (Feldman et al., 2003)

without stability issues.
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3.8 Conclusion and Future Work

I proposed a new multilevel solver for particle-based fluids. My method constructs the hierarchy based

on the Cartesian grid, establishes the correspondence between solutions at particle and grid levels, and

coarsens simulation elements taking boundary conditions into account. In addition, I proposed a solid

boundary handling method that ensures the solvability of the PPE without increasing the size of the system

and computational cost. I demonstrated that my method can be significantly faster than IISPH, and its cost

scales nearly linearly unlike previous particle-based solvers.

There are several promising future research directions. Since my method is massively parallelizable,

implementing the algorithm on a GPU (Chentanez and Müller, 2011; Chentanez and Müller, 2012) is a

natural extension of my method. In the same way as (Ferstl et al., 2014; Dick et al., 2016), introducing the

cell duplication technique would be effective to improve the convergence rate. Since my multilevel solver can

better handle ill-conditioned systems, aggressively using larger time steps would be beneficial. Considering

that MG solvers use coarser levels, applying coarse grid approaches (Lentine et al., 2010; Edwards and

Bridson, 2014) to particle-based methods would be interesting. Although it is known that geometric MG is

generally faster than algebraic MG (Briggs et al., 2000), it would be worth comparing their performance.

Particularly, the smoothed aggregation technique (Tamstorf et al., 2015) would be a promising choice.
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CHAPTER 4: Implicit Formulation for SPH-based Viscous Fluids

4.1 Introduction

Smoothed Particle Hydrodynamics (SPH) is becoming increasingly popular for simulating fluids because

of its attractive features including automatic conservation of mass, implicit tracking of surfaces with frequent

topology changes, and no need for grid structures or meshes. SPH has been developed in various directions,

e.g., enforcing fluid incompressibility (Becker and Teschner, 2007b; Solenthaler and Pajarola, 2009; Ihmsen

et al., 2014a), handling fluid-fluid and fluid-solid interactions (Müller et al., 2005; Solenthaler et al., 2007;

Solenthaler and Pajarola, 2008; Becker et al., 2009; Akinci et al., 2012; He et al., 2012b; Ren et al., 2014),

and improving computational efficiency and saving memory usage (Adams et al., 2007; Ihmsen et al., 2011;

Solenthaler and Gross, 2011; Orthmann and Kolb, 2012), and is recognized as a state-of-the-art fluid solver

in computer graphics (Ihmsen et al., 2014b).

Over the past decades, various SPH methods have been proposed and used for a variety of fluid effects in

the literature. However, most of these SPH methods assume that fluid is inviscid or slightly viscous; thus

an effective SPH method that can simulate highly viscous fluids has not yet been established although we

see various viscous materials (e.g., honey, caramel sauce, melted chocolate, lava, machinery oils, and bodily

fluids) and their characteristic behaviors on a daily basis. There are two main reasons for this; First, previous

SPH methods, e.g., (Müller et al., 2003, 2005; Solenthaler et al., 2007), drop off-diagonal components of

Figure 4.1: Viscous fluids simulated with my implicit formulation. Left to right: caramel sauce coiling with a
particle view in the inset; a dragon consisting of particles with different viscosities; melted chocolate buckling
with a particle view in the inset.
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viscous stress tensor to simplify the viscosity term and consequently fail to generate rotational viscous fluid

behaviors, such as coiling and buckling, due to neglect of the boundary condition on free surfaces, while

leading to inaccurate handling of variable viscosity. This is also true for XSPH (Monaghan, 1989) and

artificial viscosity (Monaghan, 1992) as they are essentially same as the Laplacian form in simplifying the

viscosity term. Since the simplified term is described by Laplacian operator, in this chapter I refer to this term

as Laplacian form of viscosity and the original, unsimplified term as full form of viscosity. Second, previous

SPH methods, e.g., (Paiva et al., 2006; Andrade et al., 2014), suffer from a restriction on available time

steps because of their explicit viscosity integration schemes. Andrade et al. (Andrade et al., 2014) proposed

a condition on time steps ∆t ≤ 0.1ρh
2

8µ (∆t: time step, ρ: fluid density, h: kernel radius, and µ: dynamic

viscosity) to perform numerically stable simulations of viscous fluids with the full form, and this condition

makes it difficult to simulate viscous fluids within a reasonable time when higher viscosity and resolutions

(smaller kernel radii) are used.

To address the two problems above, I propose a new SPH-based method that uses implicit viscosity

integration for the full form for robustly simulating highly viscous fluids. My method offers the following

advantages:

• It is efficient, allowing for use of larger time steps and finer spatial resolutions than explicit integration.

• It is robust and stable, even with large time steps and high viscosities.

• It can generate coiling and buckling phenomena and handle variable viscosity.

I exploit the variational principle that automatically enforces the boundary condition on free surfaces

to derive my implicit formulation, constructing a sparse linear system with a symmetric positive definite

matrix. To efficiently solve the linear system, I also propose a novel method for extracting coefficients of

the matrix that includes contributions from first-ring neighbor particles and second-ring neighbor particles

(neighbor particles’ neighbor particles). Figure 4.1 demonstrates viscous fluids, simulated using my implicit

formulation.

In Eulerian methods, I can easily discretize the full form (divergence of Jacobian of velocity) at a time

using finite difference due to the staggered stress arrangement as in (Batty and Bridson, 2008). On the other

hand, in SPH, I first need to compute Jacobian of velocity, and then compute divergence of Jacobian of

velocity, separately applying SPH formulations to both steps. Although computing these two steps is easy for
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explicit integration (Paiva et al., 2006; Andrade et al., 2014), significant complexity is involved with implicit

integration, and I need to take into account contributions from both of first-ring and second-ring neighbors

to construct a linear system. Because of this complexity unique to SPH discretization and derivation of the

implicit formulation, no work has been proposed regardless of the apparent simplicity of the idea in adopting

implicit integration and demand for robust SPH-based simulators. To the best of my knowledge, my method

is the first SPH method that uses implicit integration for the full form of viscosity, and is also the first method

that extracts matrix coefficients contributed by second-ring neighbors.

4.2 Related Work

Eulerian viscous fluids. Carlson et al. (Carlson et al., 2002) first enabled stable simulations of highly

viscous fluids with free surfaces by solving the Laplacian form of viscosity using implicit integration. Later,

Rasmussen et al. (Rasmussen et al., 2004) proposed an implicit-explicit scheme for the full form of viscosity

to correctly handle variable viscosity at the expense of numerical stability. Batty and Bridson (Batty and

Bridson, 2008) proposed a fully implicit viscosity integration scheme for the full form, making it possible

to take larger time steps, handle variable viscosity, and generate coiling and buckling. This method was

extended by Batty and Houston (Batty and Houston, 2011) for an adaptive tetrahedral fluid simulator. In the

work of Stomakhin et al. (Stomakhin et al., 2014), a viscosity term was also solved using implicit integration

in the framework of Material Point Method.

Lagrangian viscous fluids. I categorize Lagrangian methods into five groups: Lagrangian Finite

Element Methods (Lagrangian FEM), dimensionally reduced discrete methods, spring-based methods,

deformation-based methods, and SPH methods. My method belongs to the SPH methods.

Lagrangian FEM has been used to accurately simulate viscous fluids, and various developments have

been done in the literature. Bargteil et al. (Bargteil et al., 2007) proposed an efficient remeshing method

to reduce the cost of time-consuming remeshing process, and Wojtan and Turk (Wojtan and Turk, 2008)

improved the remeshing method of Bargteil et al. (Bargteil et al., 2007). Wicke et al. (Wicke et al., 2010)

proposed a local remeshing method to keep the number of tetrahedra small. Clausen et al. (Clausen et al.,

2013) proposed a Lagrangian FEM that can handle elastic, plastic, and fluid materials in a unified manner.
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To accurately simulate viscous threads and sheets, Bergou et al. (Bergou et al., 2010) and Batty et al.

(Batty et al., 2012) proposed dimensionally reduced discrete methods and generated coiling and buckling,

respectively, limiting the dimension of materials that they can simulate.

Spring-based methods have been used because of its conceptual simplicity. Miller and Pearce (Miller and

Pearce, 1989) and Terzopoulos et al. (Terzopoulos et al., 1991) proposed a spring-based model that computes

repulsion and attraction forces between particles. Clavet et al. (Clavet et al., 2005) extended this model to

simulate materials that exhibit elasticity, viscosity, and plasticity. Takahashi et al. (Takahashi et al., 2014)

also simulated such materials in a unified framework of Position-based dynamics.

Gerszewski et al. (Gerszewski et al., 2009) proposed a deformation-based method that approximates

motions of neighbor particles based on deformations of particle configurations for reproducing elastoplastic

materials. Their method was extended by Zhou et al. (Zhou et al., 2013) to improve its numerical stability

using implicit integration and by Jones et al. (Jones et al., 2014) to handle varying mass materials.

Desbrun and Gascuel (Desbrun and Gascuel, 1996) used SPH to simulate viscous materials. Müller et

al. (Müller et al., 2003) proposed the Laplacian form of viscosity and simulated slightly viscous fluid. The

Laplacian form was also used in (Müller et al., 2005; Solenthaler et al., 2007). Paiva et al. (Paiva et al., 2006)

proposed the full form of viscosity and accurately simulated viscous fluids. The full form was also used in

the work of Andrade et al. (Andrade et al., 2014). Rafiee et al. (Rafiee et al., 2007) presented a method

based on a Maxwell model to simulate coiling of viscoelastic fluids. Dagenais et al. (Dagenais et al., 2012)

simulated viscous fluid motions by adding extra forces that move particles to their original positions. In

Astrophysics, Monaghan (Monaghan, 1997) and Laibe and Price (Laibe and Price, 2012) used pair-wise

implicit formulations for artificial viscosity. Their methods consider only pair-wise particles for implicit

integration, and thus can be numerically unstable. In Computational Mechanics, Fan et al. (Fan et al., 2010)

proposed an implicit scheme for simulating viscous fluids using SPH. However, they computed viscous stress

with gradient of velocity, not Jacobian of velocity, and hence their method is essentially equivalent to a

method that uses the Laplacian form.

Paiva et al. (Paiva et al., 2006) and Andrade et al. (Andrade et al., 2014) solved the full form of viscosity.

However, my method differs from theirs in that theirs used explicit integration whereas mine uses implicit

integration to improve the robustness of the simulation and enable use of larger time steps with higher

viscosities and finer spatial resolutions than these methods.
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4.3 Fundamentals for Simulating Viscous Fluids

Formulations. I aim to simulate incompressible, highly viscous fluids using SPH. In the Lagrangian

setting, the Navier-Stokes equations for particle i can be described as

ρi
dui
dt

= −∇pi +∇ · si +
ρi
m
Fext
i , (4.1)

si = µi
(
∇ui + (∇ui)T

)
, (4.2)

where ρi denotes density of particle i, t time, ui = [ui, vi, wi]
T velocity, pi pressure, si viscous stress

tensor, m mass (I use a constant mass for all particles), Fext
i external force, and µi dynamic viscosity. The

combination of the second term on the right side in Eq. (4.1), and Eq. (4.2) is the full form of viscosity and is

required to handle variable viscosity (Rasmussen et al., 2004) and rotational behaviors (Batty and Bridson,

2008). I separate the terms in Eq. (4.1) to independently solve them, taking the standard approach of operator

splitting as with Eulerian methods (Batty and Bridson, 2008; Batty and Houston, 2011), and enforce fluid

incompressibility using a particle-based incompressible fluid solver, e.g., (Solenthaler and Pajarola, 2009;

Ihmsen et al., 2014a).

To generate rotational behaviors by solving Eq. (4.1), I need to consider the boundary condition that

there is no traction on free surfaces (Batty and Bridson, 2008). In other words, as a boundary condition for

Eq. (4.1), I must satisfy (−piI + si)ni = 0 (ni: normal to the free surface). As with (Batty and Bridson,

2008; Stomakhin et al., 2014), I decouple these terms and independently enforce the boundary condition

for pressure −piIni = 0 (I enforce this by setting pressures of surface particles to 0), and for viscosity

sini = µi
(
∇ui + (∇ui)T

)
ni = 0. Since my method is based on the variational principle, the boundary

condition for viscosity is automatically enforced by solving Eq. (4.1) (see e.g., (Batty and Bridson, 2008;

Stomakhin et al., 2014)).

Algorithm. First, I apply only external force Fext
i and obtain first intermediate velocity u∗i . Then, I

solve viscosity using my implicit formulation (see § 4.4) and obtain second intermediate velocity u∗∗i with

intermediate viscous stress tensor s∗∗i :

u∗∗i = u∗i +
∆t

ρi
∇ · s∗∗i , (4.3)

s∗∗i = µi

(
∇u∗∗i + (∇u∗∗i )T

)
. (4.4)
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Next, to enforce fluid incompressibility, I compute pressure pi using a particle-based fluid solver with the

boundary condition for pressure, and compute pressure force Fpi (Monaghan, 1992). Finally, particle velocity

ui and position xi = [xi, yi, zi]
T are integrated using Euler-Cromer scheme. I summarize a full procedure of

my method in Algorithm 3.

Algorithm 3 Procedure of my method
1: // j: neighbor particle of i
2: // Wij : kernel with a kernel radius h
3: for all particle i do
4: find neighbor particles
5: for all particle i do
6: apply external force u∗i = uti + ∆tFext

i /m
7: for all particle i do
8: solve viscosity using Eqs. (4.3) and (4.4) // § 4.4
9: for all particle i do

10: compute pi using a particle-based fluid solver
11: for all particle i do

12: compute Fpi = −m2
∑

j

(
pi
ρ2
i

+
pj
ρ2
j

)
∇Wij

13: for all particle i do
14: integrate particle velocity ut+1

i = u∗∗i + ∆tFpi /m
15: integrate particle position xt+1

i = xti + ∆tut+1
i

Unlike (Batty and Bridson, 2008) that enforces fluid incompressibility twice, I enforce fluid incompress-

ibility once in one simulation step as in (Batty and Houston, 2011) because my method can sufficiently

maintain incompressibility over all simulation steps (when fluid incompressibility was enforced with a tolera-

ble density error of 0.1%, the maximum density deviation was lower than 0.5%), and I observed indiscernible

differences between enforcing incompressibility once and twice.

4.4 Implicit Formulation for Full Form of Viscosity

In this section, I first describe how to solve the viscosity term using implicit integration in the SPH

framework while constructing a linear system (§ 4.4.1). Next, I explain sparsity of the coefficient matrix (§

4.4.2), and my solver and coefficient extraction method for the system (§ 4.4.3). Then, I give implementation

details and show my algorithm for solving my implicit formulation (§ 4.4.4).
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4.4.1 Implicit Integration for Full Form of Viscosity

I derive an SPH-based implicit viscosity formulation from Eqs. (4.3) and (4.4). Hereafter, I drop the

symbol ∗∗ for readability.

Since the boundary condition for viscosity is automatically enforced because of the variational principle

(Batty and Bridson, 2008; Stomakhin et al., 2014), I directly discretize Eqs. (4.3) and (4.4) using implicit

integration in the SPH framework:

ui = u∗i +m∆t
∑
j

(
si
ρ2
i

+
sj
ρ2
j

)
∇Wij , (4.5)

si = µi
∑
j

Vj
(
(uj − ui)∇W T

ij +∇Wij(uj − ui)
T
)
. (4.6)

By substituting si in Eq. (4.6) into Eq. (4.5) and arranging the terms in these equations, I obtain an implicit

formulation:

ui + m̂
∑
j

(µ̂iQij + µ̂jQjk)∇Wij = u∗i , (4.7)

Qij =


2
∑

j aij,xuij qij,xy qij,xz

qij,xy 2
∑

j aij,yvij qij,yz

qij,xz qij,yz 2
∑

j aij,zwij

 , (4.8)

qij,xy =
∑
j

(aij,yuij + aij,xvij) , qij,xz =
∑
j

(aij,zuij + aij,xwij) ,

qij,yz =
∑
j

(aij,zvij + aij,ywij) ,

where m̂ = m∆t, µ̂i = µi/ρ
2
i , k is a neighbor particle of j, aij = [aij,x, aij,y, aij,z]

T = Vj∇Wij =

Vj [∇Wij,x,∇Wij,y,∇Wij,z]
T , uij = ui − uj , vij = vi − vj , and wij = wi − wj . Qij is symmetrical

due to the symmetrical property of si. This implicit formulation Eq. (4.7) is a linear system and can be

rewritten in a matrix form as CU = U∗ (C is a coefficient matrix and U = [. . . , ui, vi, wi, . . .]
T ). Let N

denote the number of fluid particles, the size of C is 3N × 3N , and that of U is 3N × 1. I assign serial

numbers (id) to particles to specify locations in a coefficient matrix.
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Figure 4.2: Illustration for first- and second-ring neighbors. Left: particle i (green) directly interacts with i’s
first-ring neighbors Ji (particle j colored in orange) inside of i’s kernel sphere with its radius h shown as a
green circle. Right: particle j∗ (purple) has neighbor particles (within j∗’s kernel sphere shown as a purple
circle), which are second-ring neighbors Kij∗ for particle i. Possible second-ring neighbors for particle i
exist within the largest Minkowski sum (Mi) of Ji and Kij , which is a sphere shown as a red circle, and Mi’s
center and radius are xi and 2h, respectively.

4.4.2 Sparsity of Coefficient Matrix

In SPH, particle i interacts with its neighbor particles within its kernel radius, namely inside of its

kernel sphere. Since my formulation requires viscous stress of particles i and j to compute velocity update

for particle i using Eq. (4.5), not only i’s neighbors Ji (a set of particle j) but j’s neighbors Kij (a set of

particle k) must be taken into account. In short, I need to include contributions from first-ring neighbors

Ji and second-ring neighbors Kij to compute i’s velocity update and construct a linear system. This setup

is illustrated in Figure 4.2. Assuming that particles i and j are spherically surrounded by others, i and j

generally have 30-40 first-ring neighbors within their kernel radius h (Solenthaler and Pajarola, 2009). Since

particle j can exist anywhere within i’s kernel sphere, the total number of second-ring neighbors of particle i

without overlaps can be 240-320. This is because the maximum (total) number of second-ring neighbors of

i without overlaps is smaller than the number of particles within the largest Minkowski sum of i’s kernel

sphere and js’ kernel spheres, and the largest Minkowski sum Mi is a sphere whose center is xi and radius is

2h. Since all particles in Ji and Kij are included in Mi, each particle can interact with up to 320 particles.

Hence, non-zero values for each velocity component can be 960, as there are 320 particles in Mi and each

has three velocity components. Although this number is much larger than the number of non-zero values in
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Figure 4.3: Numerical stability test with different combinations of time steps and viscosities. (a) initial state,
(b) explicit integration (Andrade et al., 2014) with ∆t = 5.0× 10−6 s and µ = 1, 000.0 kg/(s·m), (c) explicit
integration (Andrade et al., 2014) with ∆t = 1.3× 10−3 s and µ = 1, 000.0 kg/(s·m), (d) implicit integration
(my method) with ∆t = 1.3 × 10−3 s and µ = 1, 000.0 kg/(s·m), (e) explicit integration (Andrade et al.,
2014) with ∆t = 5.0× 10−6 s and µ = 50, 000.0 kg/(s·m), and (f) implicit integration (my method) with
∆t = 1.0× 10−4 s and µ = 50, 000.0 kg/(s·m).

grid-based methods, and particle-based methods that involve only first-ring neighbors, my coefficient matrix

is still a sparse matrix.

4.4.3 Solver and Coefficient Extraction

Solver. Since the linear system constructed by my formulation is sparse and also symmetric positive

definite, I use a conjugate gradient (CG) solver (though I also tested Jacobi method and Modified Incomplete

Cholesky Conjugate Gradient (MICCG), they did not work well. See § 4.6). Unlike the CG method described

in (Ihmsen, 2013), which repeatedly computes matrix coefficients in the CG algorithm by performing extra

particle scans without storing the coefficients, I explicitly construct and preserve a coefficient matrix, namely

extract all coefficients in the matrix. This approach enables us to efficiently perform the CG method without

extra loops, thereby improving the performance of the solver. In addition to this advantage, extracting

all coefficients allows us to use preconditioning techniques, e.g., algebraic multigrid (AMG), and external

libraries, separate solver code from others to improve programming maintainability, and take full advantage

of GPGPU, parallelizing matrix-vector multiplications (in both rows and columns).
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After a coefficient matrix is constructed, I solve the linear system with the CG method. I terminate

iterations in the CG algorithm when a relative residual becomes smaller than a convergence criterion η.

Coefficient extraction. By substituting Qij in Eq. (4.8), I can rewrite Eq. (4.7) for x component of ui,

ui as

ui + m̂
∑
j

(
µ̂i

(
2∇Wij,x

∑
j

aij,xuij +

∇Wij,y

∑
j

(aij,yuij + aij,xvij) +∇Wij,z

∑
j

(aij,zuij + aij,xwij)
)

+µ̂j

(
2∇Wij,x

∑
k

ajk,xujk +∇Wij,y

∑
k

(ajk,yujk + ajk,xvjk)

+∇Wij,z

∑
k

(ajk,zujk + ajk,xwjk)
))

= u∗i . (4.9)

Then, I further convert Eq. (4.9) into the following equation to straightforwardly extract coefficients

cuiui , cviui , cwiui , cujui , cvjui , cwjui , cukui , cvkui , and cwkui :


cuiui

cviui

cwiui


T 

ui

vi

wi

+
∑
j


cujui

cvjui

cwjui


T 

uj

vj

wj

+

∑
k


cukui

cvkui

cwkui


T 

uk

vk

wk

 = u∗i ,
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cuiui = 1 + m̂µ̂i (2ωij,xαij,x + ωij,yαij,y + ωij,zαij,z) ,

cviui = m̂µ̂iωij,yαij,x,

cwiui = m̂µ̂iωij,zαij,x,

cujui = m̂
(
−µ̂i(2aij,xωij,x + aij,yωij,y + aij,zωij,z) +

µ̂j(2∇Wij,xαjk,x +∇Wij,yαjk,y +∇Wij,zαjk,z)
)
,

cvjui = m̂ (−µ̂iaij,xωij,y + µ̂j∇Wij,yαjk,x) ,

cwjui = m̂ (−µ̂iaij,xωij,z + µ̂j∇Wij,zαjk,x) ,

cukui = −m̂
∑
j

µ̂j(2∇Wij,xajk,x +∇Wij,yajk,y +∇Wij,zajk,z),

(4.10)

cvkui = −m̂
∑
j

µ̂j∇Wij,yajk,x, (4.11)

cwkui = −m̂
∑
j

µ̂j∇Wij,zajk,x, (4.12)

where αij = [αij,x, αij,y, αij,z]
T =

∑
j aij and ωij = [ωij,x, ωij,y, ωij,z]

T =
∑

j ∇Wij . I use cuiui to

denote a coefficient of ui to ui, and cviui a coefficient of vi to ui, and similarly define other coefficients. The

other components (y and z) and 2D version can be straightforwardly derived. By scanning particles i, j, and

k, I extract all coefficients for the linear system (see Appendix B for details).

4.4.4 Implementation Details and Algorithm

I summarize procedures of my implicit formulation in Algorithm 4. To handle solid boundaries, I use

solid particles arranged on object surfaces. When fluid particles collide with solid particles, I use explicit

viscosity integration for fluid particles with low viscosity while using Dirichlet boundary condition similar

to (Batty and Bridson, 2008; Stomakhin et al., 2014; Andrade et al., 2014), namely setting averaged solid

particle velocities usolid to fluid particles if viscosity of the fluid particles is higher than a criterion µDirichlet.

As a structure of a sparse matrix, I use compressed sparse row (CSR) and reserve sufficient memory for each

particle so that the matrix construction can be parallelized over particle i.
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Algorithm 4 Algorithm for solving viscosity
1: assemble the matrix // see Appendix A
2: solve the linear system with CG
3: for all fluid particle i do
4: if µDirichlet < µi∧ neighbor solid particle exists then
5: enforce solid boundary condition ui = usolid

Table 4.1: Simulation parameters and performance. N : the number of particles, µ (kg/(s ·m)): dynamic
viscosity of particles, ∆t (s): time step, and tvisc (s) and ttotal (s): simulation time for viscosity and total
simulation time per frame, respectively.

Figure Viscosity form Integration N µ ∆t tvisc ttotal

4.3 (b) Full Explicit 5.5k 1,000.0 5.0× 10−6 6.3 51.7
4.3 (c) Full Explicit 5.5k 1,000.0 1.3× 10−3 0.0 0.5
4.3 (d) Full Implicit 5.5k 1,000.0 1.3× 10−3 15.0 15.4
4.3 (e) Full Explicit 5.5k 50,000.0 5.0× 10−6 2.9 40.1
4.3 (f) Full Implicit 5.5k 50,000.0 1.0× 10−4 361.4 366.1
4.5 Full Implicit 47.4k up to 800.0 1.0× 10−4 815.2 836.1
4.6 (a), (c) Laplacian Implicit up to 19.6k 600.0 2.0× 10−4 20.4 59.3
4.6 (b), (d) Full Implicit up to 46.5k 600.0 2.0× 10−4 287.1 314.1
4.7 (a), (c) Full Implicit up to 34.6k 100.0 2.0× 10−4 135.4 142.0
4.7 (b), (d) Full Implicit up to 23.4k 600.0 2.0× 10−4 116.3 120.7

4.5 Results

Implementation. I implemented my method in C++ and parallelized it using Open MP 2.0. I adopted

SPH kernels proposed in (Müller et al., 2003) and used surface tension force presented in (Becker and

Teschner, 2007b). I adopted Implicit Incompressible SPH (IISPH) (Ihmsen et al., 2014a) as an incompressible

fluid solver and used the fluid solid coupling method proposed in (Akinci et al., 2012). I used a variant of the

z-index neighbor search method presented in (Ihmsen et al., 2011). In addition to my viscosity formulation, I

also used artificial viscosity to stabilize simulations (Monaghan, 1992).

Setting. I executed all the scenes on a PC with a 4-core Intel Core i7 3.40 GHz CPU and RAM 16.0

GB, and rendered all the figures using a physically-based renderer, Mitsuba. I used fixed time steps and set a

convergence criterion as η = 1.0 × 10−4. Simulation parameters and performance are listed in Table 4.1,

where the surface reconstruction and rendering are not included in performance measurement.
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Figure 4.4: Performance profile for Figures 4.3 (b) and (d).

4.5.1 Numerical Stability

To verify the numerical stability of my implicit formulation over the previous method (Andrade et al.,

2014) that uses explicit viscosity integration, I performed a simple test, as shown in Figure 4.3, where a

viscous bunny was dropped onto the ground, and the initial state is shown in Figure 4.3 (a). In this scene, I

chose ∆t satisfying the viscosity condition (∆t ≤ 0.1ρh
2

8µ ) given in (Andrade et al., 2014), and used IISPH

as a fluid solver of (Andrade et al., 2014) for fair comparison. The method of (Andrade et al., 2014) can

generate a plausible behavior of the bunny with a small time step and low viscosity, as shown in Figure 4.3

(b). However, when a large time step or high viscosity is used, their method easily fails to simulate the bunny,

as shown in Figures 4.3 (c) and (e). By contrast, my implicit method successfully simulates the bunny with a

much larger time step (Figure 4.3 (d)), and with a large time step and high viscosity (Figure 4.3 (f)).

4.5.2 Performance

I compared performance of my method and the previous method (Andrade et al., 2014) in Figure 4.4

using the bunny scene shown in Figures 4.3 (b) and (d). Because of my robust implicit formulation, I can

take a 260.0 times larger time step than the method of (Andrade et al., 2014), and my computation is 3.4

times faster than theirs although per step cost of my implicit method is more expensive than that of explicit

methods. Since time steps for (Andrade et al., 2014) are restricted by the viscosity condition above, my

method can be more advantageous for scenes with higher viscosities and finer resolutions.
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Figure 4.5: A dragon consisting of particles with different viscosities from 0.0 to 800.0 kg/(s·m). Light (dark)
green particles represent low (high) viscosity.

4.5.3 Variable Viscosity

Figure 4.5 illustrates an example of a dragon consisting of particles with different viscosities from 0.0

(light green) to 800.0 kg/(m·s) (dark green). Particles flow at different rates depending on particle velocities.

4.5.4 Buckling and Coiling

I performed a buckling test to demonstrate that my implicit formulation can generate buckling of a

viscous material while the Laplacian form with implicit integration fails to generate a buckling phenomenon.

Figure 4.6 illustrates a dropped chocolate onto the ground, where (a) and (c) are simulated with the Laplacian

form, and (b) and (d) are with my formulation. The chocolate simulated with the Laplacian form does not

bend, and exhibits unnatural fluid flows regardless of its high viscosity. By contrast, my implicit formulation

successfully generates natural chocolate buckling.

I also performed a coiling test with different viscosities in Figure 4.7. In this scene, I poured caramel

sauce with low and high viscosity onto the ground. While caramel sauce with low viscosity ((a) and (c))

behaves similar to the results generated with the Laplacian form in Figures 4.6 (a) and (c), caramel sauce

with high viscosity exhibits a coiling phenomenon ((b) and (d)).

4.6 Discussions and Limitations

Robustness. My implicit formulation significantly improves the robustness of viscosity integration

and allows us to avoid the time step restriction for explicit integration (Andrade et al., 2014). My method
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Figure 4.6: Buckling test for comparison of my method with the Laplacian form using implicit integration.
(a) Laplacian form with meshes. (b) my method with meshes. (c) Laplacian form with particles. (d) my
method with particles.

introduces a much more relaxed restriction on time steps, which depends only slightly on viscosity and spatial

resolutions. Consequently, my method may not generate plausible fluid behaviors, when very large time steps

and very high viscosity and resolutions are used, even though an implicit formulation for the Laplacian form

(which is unconditionally stable) can perform stable simulations with the same condition.

From my experiments, I deduce that one decisive factor for this weaker robustness is due to second-ring

neighbors. To examine the factor, I consider solving differential equations with Laplacian operator by using

SPH formulations for Laplacian, and also solving the equations by separating Laplacian into divergence and

gradient, applying SPH formulations for both of divergence and gradient operators, and including second-

ring neighbors, because β∇2φ ≈ ∇ · (β∇φ) (β and φ are arbitrary quantities), and this decomposition is

numerically similar to the relation of the Laplacian form µ∇2u and full form ∇ · (µ∇u + µ(∇u)T ). I

actually tested these with the Laplacian form of viscosity and heat equations, and as expected, I observed
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Figure 4.7: Coiling test for different viscosities. (a) Low viscosity with meshes. (b) High viscosity with
meshes. (c) Low viscosity with particles. (d) High viscosity with particles. Light (dark) green particles
represent low (high) viscosity.

numerical instability with larger time steps and higher coefficients and resolutions when Laplacian operator

was decomposed while I was able to perform stable simulations with undecomposed Laplacian operator

under the same condition.

Solver. In addition to CG, I tested Jacobi method and MICCG to solve my linear system. Although I

was able to solve the system using the two solvers, there are a few problems to note. First, Jacobi method

worked for slightly viscous fluids with smaller time steps under low spatial resolutions. However, since the

convergence rate of Jacobi method is slow, Jacobi method failed to solve the system with large time steps

and high viscosity and spatial resolutions that can make a coefficient matrix ill-conditioned. In contrast to

Jacobi method, MICCG worked for such an ill-conditioned matrix, and the rate of convergence was actually

faster than my CG solver. However, MICCG requires Cholesky factorization that is costly (and difficult to

parallelize), especially with my matrix that includes a great number of non-zero values (see § 4.4) although
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serial forward and back substitution steps are not so slow compared to other steps in the CG algorithm. In my

experiments, Cholesky factorization occupied more than 90% of computational time for my viscosity solver

including coefficient extractions, and therefore my non-preconditioned CG solver was more than 6 times

faster than MICCG. A similar behavior that the incomplete Cholesky preconditioner performed worse due

to the cost of constructing a preconditioning matrix for particle-based methods (many non-zeros) was also

reported in (He et al., 2012b).

Performance. Solving my viscosity formulation generally occupies more than 90% of the whole

computational time, and this weakens one of my advantages of efficient computation with larger time steps.

My viscosity formulation consists of extracting coefficients through triple loops and solving a linear system,

and they occupy around 30% and 70% of computational time, respectively, for Figure 4.3 (f). To accelerate

the speed of coefficient extractions, an efficient algorithm for extracting coefficients involving second-ring

neighbors would be useful. One possible fast algorithm is to avoid triple loops when extracting coefficients,

and I can avoid them by using precomputations for particle k. However, these computations require additional

storage and scans over the storage, making coefficient extractions more complex. Consequently, benefits of

the precomputations over my method can be lost, or extracting coefficients with the precomputations can

be more costly than mine. As for solving a linear system, using a faster solver or a low cost and effective

preconditioner would be helpful.

Memory. Preserving a coefficient matrix requires a large memory (e.g., 12 GB memory for 500k

particles, due to 1k of 8 byte double values for 3 velocity components of 500k particles). However, this is not

a big issue with current memory capacity, given advantages explained in § 4.4.3.

Scalability. Another issue to note is that the size of a matrix grows proportionally to the number of

particles. It has a scaling factor larger than grid-based methods and particle-based methods that involve only

first-ring neighbors. On larger scenes with up to 200k particles, the memory usage and computational cost for

coefficient extraction increased at nearly 1.0x linear-scale with respect to the number of particles – similar to

grid-based methods and particle-based methods involving only first-ring neighbors – whereas computational

cost for solving linear system increased at around 1.1x scale. This is because increased number of particles

requires more CG iterations and thus more computational time. Although computational cost might increase

superlinearly when more particles are used, using AMG preconditioners (which cannot be used without

explicit matrix preservation) can potentially address this problem.
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4.7 Conclusion and Future Work

I proposed a new SPH-based implicit formulation for the full form of viscosity. My method enables

efficient and stable viscous fluid simulations with larger time steps and higher viscosities and resolutions

than previous methods that use explicit integration while handling variable viscosity and generating coiling

and buckling. I additionally presented a novel coefficient extraction method for a sparse matrix that involves

second-ring neighbors to efficiently solve a linear system with a CG solver. By taking advantage of my

implicit formulation and coefficient extraction method, I achieved an accelerated performance by a factor of

3.4.

For future work, I plan to implement my method using GPGPU techniques to accelerate constructing and

solving the linear system. In particular, my explicit matrix preservation allows us to take full advantage of

dynamic parallelism, fully parallelizing matrix-vector multiplications. Additionally, finding better solvers,

efficient and effective preconditioners as well as fast coefficient extraction methods would be promising. Sim-

ilar to improving memory and computational efficiency for enforcing incompressibility in SPH fluids, using

multi-sized particles, domain decomposition, and background grids could also further optimize performance.

My coefficient extraction method can be applied to not only SPH, but also other point-based methods

that involve second-ring neighbors (IISPH (Ihmsen et al., 2014a) and mesh smoothing (Desbrun et al., 1999)).

Extending my method to accelerate such problems could also lead to interesting future research directions.
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CHAPTER 5: A Geometrically Consistent Viscous Fluid Solver with Two-Way Fluid-Solid Coupling

5.1 Introduction

Viscous fluids, such as honey, molten chocolate, paint, oil, and shampoo, are common materials as

frequently seen in daily life. These viscous materials exhibit characteristic behaviors including damped and

sticky motions and buckling phenomena, both of which are not observed for inviscid fluids. Because of the

ubiquity of viscous fluids and their fascinating behaviors, simulating viscous fluids has been needed in a

variety of applications e.g., video games, feature films, and virtual reality. Various researchers have proposed

simulation methods specifically designed for viscous fluids (Carlson et al., 2002; Rasmussen et al., 2004;

Batty and Bridson, 2008; Bergou et al., 2010; Batty et al., 2012; Zhu et al., 2015; Takahashi et al., 2015; Peer

et al., 2015; Larionov et al., 2017).

In the previous works, several compelling viscous fluid behaviors have been demonstrated focusing

primarily on simulating the intriguing behaviors of viscous fluids induced by the gravitational forces with

static or prescribed solid boundaries. However, mutual interactions between viscous fluids and solid objects

are essential, and thus it is necessary to correctly handle such interactions. In the literature, there are various

approaches presented to simulate the interactions of inviscid fluids and solids objects (Carlson et al., 2004;

Klingner et al., 2006; Chentanez et al., 2006; Batty et al., 2007; Robinson-Mosher et al., 2008; Lu et al.,

2016; Teng et al., 2016; Zarifi and Batty, 2017). These approaches enable the two-way interactions between

fluids and solid objects with pressure forces, which play roles of drag and buoyancy forces. The pressure

forces can be sufficient to describe the interactions between nearly inviscid fluids and solid objects. However,

simulating the interactions between highly viscous fluids and solid objects with only pressure forces leads to

fluid and solid behaviors significantly different from those observed in the real world, and it is necessary to

consider viscosity forces to correctly account for the two-way interactions.

In this chapter, I present a grid-based fluid solver that can handle two-way interactions of fluids and solid

objects with viscosity forces. My method formulates the dynamics of viscous fluids and solid objects as a

unified minimization problem based on the variational principle, and thus achieves the correct behaviors for
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Figure 5.1: A wooden honey dipper in the honey. (Left to right): simulated honey with one-way coupling,
weak two-way coupling, strong two-way coupling, and the real honey. While the simulated honey using
one-way and weak two-way coupling cannot sufficiently support the honey dipper, the simulated honey using
my strong two-way coupling can keep the honey dipper standing, as observed in the real phenomena.

both fluids and solids. To improve the accuracy even on relatively coarse grids, I estimate volume fractions of

free surfaces and solid boundaries in a geometrically consistent way and formulate my method with these

fractions accounting for the sub-grid level details. In my method, I use Lagrangian particles to discretize

the fluid volumes and address the advection by moving particles. While the combination of particles and a

grid is proven to be effective (Bridson, 2015), one known issue is that the distributions of particles would be

non-uniform leading to the loss of fluid volumes and producing gaps and holes in the fluids. In addition, the

interactions with solids can make the particle distributions even more non-uniform further causing undesirable

volume changes. To address this issue, I propose a position-correction method based on density constraints at
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the particle level to enforce the uniform particle distributions. In summary, my method offers the following

key contributions:

• A geometrically consistent volume fraction estimation that utilizes the supersampling technique

to improve the accuracy of the simulation and avoids dangling artifacts near free surfaces and solid

boundaries (§ 5.3.3).

• A two-way fluid-solid coupling using viscosity force that robustly and correctly accounts for the

dynamics of viscous fluids and solid objects through their interactions (§ 5.3.4).

• A position-correction method using density constraints with a position-correction scaling that enforces

the uniform particle distributions avoiding non-physical volume changes (§ 5.3.5).

I integrate these techniques with a viscous fluid solver. Figure 5.1 demonstrates complex interactions of

viscous fluids and solid objects simulated with my method.

5.2 Related Work

In this section, I discuss previous works closely related to mine. I refer to (Bridson, 2015) for the

literature and fundamentals.

5.2.1 Viscous Fluids

In the Eulerian framework, an early work, stable fluid method (Stam, 1999) solved the Navier-Stokes

equations with implicit viscosity integration for numerical stability while focusing on fluids without free

surfaces. Carlson et al. (Carlson et al., 2002) proposed the first method for simulating highly viscous fluids

with free surfaces by using a simplified, Laplacian-based viscosity model with implicit integration. However,

the Laplacian-based formulation immediately damps the rotational velocity fields due to incorrect free surface

boundary conditions. Later, Rasmussen et al. (Rasmussen et al., 2004) augmented the Laplacian-based

formulation by adding off-diagonal components with explicit integration while sacrificing the robustness.

Batty and Bridson (Batty and Bridson, 2008) proposed a fully implicit integration scheme for the full form of

viscosity with correct free surface boundary conditions and made it possible to simultaneously take larger

time steps, handle variable viscosity, and generate rotational fluid motions. Later, this method was extended

for an adaptive tetrahedral fluid simulator (Batty and Houston, 2011). Recently, Larionov et al. (Larionov
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et al., 2017) proposed a pressure-viscosity coupled solver to further improve the accuracy in the free surface

handling. While Robinson-Mosher et al. (Robinson-Mosher et al., 2011) also presented a pressure-viscosity

coupled solver, their approach focused on fluids without free surfaces adopting the Laplacian-based viscosity

formulation with the voxel-based discretization. Although the previous methods (Batty and Bridson, 2008;

Larionov et al., 2017) used volume fractions for the sub-grid level accuracy, they did not address how to

consistently estimate control volumes of fluids and solids for velocity and viscous stress.

To simulate more general fluids, e.g., viscoelastic fluids and non-Newtonian fluids, various approaches

were also proposed. Goktekin et al. (Goktekin et al., 2004) presented a method for simulating viscoelastic

fluids by adding an extra term for elastic forces. Recently, to handle fluid-like materials with a variety of

properties in a unified way, material point methods (MPM) have been widely adopted with some specialized

extensions for snow (Stomakhin et al., 2013), foams (Yue et al., 2015), melting solids (Stomakhin et al.,

2014), and granular materials (Daviet and Bertails-Descoubes, 2016; Klár et al., 2016; Jiang et al., 2017;

Tampubolon et al., 2017; Gao et al., 2018; Hu et al., 2018). While these approaches allow us to simulate a

wide range of materials, the constitutive laws adopted in these works typically involve the non-linearity which

would cause stability issues with explicit integration or requires expensive non-linear solves for implicit

integration. Thus, in this chapter, I focus on purely Newtonian viscous fluids, whose dynamics on viscosity

can be simulated with only linear solves.

In the Lagrangian framework, various approaches have been also proposed to simulate viscous fluids.

Specifically, particle-based methods based on Smoothed Particle Hydrodynamics (SPH) have been widely

used, and recently, various extensions were presented to improve the robustness and efficiency of the viscosity

integration (Takahashi et al., 2015; Peer et al., 2015; Bender and Koschier, 2016; Peer and Teschner, 2017;

Barreiro et al., 2017; Weiler et al., 2018a). In the Lagrangian setting, some researchers proposed dimension-

reduced representations to capture the detailed dynamics of viscous threads and sheets (Bergou et al., 2010;

Batty et al., 2012; Zhu et al., 2015). While my method employs Lagrangian particles for advection, surface

tracking, and volume preservation, the dynamics is computed on a grid unlike these purely Lagrangian

approaches.

5.2.2 Two-Way Fluid-Solid Coupling

For coupling of Eulerian fluids with Lagrangian solids, early works, e.g., (Guendelman et al., 2005)

achieved the two-way coupling with pressure forces by alternatively solving one-way fluid-to-solid and
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solid-to-fluid coupling, which is known as weak two-way coupling. While the weak coupling would work in

certain scenarios, the stability of the simulation is not guaranteed, and it is generally necessary to take very

small time steps with many alternate one-way solves. Carson et al. (Carlson et al., 2004) presented a two-way

coupling method that temporarily treats solid objects as fluids in the pressure solve sacrificing the robustness.

Chentanez et al. (Chentanez et al., 2006) presented a two-way coupling method that simultaneously considers

both dynamics of fluids and deformable solids, which is known as strong two-way coupling. While their

method improves the stability, the resulting linear system is not symmetric. Klingner et al. (Klingner et al.,

2006) also proposed a two-way coupling approach with dynamic meshes. While their linear system is

symmetric positive definite (SPD), the computational cost is likely to be expensive due to the dynamic meshes.

Batty et al. (Batty et al., 2007) presented a strong two-way coupling method with the Cartesian grid based

on the variational principle and significantly improved the efficiency. Later, this method was extended for

frictional forces (Narain et al., 2010). Robinson-Mosher et al. (Robinson-Mosher et al., 2008) also presented

a two-way coupling approach with a more accurate momentum handling than (Batty et al., 2007). Later, they

extended their approach to improve the accuracy of tangential velocities (Robinson-Mosher et al., 2009) and

to generate an SPD system with the Laplacian form of viscosity (Robinson-Mosher et al., 2011), and the

performance of this approach was improved with a multigrid preconditioning (Aanjaneya, 2018). Recently,

strong two-way coupling was employed for interactions between deformable solids and fluids (Lu et al.,

2016; Teng et al., 2016; Zarifi and Batty, 2017), interactions between rigid bodies and fluids simulated using

a vorticity-based fluid solver (Vines et al., 2014) and a stream function solver (Ando et al., 2015), while weak

two-way coupling was augmented with the reduced model interface to improve the stability (Akbay et al.,

2018).

In the MPM framework, collisions between fluids and other objects can be naturally handled at the grid

level. Because of this advantage, MPM is widely adopted to simulate two-way interactions with rigid bodies

(Daviet and Bertails-Descoubes, 2016; Hu et al., 2018) and with deformable solids (Klár et al., 2016; Jiang

et al., 2017). Since solid objects are typically described in a Lagrangian setting, Lagrangian particle-based

methods are also extensively used, and the two-way coupling can be achieved in a unified way (Solenthaler

et al., 2007; Akinci et al., 2012; Macklin et al., 2014).

While there are various two-way coupling methods proposed for Eulerian fluids and Lagrangian solids,

most of these approaches focus on two-way coupling with pressure forces, but not viscosity forces. Although

Robinson-Mosher et al. (Robinson-Mosher et al., 2011) presented a two-way coupling method with viscosity
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force, their formulation relies on the Laplacian form of viscosity (which precludes rotational behaviors of

viscous fluids) and focuses on voxel-based discretization with no free surfaces. In contrast to these approaches,

my method focuses on two-way coupling with viscosity forces formulated using the full form of viscosity

with free surfaces taking volume fractions into account for sub-grid details.

5.3 My Method

In this section, I describe my fluid solver using the implicit viscosity integration. I formulate the viscosity

integration as a minimization problem based on the variational principle (§ 5.3.1) so that the minimization

problem can be naturally discretized with volume fractions to account for the sub-grid level details (§ 5.3.2).

To avoid dangling artifacts, I describe my geometrically consistent volume estimation (§5.3.3). Next, I

present a two-way coupling formulation, which can be efficiently solved with the minimization problem in a

unified way (§ 5.3.4). Then, I describe a position-correction method using density constraints to enforce the

uniform distributions of particles (§ 5.3.5). Finally, I discuss previously proposed methods vs. mine to clarify

key differences (§ 5.3.6).

5.3.1 Implicit Viscosity Formulation

The incompressible Navier-Stokes equations are given by

Du

Dt
= −1

ρ
∇p+

1

ρ
∇ · s +

1

ρ
f , s = η

(
∇u + (∇u)T

)
,

∇ · u = 0,

where t denotes time, D
Dt material derivative, u velocity, ρ density, p pressure, s symmetric viscous stress

tensor, f external force, and η dynamic viscosity. I address the advection term with the affine particle-in-cell

(APIC) approach (Jiang et al., 2015) and take the operator splitting method to handle external force, pressure,

and viscosity terms, applying solid boundary condition ut+1 = usolid (usolid: solid boundary velocity) and

free surface boundary condition sn = 0 (n: outward unit normal of the free surface) for the viscosity solve

(Batty and Bridson, 2008).
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Figure 5.2: Domain illustration. (Left) The simulation domain Ω is filled with viscous fluids (cyan), solid
objects (gray), and the rest (white). (Middle) The simulation domain is separated by the solid boundaries
into multiple solid (brown) and fluid (blue) domains. (Right) The simulation domain is separated by the free
surfaces into liquid (light blue) and air (light gray) domains.

The viscosity update with backward Euler can be written as

ut+1 − u∗

∆t
=

1

ρ
∇ · st+1, st+1 = η

(
∇ut+1 +

(
∇ut+1

)T)
,

where u∗ denotes intermediate velocity after advection, external force, and first pressure projection steps

(Batty and Bridson, 2008), and ∆t time step size. In the following, I omit superscript t+ 1 for readability.

These formulations can be cast as a minimization problem due to the variational principle (Batty et al., 2007;

Batty and Bridson, 2008; Larionov et al., 2017):

s = arg min
s

∫
ΩF

(
ρ

2
‖u∗ +

∆t

ρ
∇ · s‖2 +

∆t

4η
‖s‖2F

)
dΩ, (5.1)

where ΩF denotes the fluid domain (see Figure 5.2), ‖ · ‖F the Frobenius norm. When dynamic viscosity η

approaches to 0, viscous stress s (which includes η) also approaches to 0, and this minimization preserves

intermediate velocity u∗ (i.e., no viscosity force applied). On the other hand, when η approaches to ∞,

optimal viscous stress are sought by minimizing the sum of these two terms. This will eventually prioritize

the first term due to s’s quadratic property with respect to η and make the term 0, giving certain viscous stress

which leads to u (= u∗ + ∆t
ρ ∇ · s) = 0.
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5.3.2 Discretization

To discretize Eq. (5.1), I approximate the integral in the minimization with fractions of cell-sized control

volumes. Given solid boundaries defined with signed distance functions (SDF), simulation domain Ω is

divided into multiple solid domains ΩS1,ΩS2, . . . ,ΩSn (n: number of solid objects) and fluid domains ΩF ,

(i.e., ∪ni ΩSi ∪ ΩF = Ω, ΩSi ∩ ΩSj = φ, and ΩSi ∩ ΩF = φ, where i, j (i 6= j) denote an index for solid

domains), as illustrated in Figure 5.2. Following the notations in (Larionov et al., 2017), I denote volume

fractions for solid and fluid domains as diagonal matrices Wu
S and Wu

F , respectively. I note that Wu
S is

defined for each solid object, i.e., Wu
S1, . . . ,W

u
Sn and

∑
iW

u
Si + Wu

F = I. As for viscous stress defined

in a staggered manner (Goktekin et al., 2004), I also compute volume fractions for solid domains Ws
S and

fluid domains Ws
F .

Similar to (Larionov et al., 2017), I can formulate a minimization problem for liquid domains (Figure

5.2), corresponding to Eq. (5.1). For discretization, as done for solid/fluid volume fractions, I can consider

air/liquid volume fractions. Since free surfaces separate the simulation domain Ω into liquid domains ΩL and

air domains ΩA, I also compute volume fractions for velocity components of liquid domains Wu
L and air

domains Wu
A (Wu

L + Wu
A = I), and viscous stress components of liquid and air domains as Ws

L and Ws
A,

respectively.

Combining the minimization formulations for fluid domains and liquid domains (Larionov et al., 2017), I

obtain the following discretized minimization problem:

s = arg min
s

(1

2
‖(PWu

FW
u
L)

1
2 (u∗ −∆tP−1Wu

L
−1DTWs

Ls‖2

+
∆t

4
N−1‖(Ws

FW
s
L)

1
2 s‖2

)
, (5.2)

where P denotes a diagonal density matrix, D a discrete finite-difference operator, N a diagonal dynamic

viscosity matrix.

5.3.3 Geometrically Consistent Volume Estimation

While I can compute volume fractions Wu
F ,W

u
L,W

s
F , and Ws

L for each cell independently, I found

that evaluating these volume fractions in this way causes some artifacts near solid boundaries and free

surfaces (e.g., dangling fluid particles in the air) due to the inconsistency of the estimated volumes over the
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Figure 5.3: (Left) Illustration for inconsistent volumes with the independent volume estimation. Red and
green squares represent u- and v-cells, respectively, and orange filled square represents an overlapping region
between u- and v-cells. Red and green dots represent cell nodes, where SDF are evaluated for the volume
computation of u- and v- cells, respectively. + and - represent signs of SDF at the node positions. (Middle)
Simulation grid, where SDF for both solid boundaries and free surfaces are defined on the grid nodes (blue
dots). (Right) Double-resolution grid, where volumes of each cell consistently contribute to the volume
summation of u- (red) and v- (green) cells on the simulation grid.

domain. For example, as illustrated in Figure 5.3 (left), since volumes for u-cell (red) and v-cell (green) are

independently evaluated with SDF at their cell nodes (red and green dots for u- and v-cells, respectively),

it would happen that the u-cell has zero volumes (all signs of SDF are plus) while the v-cell has non-zero

volumes leading to the volume inconsistency at the overlapping region (orange filled square).

To avoid this issue, I evaluate volume fractions in a geometrically consistent manner. I first construct a

grid with a doubled resolution compared to the simulation grid, and evaluate volume fractions of the cells on

the double-resolution grid with SDF defined on each node of the simulation grid (see Figure 5.3). Next, I

sum up these volume fractions computed on the double-resolution grid to account for one volume fraction for

the simulation grid, i.e., in 2D, I sum up four volume fractions on the double-resolution grid to account for u-

and v- cells emphasized by red and green squares, respectively, in Figure 5.3 (right). Since volume fractions

of each cell on the double-resolution grid consistently contribute to the volume summation on the simulation

grid, this approach enforces the volume consistency over the domain.

The volume fractions for viscous stress can be similarly estimated by summing up the fractions computed

on the double-resolution grid, and these computations can be naturally extended into 3D. In 2D, I evaluate

the volume fractions using a marching-squares-style area computation method. In 3D, I use a volume
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Figure 5.4: A viscous ball dropped onto a static, tilted solid dragon. The independent volume estimation
causes artifacts that particles unnaturally float under the dragon due to the inconsistent volumes (left), and the
supersampling method similarly suffers from the artifacts due to the inaccurate volume estimation (middle),
whereas my geometrically consistent volume estimation method does not have such issues (right).

computation algorithm using the divergence theorem (Wang, 2013), which was around five times faster than

the volume computation based on the tetrahedral decomposition (Min and Gibou, 2007).

My volume estimation approach can be considered as a generalized version of the volume estimation

using the supersampling method that determines the fluid volumes based on level-set values at specific

points(Bridson, 2015), and I found that a similar consistent volume computation method was recently used in

(Batty, 2008) employing the volume computation based on (Min and Gibou, 2007), unlike my method based

on (Wang, 2013).

5.3.4 Strong Two-Way Fluid-Solid Coupling

Similar to (Narain et al., 2010), I can describe a rigid body update due to the viscous stress applied from

fluids with volume fractions by

Vt+1 = Vt + ∆tM−1Wu
SJW

s
Ls, (5.3)

87



Figure 5.5: Multiple solid bunnies dropped onto fluids with spatially different viscosity values η = 1.0×
101, 1.0× 102, 1.0× 103, 1.0× 104, and 1.0× 108 kg/(s ·m). From left to right, one-way coupling, weak
two-way coupling, and my strong two-way coupling, for rendered fluid surfaces (Top) and particle view,
color-coded based on viscosity values (Bottom), where white and purple represent low and high viscosity
values, respectively. Fluids simulated with one-way coupling and weak two-way coupling do not sufficiently
reflect different viscosity values, whereas fluid simulated with strong two-way coupling correctly does.

where V ∈ R6 denotes a generalized rigid body velocity, M a diagonal, generalized rigid body mass matrix,

and J a linear operator which integrates viscous stresses over the surface of the rigid body to give viscosity

forces. The rigid body update can be also cast as a minimization problem (Batty et al., 2007; Narain et al.,

2010), and due to the minimization problem for fluids (Eq. (5.2)), I can naturally integrate these problems

into the following, which monolithically couples viscous fluid and rigid body dynamics:

s = arg min
s

(1

2
‖(PWu

FW
u
L)

1
2 (u∗ −∆tP−1Wu

L
−1DTWs

Ls‖2

+
∆t

4
N−1‖(Ws

FW
s
L)

1
2 s‖2 +

1

2
‖M

1
2 (Vt + ∆tM−1Wu

SJW
s
Ls)‖2

)
.

This minimization problem is quadratic, and its optimality condition leads to the following symmetric positive

definite (SPD) linear system for s:

(1

2
N−1Ws

FW
s
L + ∆tWs

LDP−1Wu
L
−1Wu

FD
TWs

L

+∆tWs
LJ

TWu
SM

−1Wu
SJW

s
L

)
s = Ws

LDWu
Fu
∗ −Ws

LJW
u
SV

t. (5.4)
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Although this system is SPD, the size of the system is very large (approximately 6H × 6H ignoring the

relatively small number of DOFs for rigid bodies, where H denotes number of total simulation voxels), and

partly dense due to the two-way coupled solid objects (Batty et al., 2007; Robinson-Mosher et al., 2008;

Bridson, 2015). Given u = u∗ −∆tP−1Wu
L
−1DTWs

Ls and Eq. (5.3), I can reformulate the system above

with unknown variables u, s, and V as


P
∆t

Wu
FWu

L Wu
FDTWs

L 0

Ws
LDWu

F − 1
2
N−1Ws

FWs
L −Ws

LJ
TWu

S

0 −Wu
SJW

s
L

M
∆t


 u

s

V

 =


P
∆t

Wu
FWu

Lu
∗

0

M
∆t

Vt

 .

From this system, I can reduce the system size by taking the Schur complement of the diagonal block matrix

for the viscous stress (eliminating s from the system), and I obtain the following linear system for u and V:

 A11 A12

AT
12 A22


 u

V

 =

 1
∆tPWu

FW
u
Lu
∗

M
∆tV

t

 ,

A11 =
1

∆t
PWu

FW
u
L + 2Wu

FD
TWs

LNWs
F
−1DWu

F .

A12 = −2Wu
FD

TWs
LNWs

F
−1JTWu

S .

A22 =
M

∆t
+ 2Wu

SJNWs
F
−1Ws

LJ
TWu

S .

This linear system can be more efficiently solved than Eq. (5.4) because the resulting system is still SPD,

the system size is much smaller (approximately 3H × 3H), the system matrix is sparser due to V treated as

unknown variables even though fluid and solid dynamics are monolithically coupled (Robinson-Mosher et al.,

2008; Bridson, 2015).

5.3.5 Position Correction

The divergence-free velocity fields enforce the constant volumes of fluids in the continuous setting. In

practice, however, fluid volumes can change due to the spatial and temporal discretization involving numerical

errors, as a volume correction method was proposed to address this issue for Eulerian fluid simulation with

the level-set surface tracking (Kim et al., 2007). Given Lagrangian particles used for tracking surfaces in

my method, to preserve the fluid volumes, it is necessary to enforce the uniform distribution of particles,

which also addresses the gap and holes caused by non-uniform particle distributions (Bridson, 2015). While
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some position-correction methods have been previously proposed (Ando and Tsuruno, 2011; Um et al.,

2014), I found that damped motions of viscous fluids make the volume changes noticeable more easily and

require more uniform particle distributions. To this end, I present a position-correction method using density

constraints motivated by the purely Lagrangian SPH work (Macklin et al., 2014).

I define the density constraint per particle with particle density ρi and the rest density ρ0 as

Ci = max

(
ρi
ρ0
− 1, 0

)
,

where ρi is computed by ρi = mi
∑

j wij(x) with particle mass m and position x and the smoothing kernel

w using the traditional summation approach in SPH. Solving the constraints by correcting particle positions

can be formulated as a minimization problem:

∆x = arg min
∆x

1

2
∆xTA∆x, subject to C(x + ∆x) = 0,

where ∆x denotes the position correction, A mass matrix for particles, and I can compute the position

correction locally following (Macklin et al., 2014) by

∆xi = − CiA
−1∇CTi

∇CiA−1∇CTi
.

Although correcting particle positions with this correction vector would work, many iterations are

necessary in most cases. This is because this method tries to satisfy the constraints by pushing particles

into the solids although these particles are again projected back to the solid surfaces using the level-set φ by

x := x− φ ∇φ‖∇φ‖ without caring about the particle density at the projected position. Considering this fact,

to reduce necessary iterations, I allow particles farther from solid boundaries to move more distances. This

approach is motivated by the mass-splitting (Tonge et al., 2012) and mass-scaling (Macklin et al., 2014). I

define the scaling factor α based on the distance to solid boundaries clamping it to avoid instability as

αi = clamp(φ(xi)/θ, αmin, αmax),
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Figure 5.6: (Top) Pileup of multiple viscous bunnies simulated using the distance constraint (left), density
constraint without (middle) and with (right) the scaling based on the distance to solid boundaries. (Bottom)
Profiles of the iteration counts (left) and maximum density (right). The density constraint converges faster,
and the scaling accelerates the convergence of the density constraints.

where θ denotes the grid width and αmin and αmax the minimum and maximum values for α, respectively. I

typically use αmin = 1.0 and αmax = 5.0. With the scaling, I correct the particle positions by

xl+1
i = xli + αi∆xli,

where l denotes an iteration index. The effectiveness of the scaling is demonstrated in Figure 5.6, which

compares my method with the distance and density constraints based on (Ando and Tsuruno, 2011) and

(Macklin et al., 2014), respectively.

5.3.6 Discussions

At the continuous formulation level, the resulting system of my method for viscous fluid dynamics is

closely related to the work of (Batty and Bridson, 2008), and my method can be considered as an augmented

91



version of their method with geometrically consistent volume fractions for both solid boundaries and free

surfaces to more accurately account for sub-grid details. In addition, I proposed the two-way coupling method

to achieve interactions between highly viscous fluids and solid objects, and presented the position-correction

method to address the non-uniform particle distributions.

While my formulation and its interpretation are inspired by the work of (Larionov et al., 2017), these

formulations are different in that my method decouples the pressure and viscosity solves while their method

couples these. As reported in (Larionov et al., 2017), these different formulations have advantages and

disadvantages. For example, the decoupled approach is more efficient whereas this approach cannot faithfully

reproduce coiling phenomena nor preserve surface details, and vice versa. In this work, I chose the decoupled

approach mainly for efficiency. However, my position-correction method can be naturally integrated into

the coupled solver (Larionov et al., 2017), and the two-way coupling method can be unified as well forming

an SPD system with dense blocks for stress variables or a sparse indefinite system for pressure and velocity

variables.

5.4 Results and Discussions

All the examples are executed on a Linux machine with 24-core 2.50GHz Intel Xeon and 256GB RAMs.

For the viscosity solve, I use Modified Incomplete Cholesky Conjugate Gradient (MICCG) and set the

convergence criterion as the infinity norm of the relative residual 1.0× 10−10. I used the CFL number of

3.0 with the adaptive time stepping. I performed the position correction once per frame with the termination

criteria (tolerance) as 10% of the rest density. Simulation conditions and performance are summarized in

Appendix D.1.

5.4.1 Volume Estimation

I compared my geometrically consistent volume evaluation method with a method that independently

estimates volume fractions and the supersampling-based method (Bridson, 2015). I use a scenario, where a

viscous ball is dropped onto a static, tilted dragon, as shown in Figure 5.4. With the independent volume

estimation, the estimated volumes can be inconsistent over the domain, and fluid/solid and liquid/air domains

can be erroneously evaluated. Consequently, the viscosity solve would generate non-physical velocity fields

leading to the artifacts that particles unnaturally float in the air. With the supersampling method, although the
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Table 5.1: Simulation conditions and results for Figure 5.7. Re: Reynolds number, V̂∞: analytical terminal
velocity magnitude of the ball, V∞oneway, V∞weak, V∞strong: averaged terminal velocity magnitude at equilibrium
from the simulation with one-way, weak two-way, and strong two-way coupling, respectively. εoneway, εweak,
εstrong: relative errors for one-way, weak two-way, and strong two-way coupling, respectively. The gray
row means that Stokes’ law is invalid because of the high Reynolds number. My strong two-way coupling
achieves up to approximately 10% errors and is several orders of magnitude more accurate than one-way and
weak two-way coupling.

η kg/(s ·m) Re V̂∞ m/s V∞oneway m/s εoneway(%) V∞weak m/s εweak(%) V∞strong m/s εstrong(%)

1.0× 101 1.09× 101 1.09× 100 1.65× 100 51.3 0.94× 100 13.6 0.64× 100 41.1
1.0× 102 1.09× 10−1 1.09× 10−1 1.28× 100 1,073.2 0.52× 100 375.0 0.98× 10−1 10.3
1.0× 103 1.09× 10−3 1.09× 10−2 0.57× 100 5,173.4 0.45× 100 4,018.5 1.01× 10−2 6.9
1.0× 104 1.09× 10−5 1.09× 10−3 0.94× 100 86,403.3 0.44× 100 40,085.9 1.11× 10−3 1.5
1.0× 105 1.09× 10−7 1.09× 10−4 0.67× 100 616,315.8 0.43× 100 396,816.0 1.12× 10−4 2.3

volume estimation can be consistent over the domain, the estimated volumes are not accurate enough since

this approach relies on volume estimation at specific points only. Consequently, similar to the independent

volume estimation, particles can be unnaturally left in the air. In contrast, my method enforces the volume

consistency over the domain achieving more accurate estimations and does not suffer from the artifacts with

a little additional cost (approximately 13% more costly for the volume computation than the inconsistent

version and the supersampling method leading to only about 5% overhead for the total computation time).

5.4.2 Two-Way Fluid-Solid Coupling

To validate the accuracy of my strong two-way coupling for viscosity, I first experimented with a

simple scenario, where a solid ball is falling inside of viscous fluids, so that analytical solutions of the

solid velocity can be computed. I use fluid viscosity values η = 1.0× 101, 1.0× 102, 1.0× 103, 1.0× 104,

and 1.0 × 105 kg/(s ·m) with fluid density ρf = 1.0 × 103 kg/m3, solid density ρs = 3.0 × 103 kg/m3,

and the radius of the solid ball r = 5.0 × 10−2 m. I compare my method with one-way coupling from

solid-to-fluid, weak two-way coupling (viscosity solve followed by an implicit solid velocity update), and the

analytical solution derived from the Stokes’ law. As for pressure forces, I achieve strong two-way coupling

based on the works of (Batty et al., 2007; Ng et al., 2009). Figure 5.7 shows the comparison executed with

η = 1.0× 103 kg/(s ·m). For one-way and weak two-way coupling, the solid ball is treated as prescribed

(or kinematic) object in the viscosity solve, giving rise to incorrect fluid and solid dynamics even though

viscosity force is applied in the case of weak two-way coupling. On the other hand, the strong two-way

coupling method appropriately handles the interplay with viscosity forces between the fluids and the solids in
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the viscosity solve, leading to the terminal solid velocities close to the analytical solution. Although iterative

refinements are possible to improve the accuracy with the weak coupling as implied in (Akbay et al., 2018),

in this scene, the computation time for viscosity solve with one-way, weak two-way, and strong two-way

coupling is almost the same and occupies approximately 25–40% of the total simulation time. Thus, I believe

that the iterative refinement with weak two-way coupling will become more costly than my strong two-way

coupling.

Table 5.1 summarizes the simulation conditions and results. The velocities of the solid ball simulated

with the one-way and weak two-way coupling methods significantly deviate from the analytical solutions

whereas my method generates the solid velocities very close to the analytical solutions (relative errors are up

to around 10%) except for the case of η = 1.0× 101 kg/(s ·m), where the Stokes’ law is not valid due to

the high Reynolds numbers.

I also compared my method with one-way and weak two-way coupling in a more complex scenario,

where multiple solid bunnies are dropped onto fluid volumes with spatially varying viscosity values from

η = 1.0 × 101 to 1.0 × 108 kg/(s ·m), as shown in Figure 5.5. One-way and weak two-way coupling

methods do not generate plausible motions nor sufficiently reflect the different viscosity values to the

dynamics, whereas my method produces natural behaviors of solid objects as expected with different viscosity

values.

5.4.3 Position Correction

To demonstrate the effectiveness of my position-correction method, I experimented with a scene, where

a bulk of viscous fluids is successively compressed by prescribed, solid circular plates with multiple holes,

as shown in Figure 5.8. In this scene, I compared my method with previous approaches using no position

correction and position correction based on distance constraints (Ando and Tsuruno, 2011). The previous

approach without any position corrections easily loses the fluid volumes. While the distance-based position

correction better preserves the fluid volumes, still some volumes are lost because this approach is not designed

to preserve particle density (and volumes). By contrast, my method directly enforces the uniform particle

distributions leading to particle densities closer to the rest density (see particles color-coded based on their

densities in Figure 5.8) and preserving the fluid volumes. This enables fluid volumes to be sufficiently pushed

by the solid plates and come out from the holes, reaching the top of the plates.
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5.4.4 Complex Examples

Figure 5.9 demonstrates three gears two-way coupled with viscous fluids. In this scene, only one

rotational DOF for each gear is effective in the viscosity solve, and two rotational and three translational

DOFs are eliminated from the system. I note that the two-way coupling with viscosity forces accounts for the

dragging effects, which can accelerate and decelerate the angular velocities of the gears.

Figure 5.10 demonstrates complex two-way interactions between multiple solid bunnies and viscous

fluids in a rotating drum. Because of the two-way fluid-solid coupling followed by the collision handling

between solid objects, interactions between the solid bunnies and the drum in viscous fluids are naturally

simulated.

Figure 5.11 demonstrates the yogurt smoothie interacting with dropped fruits. The yogurt smoothie

is pushed by the dropped strawberry and thus overflows from the cocktail glass, as observed in the real

phenomena.

5.4.5 Discussions, Limitations, and Future Work

Volume fractions. In the viscosity solve, I account for the sub-grid geometry with volume fractions

based on the variational approach (Larionov et al., 2017). In the pressure solve, it is known that using

the cut-cell method for the fluid-solid interface (Ng et al., 2009) and ghost fluid method for the liquid-air

interface(Gibou et al., 2002) generally gives more accurate results. However, it is not straightforward

to employ these approaches in the viscosity solve, e.g., because the cut-cell methods cannot consistently

define the area fractions for velocity components due to changing flux directions with the diagonal and off-

diagonal components of the viscous stress. I tested the cut-cell method with a fixed flux direction respecting

the diagonal viscous stress components. Although I achieved better accuracy suppressing non-physical

oscillations of the solid ball velocities in the scenario shown in Figure 5.4, I found that neglecting the flux

directions of the off-diagonal components leads to popping visual artifacts of particles. Thus, it would be

necessary to investigate how to consistently account for the sub-grid geometries to achieve higher accuracy

without the artifacts.

Boundary condition. When I consider viscosity formulations with solid objects, it is common to use the

no-slip boundary condition because boundary layers, where viscous forces become dominant, are formed at

the proximity of solids in reality. Although this approach works well for fluids with relatively high viscosity
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values, when fluids are less viscous, the effect of the no-slip boundary condition is magnified up to the

scale of simulation cells (which are generally much larger than the thickness of the actual boundary layers)

exhibiting excessively viscous behaviors on the boundaries. Using higher resolutions to resolve these issues

drastically increases the simulation cost and thus is impractical. One approach to simulating less viscous

fluids with solid boundaries is to use fluid velocities instead of solid velocities at the boundaries. In this

case, however, the stability of the viscosity solve is not guaranteed, and I encountered the stability issues

in my early experiments. Although the use of the free-slip condition or Navier-slip boundary condition for

friction is suggested in (Bridson, 2015), formulations and implementation become more complex. It would

be worthwhile to explore efficient approaches to enforcing these boundary conditions for fluid simulation

with a wide range of viscosity values.

Density constraint. The density constraint can resolve the compression of fluids as shown in Figure 5.8.

However, since the density constraint does not attract particles each other, when particles are separating from

the others, fluid volumes would suffer from bumps and holes at the limit of the particle resolution. Although

attraction forces can be used, I found that the attraction forces cause particle clustering, which is known as

the tensile instability in SPH. To address this issue, techniques, such as particle split and merge operations

(Narain et al., 2010), particle sampling (Yue et al., 2015), a narrow band approach using the level-set (Sato

et al., 2018) might be helpful.

Unified solve. While I preferred to decouple pressure and viscosity solves for efficiency, there are

certain scenarios, where pressure-viscosity coupled solvers are preferable due to, e.g., capability of coiling,

better energy preservation, and more surface details (Larionov et al., 2017). In addition, the second pressure

solve in the decoupled approach would affect the results of the viscosity solve, leading to artificial melting

artifacts, e.g., the right most bunny gradually sinking in fluids regardless of the very high viscosity value

(=1.0 × 108 kg/(s ·m)). Similarly, since my method separately addresses fluid-solid and solid-solid

interactions, intensive solid-solid collisions would cause various negative effects, e.g., oscillations of velocity

fields and the loss of fluid volumes, both of which can be observed in Figure 5.5. For future work, I plan to

develop a solver that can simultaneously handle pressure and viscosity solves and fluid-solid and solid-solid

interactions for robust, accurate, and consistent simulations.
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5.5 Conclusions

I proposed an augmented viscous fluid solver to simulate a wider range of viscous fluid scenarios. My

method offered three key contributions. 1) To avoid the dangling artifacts, I presented a geometrically

consistent volume estimation method. 2) I also proposed a new two-way coupling technique that can handle

interactions between fluids and solid objects with viscosity forces. My two-way coupling formulation can

be seamlessly integrated into the implicit viscosity solve and produces a sparse SPD system monolithically

unifying the dynamics of viscous fluids and solid objects. 3) I presented a position-correction method

that enforces the uniform distributions of particles to address the volume loss issues, and accelerated the

convergence of position corrections with the scaling scheme based on the distance to solid objects. I verified

the accuracy of my method by comparing the results with the analytical solutions and demonstrated the

effectiveness of my solver in various challenging scenarios.
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Figure 5.7: A solid ball falling inside of fluids with viscosity value η = 1.0× 103 kg/(s ·m). (Top) From
left to right, one-way coupling, weak two-way coupling, and strong two-way coupling. Fluids simulated with
one-way and weak two-way coupling cannot sufficiently support the solid ball due to the incorrect viscosity
forces while my strong two-way coupling method successfully supports the solid ball. (Bottom) A profile
for y-velocity of the solid balls with the analytical solution. The resulting solid velocities with one-way and
weak two-way coupling significantly deviate from the analytical solution, whereas the solid velocities given
with my strong two-way coupling are in good agreement with the analytical solution.
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Figure 5.8: (Top) A viscous fluid volume successively compressed by prescribed circular plates with several
holes. From left to right, no position correction, distance-based position correction, and my method for
surface rendering and particle view with color coding (white: low density, red: high density). Because of the
density constraint, my method can better preserve the volume of the viscous fluids reaching the top of the
plates while other approaches fail to reach the top due to the volume loss. (Bottom) Profile of the maximum
particle density, which indicates the inverse of local volumes. Compared to other approaches, my method
preserves the density closer to the original one.
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Figure 5.9: Three gears interacting with viscous fluids with η = 1.0×101, 1.0×102 and 1.0×103 kg/(s ·m)
from left to right. Different viscosity values induce distinct fluid behaviors and solid rotations.

Figure 5.10: Multiple solid bunnies interacting with viscous fluids in a rotating drum. Simultaneous one-way
(between the bunnies and rotating drum) and two-way (between the bunnies) solid collisions can be addressed
by combining my fluid solver with a rigid body solver. Front and back sides are clipped for visualization.
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Figure 5.11: (Left) Yogurt smoothie overflowing from a cocktail glass because of the dropped strawberry.
(Right) Real yogurt smoothie.
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CHAPTER 6: Video-Guided Real-to-Virtual Parameter Transfer for Viscous Fluids

6.1 Introduction

Fluids are ubiquitous and common – encountered in various aspects of our everyday lives. Examples

of these materials include water, milk, honey, machinery oil, molten chocolate, paint, and shampoo. These

liquids have different properties and exhibit distinct behaviors. One key factor that determines fluid properties

and behaviors is viscosity, as this can be realized from the Reynolds number, which consists of viscosity

parameters and characterizes flow patterns of fluids. For example, fluids with low viscosity values flow

vividly generating turbulence and splashes, whereas highly viscous fluids exhibit damped motions and

characteristic rotational behaviors, such as buckling phenomena. While many of previous works have focused

on inviscid fluids, several researchers have attempted to more accurately simulate the dynamics of highly

viscous fluids and improved the visual fidelity with physically-based viscosity models (Carlson et al., 2002;

Batty and Bridson, 2008; Larionov et al., 2017; Bergou et al., 2010; Batty et al., 2012; Zhu et al., 2015).

While physically-based approaches can effectively simulate viscous fluids based on the physical proper-

ties of fluids, one known challenge is that it can be very difficult, time-consuming, and tedious to choose

appropriate parameters to generate desirable fluid behaviors, e.g., approximating behaviors of viscous fluids

observed in the real world. If physical parameters are not ideal, these approaches would generate visually

disconcerting results, which negatively impact our sense and recognition of the fluid materials and dampen

Figure 6.1: My framework identifies the set of physical variables and viscosity parameters automatically
from example videos capturing fluid flows in the real world (left) by approximating the flows with viscous
fluid simulation (middle). The identified physical values and parameters can then be used to simulate viscous
fluids in a new scenario, preserving the style of the fluid flows in the example videos (right).
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our experience in various applications, such as video games, movies, and virtual reality. Even worse, such

parameters would cause simulation failure leading to unpredictable results. Consequently, it is necessary

to manually tune parameters through laborious trial-and-error processes until satisfactory visual results are

obtained. In practice, fluid simulation can take several hours or more, requiring many hours of waiting time

to check intermediate results. Thus, such manual parameter-tuning is beyond practical.

One possibility to select appropriate parameters for fluid simulation is to adopt material parameters listed

in a book or measured in the real world (e.g., using a viscometer and a rheometer). In general, however,

viscosity values of most of fluid materials are not available at hand, and such instruments are not widely

available for personal use, as mentioned in (Nagasawa et al., 2019). In addition, fluid simulation is one way

to approximate the behaviors of real complex fluid flows using a simplified mathematical model of physics to

make the simulation tractable, and it is known that different fluid simulation methods often lead to distinct

simulation results even though the same governing equations are solved under the same simulation setting and

physical parameters (Um et al., 2017). As such, there is no guarantee that fluid simulation with the viscosity

values found in a handbook or measured with a viscometer can generate fluid behaviors similar to those

observed in the real world, except for few limited, ideal situations. Furthermore, since some fluid simulation

methods are devised to improve the efficiency, robustness, and capability based on heuristics, these methods

may not have physical parameters corresponding to their counterparts in the real world. From a viewpoint

of artists, physical parameters are not necessarily intuitive enough to generate their conceived fluid effects

because changes in physical parameters modify fluid flows in a complex and unpredictable way, and the same

material parameters can lead to different behaviors depending on simulation scales. Instead, one possible

approach is to use examples of desired fluid behaviors to infer appropriate parameters based on the given

observed examples.

In this chapter, I propose a new material parameter optimization framework for automatic parameter

identification for fluids with example videos captured in the real world. My framework takes as input a

video capturing real fluid flows and extracts positional information of fluids from the example video for a

reference. Then, I identify the set of physical values and viscosity parameters by minimizing the differences

between the example video and fluids simulated with my viscous fluid solver in an iterative process. Since it

is challenging to accurately reconstruct 3D fluid information from 2D videos, I measure the differences of

the example data and my simulation results in the 2D screen space by projecting my 3D simulation results

onto the screen space. Because of the 3D simulation analysis in the iterative process, the results of the
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forward simulation with the identified parameters allow us to infer hidden physical quantities of fluids in the

videos. Furthermore, the identified parameters can be used in completely new scenarios while preserving the

styles of the fluid behaviors in the example videos. To show the effectiveness of my framework, I validate the

identified parameters in various scenarios, infer hidden physical quantities, and demonstrate the parameter

transfer from the real world to virtual environments.

In summary, my main contributions and key results include:

• A parameter optimization framework that identifies the viscosity parameters for fluids based on

example videos captured from real-world fluid phenomena, inferring hidden physical quantities of fluids.

• Screen-space evaluation that allows for measuring differences between the example data and simulation

results without reconstructing 3D data.

• Parameter transfer from real to virtual environments. It introduces a new data-driven approach for

fluid animation and enables us to reproduce fluid behaviors in the virtual environment, preserving the

observed fluid properties in the real world.

To the best of my knowledge, my framework is the first method for identifying material parameters of

fluids, and Figure 6.1 demonstrates the effectiveness of my framework.

6.2 Related Work

Fluid simulation has been a major research topic of significant interest in computer graphics, and various

techniques have been proposed. In this section, I focus my discussion on previous works closely related to

my method. Later, I also discuss several works on material parameter estimation.

6.2.1 Viscous Fluid Simulation

Viscous fluids exhibit behaviors different from inviscid fluids, and reproducing their characteristic

behaviors has been required over years for various applications. In the Eulerian approach, Stam (Stam, 1999)

developed a stable fluid method using implicit integration with the Laplacian form of viscosity for fluids

without free surfaces. Later, Carlson et al. (Carlson et al., 2002) extended the method with implicit viscosity

integration for fluids with free surfaces, compromising the accurate handling of rotational motions at the free

surfaces. Rasmussen et al. (Rasmussen et al., 2004) augmented the implicit Laplacian-based formulation
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with explicitly integrated off-diagonal components to account for the rotational behaviors while sacrificing

the robustness of their solver. Batty and Bridson (Batty and Bridson, 2008) proposed a fully implicit viscosity

integration scheme for the full form of viscosity to improve the simulation accuracy in the free surface

handling, and this approach was extended for adaptive tetrahedral meshes (Batty and Houston, 2011) and

octree data structures (Goldade et al., 2019), and for two-way solid-fluid coupling (Takahashi and Lin,

2019a). Larionov et al. (Larionov et al., 2017) proposed a pressure-viscosity coupled solver to further improve

the accuracy in the free surface handling. Recently, Kim et al. (Kim et al., 2019) proposed an efficient

deep-learning-based framework to interpolate simulation results using different viscosity values. Unlike

these approaches for 3D volumes, Vantzos et al. (Vantzos et al., 2018) proposed an efficient two-dimensional

approach to simulating viscous thin films.

To simulate more general fluids, e.g., viscoelastic fluids and non-Newtonian fluids, various approaches

have been also proposed. Goktekin et al. (Goktekin et al., 2004) presented a method for simulating viscoelastic

fluids with extra elastic forces. To handle fluids with a variety of properties in a unified way, material point

methods have been widely adopted with some specialized extensions for snow (Stomakhin et al., 2013),

foams (Yue et al., 2015), melting solids (Stomakhin et al., 2014), elastoplastic solids (Gao et al., 2017; Fang

et al., 2019), and granular materials (Klár et al., 2016; Daviet and Bertails-Descoubes, 2016; Yue et al., 2018).

Recently, to better approximate the behaviors of blended fluid materials, Nagasawa et al. (Nagasawa et al.,

2019) proposed a parameter blending scheme using the method of (Yue et al., 2015). While these approaches

allow us to simulate a wide range of materials, relations between simulation parameters in their constitutive

laws and material parameters are complicated. Thus, in this chapter, I focus on purely Newtonian viscous

fluids.

In the Lagrangian setting, one commonly used approach to simulating viscous fluids is based on Smoothed

Particle Hydrodynamics (SPH), and various approaches have been proposed to improve the efficiency and

robustness. Takahashi et al. (Takahashi et al., 2015) proposed an implicit viscosity integration to improve the

robustness compared to explicit integration, adopting the method of (Batty and Bridson, 2008). To further

improve the efficiency, Peer et al. (Peer et al., 2015) presented a different implicit viscosity integration

model with prescribed gradient, compromising the physical consistency, and this approach was extended to

improve the diffusivity of the vorticity (Peer and Teschner, 2017) and to support a wider range of viscous fluid

behaviors (Bender and Koschier, 2016). Recently, Weiler et al. (Weiler et al., 2018b) presented a robust and

efficient implicit viscosity formulation while achieving physical consistency. To handle fluids with various
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properties in a unified way, Barreiro et al. (Barreiro et al., 2017) proposed using conformation constraints

within the position-based dynamics framework.

Unlike these approaches based on SPH, some works simulated viscous fluids by formulating particle

interactions using spring forces between particles (Clavet et al., 2005; Takahashi et al., 2014). Taking

advantages of Lagrangian discretization, several specialized techniques based on simplicial complexes have

been proposed to simulate viscous threads and sheets (Bergou et al., 2010; Batty et al., 2012; Zhu et al.,

2015).

In the fluid simulation literature, a variety of simulation methods have been proposed to simulate viscous

fluids. However, how to automatically select appropriate parameters for simulation methods has not yet been

investigated, and I contribute to this topic.

6.2.2 Fluid Capturing

Capturing fluids has been a challenging problem over the decades. One reason is that fluids do not have

their rest shapes, and this fact makes it unreasonable to assume predefined shapes or deformations from

specific shapes, which can be effectively used in capturing the dynamics of rigid bodies (Monszpart et al.,

2016) and deformable objects (Wang et al., 2015). In addition, the appearance of fluids can be easily and

significantly affected by surrounding environments, e.g., due to light scattering, absorption, reflection, and

refraction, making fluid capturing even more challenging.

An early work to model fluid volumes was proposed by Ihrke and Magnor (Ihrke and Magnor, 2004) and

Hasinoff and Kutulakos (Hasinoff and Kutulakos, 2007). They reconstructed fluid volumes by solving a least

squares problem, penalizing differences between numerically computed pixel intensity and observed intensity.

These approaches were extended to avoid blurry, reconstructed volumes by transferring the appearance of

fluid volumes (Okabe et al., 2015). For the dynamic 3D volume reconstruction, several researchers made

use of volume representations, similar to tomography. Atcheson et al. (Atcheson et al., 2008) modeled

dynamic gaseous volumes based on information captured with multiple cameras. Gregson et al. (Gregson

et al., 2012) focused on fluid mixing based on dye concentrations. A similar minimization approach was

employed to reconstruct 3D liquid surfaces, but not volumes, with submerged checker board patterns (Morris

and Kutulakos, 2011). The main focus of these works are on modeling fluid geometry, and velocities of the

fluids are not inferred or roughly estimated with an assumption on the rotational symmetry.
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To compute more accurate velocity fields based on data captured from real-world phenomena, e.g., videos,

several researchers have proposed methods that combine fluid simulation with iterative inversion. Wang et

al. (Wang et al., 2009) reconstructed not only fluid volumes but fluid velocities from fluid videos, which

were captured using synchronized stereo cameras with dyed fluids. Li et al. (Li et al., 2013) recovered water

surfaces and their velocities by combining the shallow water simulation with water surfaces reconstructed

using a shape reconstruction method based on shading. Gregson et al. (Gregson et al., 2014) proposed a

velocity reconstruction framework based on an optical flow method with physics regularizer terms similar

to (Corpetti et al., 2002; Chen et al., 2016), combining tomographic 3D volume information captured

with the method of (Gregson et al., 2012), and this framework was augmented to achieve the velocity

reconstruction from a single-view video (Eckert et al., 2018). Recently, Zang et al. (Zang et al., 2019)

proposed a tomographic reconstruction algorithm for time-varying deforming objects, capturing both of the

volumes and deformation fields.

In the physics literature, researchers often utilized sophisticated hardware to directly capture the fluid

volumes or velocity fields. One popular approach is Particle Image Velocimetry (PIV), and a good overview

for PIV is given in (Grant, 1997). PIV injects tiny particles into fluids, illuminates the particles with a sheet

of laser light, and then estimates the particle movements and fluid velocities. In the graphics literature, Xiong

et al. (Xiong et al., 2017) proposed a new PIV algorithm that colors particles based on their depth to track 3D

velocity fields with a single camera.

While various algorithms have been proposed for fluid capturing, these algorithms typically require a

sophisticated setup, such as synchronized cameras, dyed fluids, and laser device. Thus, in my framework, I

avoid such setup and use a commonly available device, smartphone, for fluid capturing. However, I note that

these capturing techniques are orthogonal to my goal and can be easily incorporated into my framework.

6.2.3 Material Parameter Estimation

In physically-based simulations, choosing simulation parameters is one of the most critical steps to

generate visually plausible results or even to perform stable simulations. Because of the importance and

difficulty in tuning physical parameters, various researchers have attempted to automate this process.

One commonly used approach for material parameter estimation is to find optimal parameters that

generate behaviors close to example data, e.g., captured in the real world, and this approach has been

extensively adopted in the literature, especially for deformable solids (Gerlach and Matzenmiller, 2007).
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Figure 6.2: Overview of my parameter identification framework. My framework consists of two stages:
reference preparation and parameter identification. In the reference preparation stage, I capture a video of
real fluid flows and preprocess the video to extract positional information of the fluid. In the parameter
identification stage, I iteratively perform fluid simulation, project simulated fluids onto the screen space, and
evaluate objective functions with the extracted fluid data. Finally, my framework outputs identified viscosity
values.

Pai et al. (Pai et al., 2001) proposed a method for acquiring material parameters from interactions with

deformable objects via robotic measurement facility. Becker and Teschner (Becker and Teschner, 2007a)

proposed a framework to optimize elasticity parameters with linear Finite Element Method based on the

relation between the initial undeformed geometry and applied forces. Lee and Lin (Lee and Lin, 2012) also

presented a framework to identify material parameters using FEM simulation by minimizing the distances

between surface nodes from the simulation and reference. Bickel et al. (Bickel et al., 2009) proposed a

method for optimizing the material properties of deformable objects with deformation measurements taken

from real-world experiments. Later, Bickel et al. (Bickel et al., 2010) used their techniques to fabricate

deformable objects that have their desirable properties. These material parameter optimization techniques

were further extended using model reduction to improve the efficiency (Xu et al., 2015). Xu and Barbič (Xu

and Barbič, 2017) presented an optimization framework for damping coefficients to improve the behaviors of

deformable objects. Yan et al. (Yan et al., 2018) presented an inexact descent approach to accelerating the

parameter optimization of elastic materials. Deformation measured in the real world was also used for the

parameter identification for clothing (Wang et al., 2011; Miguel et al., 2012; Clyde et al., 2017) and human

body (Pai et al., 2018). In sound rendering, sound captured from various materials was also used as reference

data to optimize the audio material parameters (Ren et al., 2013).

While some approaches take example data from the real world for references, these references can be

prepared by users. Twigg et al. (Twigg and Kačić-Alesić, 2011) proposed an optimization method that finds a
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user-specified shape under gravity. A similar optimization approach was employed and extended to handle

frictional contact for hair (Derouet-Jourdan et al., 2013) and shells (Ly et al., 2018). Li et al. (Li et al., 2014)

presented a space-time optimization framework that simultaneously optimizes the dynamics and material

parameters of subspace deformable objects.

Several researchers also proposed material parameter identification methods based on images and videos

to avoid using specialized equipment to estimate deformations and forces. Wang et al. (Wang et al., 2015)

proposed a material parameter optimization approach by combining expectation maximization method and

Nelder-Mead method. Yang and Lin (Yang and Lin, 2016) identified material properties for deformable

objects from a few images with the particle swarm method. These material parameter optimization techniques

with videos taken in the real world are also applied to cloth (Bhat et al., 2003; Yang et al., 2017, 2016), hair

(Hu et al., 2017) and rigid bodies (Bhat et al., 2002; Monszpart et al., 2016).

Although various attempts have been made to facilitate the parameter tuning and selection, little research

has been conducted for fluids. In this chapter, I address this problem, and propose perhaps the first method

for identifying the material parameters for fluids using captured video data.

6.3 Overview

My goal is to identify material parameters of fluids, with which a viscous fluid simulator can generate

fluid behaviors as close as possible to the example data captured from real-world phenomena. Figure 6.2

illustrates my material parameter identification framework. My framework consists of two stages: reference

preparation stage and parameter identification stage. In the reference preparation stage, my framework takes

as input example videos captured from real-world fluid phenomena. Then, I preprocess the videos and extract

positional data of the fluid so that these data are amenable in the following parameter identification stage.

The parameter identification stage is an iterative process and takes initial or refined material parameters as

input. In this stage, I first perform forward fluid simulations with the material parameters to obtain simulation

results. Next, I project the simulation results onto the screen space with the camera parameters used to capture

the example videos, and then evaluate my objective functions, which measure the differences between the

example data and projected simulation results. My framework iteratively refines the material parameters and

finally outputs identified material parameters.
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In my framework, a viscous fluid solver is iteratively used within the parameter identification stage, and

the identified material parameters (which can be used in different scenarios) are for the viscous fluid solver.

While my framework is not restricted to a specific fluid solver, for self-containedness, I first briefly review

my viscous fluid solver in § 6.4. The details of my material parameter identification framework are described

in § 6.5.

6.4 Viscous Fluid Solver

The dynamics of viscous fluids can be described by the incompressible Navier-Stokes equations given

by

Du

Dt
= −1

ρ
∇p+

1

ρ
∇ · s +

1

ρ
f , (6.1)

s = η
(
∇u + (∇u)T

)
, (6.2)

∇ · u = 0, (6.3)

where t denotes time, D
Dt material derivative, u velocity, ρ density, p pressure, s symmetric viscous stress

tensor, f external force, and η dynamic viscosity. I include the gravity force and surface tension force as

external forces. To advance the simulation step, I first address the advection term with the affine particle-in-

cell (APIC) approach (Jiang et al., 2015), add external forces, and then handle pressure and viscosity terms

simultaneously.

I address the pressure and viscosity terms in a unified and implicit manner as

ut+1 − u∗

∆t
= −1

ρ
∇p+

1

ρ
∇ · st+1, (6.4)

st+1 = η
(
∇ut+1 +

(
∇ut+1

)T)
, (6.5)

∇ · ut+1 = 0, (6.6)

where u∗ denotes intermediate velocity after advection and external force steps, and ∆t time step size. To

solve the unified pressure-viscosity problem, I discretize it based on the variational principle (Larionov et al.,

2017) using the volume computation method described in (Takahashi and Lin, 2019a).
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While the dynamic viscosity η can be spatially and temporally varying, in this chapter, I mostly focus

on the static case for η as most of real Newtonian fluids hold a uniform property over the fluid volume, and

this make the parameter identification and validation of the identification results more tractable. In the next

section, I aim to identify the viscosity parameter η based on a given example video.

6.5 Viscosity Parameter Identification

My method identifies the viscosity parameters of fluids by minimizing the differences between example

data captured from real-world phenomena and fluids simulated with my viscous fluid solver. While multiple

formulations can be considered for this parameter identification problem, e.g., with soft constraints, to

invalidate physics violations and undesirable local minima (Yan et al., 2018), I formulate the problem with

hard constraints as the following constrained space-time optimization problem:

η = arg min
0 ≤ η

E, (6.7)

E =
∑
f

ωfEf subject to Qf+1 = F (Qf ), (6.8)

where E denotes an objective function, which measures the differences between example data and the

simulated fluids, ω weighting coefficients for each frame, Q a state variable for fluids, F a function for the

forward simulation, and frame index f = 0 . . . N − 1, where N denotes the number of frames considered in

the optimization.

6.5.1 Objective Function

To use videos as a reference for the parameter identification, it is necessary to extract some information

on fluids, such as fluid geometry, that can be compared with results of 3D fluid simulations. In the literature,

some works attempted to reconstruct 3D fluid geometry and velocity from videos, e.g., (Wang et al., 2009;

Okabe et al., 2015; Li et al., 2013). However, these approaches typically require a complex equipment

setup, such as synchronized multiple cameras, depth sensors, and/or dyed liquid; or they need to restrict fluid

motions because it is very challenging to reconstruct 3D fluid data from videos which include 2D information

only (i.e., 3D information is already lost). Since there are multiple 3D fluid configurations, which lead to

similar 2D fluid configurations on the screen, the 3D data reconstruction from 2D videos is ambiguous, i.e.,
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this problem is under-determined. Additionally, fluids generally have no preferred shape, and thus it is not

reasonable to consider the rest shape or deformations from the rest shape, making it difficult to capture the

fluid geometry, unlike rigid and deformable bodies. Furthermore, the appearance of fluids can be easily and

significantly changed due to the optical properties of fluid surfaces, e.g., with light scattering, absorption,

reflection, and refraction, and thus it is very difficult to obtain the reliable 3D fluid data from videos.

Therefore, I eschew reconstructing 3D fluid data and instead measure the differences between the example

data and results of 3D simulation on the 2D screen space (with the same size as example videos). In my

framework, I evaluate the differences in terms of the fluid geometry in the 2D space (i.e., as a silhouette) and

define my objective function for frame index f as

Ef =
1

2M
(gf − ĝf )TCf (gf − ĝf ) (6.9)

where M denotes the total count of pixels in the screen space, C a diagonal coefficient matrix to focus on

specific domains in the screen space, g and ĝ denote silhouette obtained from simulation results and extracted

from the example videos, respectively. I use binary values for g and ĝ, and define them at each pixel in the

2D screen space.

6.5.2 Fluid Video Capturing

For the reference silhouette ĝ, I first capture example fluid videos. While there are various ways to

capture the fluid videos, it is important to adopt a setup, which can be easily prepared and used to capture

different viscous fluid materials while minimizing sources of errors (e.g., human interventions and gaps

between the simulation and real fluid flows) as much as possible. Although one intuitive setup would be

to pour liquids from a container, I found that liquid pouring is not ideal because it requires some human

interventions (i.e., manipulations of the container) and forms very thin fluid sheets near the edge of the

container, causing too strong surface tension forces which dominate viscosity forces. Given these, I prepare a

simple setup, where viscous fluids flow from the hole at the bottom of the container due to the gravity, as

shown in Figure 6.3.

In my work, I use a normal smartphone, iPhone 8, and capture the fluid flows with the resolution of

1280× 720 at 30 fps from a single view. I fix the camera positions, calibrate the camera to obtain intrinsic
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Figure 6.3: Setup for capturing a single-view video for behaviors of viscous fluids. Viscous fluids flow
out from the hole at the bottom of the container due to the gravity, and the fluid flow is captured with a
smartphone fixed using a stand.

parameters in advance, and use these parameters to obtain extrinsic parameters. An image of a captured fluid

video is given in Figure 6.4 (top left).

6.5.3 Fluid Data Extraction from Video

To compute the reference silhouette, I extract position data from the 2D example fluid videos. To this

end, I use a standard background subtraction method based on Gaussian mixture modeling. Then, I separate

the extracted silhouette, i.e., foreground from the background with a thresholding method. Finally, I perform

closing and opening operations for the extracted foreground to remove some noisy estimates. I define the

foreground as 1 and background as 0. The extracted silhouette is shown in Figure 6.4 (bottom left).

6.5.4 Screen Space Evaluation

To evaluate the objective function, I compute g, silhouette of simulated fluids on the 2D screen space at

each frame through the forward simulations. Since geometry of fluids is represented by a set of particles, I
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Figure 6.4: (Top) from left to right, example fluid video, and simulation result. (Bottom) Extracted silhouette
from the example video, projections of fluid surfaces from the simulation, and the differences between the
silhouette from the example data and simulation result.

first construct fluid surfaces to approximate the surfaces of the real fluid flows, and then project the surfaces

onto the 2D screen space using the camera parameters which are used to capture the example videos.

To construct fluid surfaces, I take a standard approach. First, I generate implicit functions from the set

of particles, construct surfaces using the marching cubes algorithm, and then perform several smoothing

operations to better approximate the real fluid surfaces. In my work, I represent the surfaces with a set of

triangles for the ease of projections onto the screen space.

Next, in the projection step, I form the silhouette of the fluid surfaces as a union of all the projected

triangles on the screen space. To project each triangle, first, I independently project the three vertices of the

triangle in the same way as the camera does. The projection operation can be written as

x = KAX, (6.10)

where X and x denote the homogeneous coordinates of the vertex before and after projection, respectively,

K and A intrinsic and extrinsic parameters, respectively, which can be computed with a camera calibration

technique. After the projection of the three vertices, I can form a new triangle on the screen space. To

compute gt, silhouette formed by a triangle t, I perform the inside/outside check for the center of each pixel,

and I assign 1 to gt,i if the center of pixel i is inside of the silhouette, otherwise 0. Finally, I assemble all the
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silhouettes from the triangle to form the silhouette of the fluid surfaces, i.e.,

g =
⋃
t

gt. (6.11)

Figure 6.4 (bottom, middle) shows a computed silhouette from the simulation (top, middle), and

silhouette difference is given in Figure 6.4 (bottom, right). After the projections of all the triangles, I can

straightforwardly compute the objective function E.

6.5.5 Parameter Optimization

My objective function is formulated with example data captured in the real world, which generally

include some noise, and involves multiple discontinuous operations, such as background subtraction and

morphological operations, liquid domain computation and surface reconstruction from a set of particles, and

projections of the 3D fluid surfaces onto the 2D screen space over multiple steps. Consequently, my objective

function is discontinuous and nonlinear with many unacceptable local minima. Since evaluating analytical

gradient is not practical for such discontinuous functions (McNamara et al., 2004), it is preferable to employ

optimization methods based on sampling which can be used without evaluating the gradient analytically, as

done in (Wang et al., 2015; Yang and Lin, 2016; Hu et al., 2017). In addition, sampling-based approaches

can naturally satisfy the hard constraint for the physics in the constrained optimization problem (6.8) by

performing forward simulations.

In my framework, I use a derivative-free optimizer, CMA-ES, which is known as robust to noise and

efficient compared to other derivative-free optimization methods, such as particle swarm method and Nelder-

Mead method. In the optimization, to enforce 0 ≤ η, I resample viscosity values if sampled viscosity values

are smaller than 0.

While I have tested multiple gradient-based optimizers using finite difference approximations, such as

L-BFGS, nonlinear conjugate gradient, and gradient descent with momentum, I found that these approaches

almost always got stuck at suboptimal local minima because of the inaccurate estimates of the gradient for

the noisy objective functions, and the computational cost for the convergence was higher than CMA-ES in

most of my experiments.
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6.6 Validations and Discussions

I implemented my framework in C++. For the parameter identification, I typically formulate the objective

function with up to 100 video frames of high resolutions to make the optimization tractable (i.e., N ≤ 100).

I usually perform up to 80 iterations for CMA-ES optimization with an initial value between 0.0 and

3.0 × 1.02 kg/(s ·m) and standard deviation between 1.0 × 101 and 3.0 × 102 kg/(s ·m). The overall

computation time varies and depends on the video resolution, the number of video frames, the number of

optimization iterations, the scale of fluid simulation, and the computational complexity of the (viscous) fluid

solver. I used blender cycles renderer for Figure 6.4 and Figure 6.6 (first and second rows) and mitsuba

renderer for the others.

I tested my framework in a wide range of scenarios. First, I validate the reliability of my algorithm with

synthetic examples, and then I evaluate my framework with example videos captured in the real world.

6.6.1 Validation with Synthetic Videos

To test my framework, I generated several videos using my viscous fluid solver, and used the videos

as input for my framework. The purpose of this experiment is to validate that my algorithm can identify

viscosity parameters which are used to generate the synthetic videos, only with 2D data in the screen space.

I chose a scenario, where a viscous fluid flows from the hole at the bottom of a container, as shown in

Figure 6.12 (top). In this scene, I tested with multiple viscosity values, 1.0× 100, 3.0× 100, 1.0× 101, 3.0×

101, 1.0×102, and 3.0×102 kg/(s ·m). The simulation parameters and identification results are summarized

in Table 6.1, and I note that this experiment covers a sufficiently wide range of Reynolds numbers for viscous

fluids and thus fluid behaviors. A plot for the objective function is given in Figure 6.5. The second row

of Figure 6.12 demonstrates simulation results in the same scenario with the identified parameters, and in

general, visual differences between the reference and the simulated videos are indiscernible.

One advantage of my framework with iterative inversion using the full 3D simulation is that I can infer

hidden physical variables which are not available from the video data, e.g., velocity of fluid flows and pressure

distributions. Figure 6.12 visualizes the pressure and velocity distributions for the input example (third

and fifth rows) and simulation results with the identified parameters (fourth and sixth rows). Similar to the

comparison with the surface rendering, differences for the pressure distributions and velocity fields between

real and virtual fluids are generally indiscernible.
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Table 6.1: Viscosity parameter identification results with synthetic videos. η̂ denotes reference fluid viscosity
(kg/(s ·m)), Re Reynolds number, η identified viscosity value (kg/(s ·m)), εη, εv, and εp relative errors for
the viscosity (%), pressure (%), and velocity (%), respectively. The error for the viscosity is relatively small
and up to around 5%.

η̂ Re η εη εp εv

1.0× 100 1.25× 102 1.06× 100 5.85 14.1 1.21
3.0× 100 3.67× 101 2.94× 100 1.93 6.60 0.57
1.0× 101 9.50× 100 0.98× 101 1.52 8.28 0.56
3.0× 101 2.67× 100 3.02× 101 0.80 4.34 0.32
1.0× 102 6.01× 10−1 1.01× 102 1.35 3.34 0.74
3.0× 102 1.52× 10−1 3.10× 102 3.23 15.6 0.87

In these experiments, I used the same solver for synthetic example generation and parameter identification,

and thus resulting fluid behaviors are same if the same viscosity values are used. However, I note that the

example data include only rendered fluid surfaces generated by 3D fluid simulations, i.e., projected onto

the 2D screen space (losing full 3D information which can be perfectly matched), and positional data are

extracted with image processing algorithms, introducing some errors. Consequently, it is not guaranteed that

my algorithm finds the ground truth, and the value of the objective function is 0. Nonetheless, my framework

can identify viscosity parameters with up to around 5% relative errors, only with the 2D information, and

the inferred pressure and velocity values are within 20% and 2% of relative errors, respectively (see Table

6.1). The plot in Figure 6.5 also demonstrates that the good local minimum is very close to the ground truth

viscosity values while the objective function increases as viscosity values deviate from the ground truth.

6.6.2 Identification with Real World Captured Data

I also tested my framework with example videos captured from real world fluid phenomena. In this study,

I experimented with caramel, red hand soap, chocolate syrup, purple body soap, blue body soap, and honey.

To perform the parameter optimization, I setup the simulation scenarios as close as possible to the scene for

the real experiments. The captured videos and simulation results with identified viscosity parameters are

shown in Figure 6.6. A plot for the objective function with different viscosity values is given in Figure 6.7,

and a plot for the convergence behaviors is given in Figure 6.8. Statistics and performance are summarized in

Table 6.2.
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Figure 6.5: Plots of the objective functions with different viscosity values for Figures 6.12. Good local
minima are located close to the ground truth. .

Since the ground truth of viscosity parameters are not available for viscous fluids in my examples, it is

not possible to validate the accuracy of the identified parameters. However, Figure 6.6 demonstrates that the

behaviors of the simulated viscous materials with the identified parameters are visually in close agreement

with the fluids in the example videos. In addition, I note that the range of viscosity values for honey is known

as between 2.0 and 10.0 kg/(s ·m), and my identified viscosity value for the honey is 7.86 kg/(s ·m) and

is within the range, which further validates the reliability of my framework. Furthermore, I note that my

framework can identify the viscosity parameters for fluids exhibiting the coiling behaviors, reproducing the

buckling phenomena for the blue body soap and honey.

Similar to the case for the synthetic videos, one advantage of the iterative inversion using the 3D

simulation is that I can estimate hidden variables for the real fluid flows, e.g., pressure and velocity profiles

(which are not available in the example videos), as shown in Figure 6.6 (third and fourth rows). To validate

the accuracy of the simulation with the identified parameters, I compare the flow speed of the fluids on the

ground, which can be estimated from the example videos. Results are summarized in Table 6.2, and the

average relative errors are up to around 10% in my experiments.

118



Figure 6.6: Parameter identification results with example videos from the real-world fluid phenomena.
(Top) from left to right, caramel, red hand soap, chocolate syrup, purple body soap, honey, and blue body
soap. (Bottom) simulation results with identified viscosity parameters, η = 0.12, 0.31, 0.63, 2.05, 7.83, and
8.81 kg/(s ·m).

Table 6.2: Viscosity parameter identification results with example videos captured from real world fluid flows.
Re denotes Reynolds number, η identified viscosity value (kg/(s ·m)), t average time in minutes for each
iteration, T total time in hours for the parameter identification, and v̂ and v (cm/s) average flow speed of the
fluids estimated from the video and computed from the simulation, respectively.

Materials Re η t T v̂ v

Caramel 3.16× 101 0.19 26.3 10.8 6.1 6.7
Red hand soap 2.72× 101 0.22 14.3 13.9 5.2 5.8

Chocolate syrup 4.80× 100 1.25 15.2 7.7 4.5 5.3
Purple body soap 6.33× 10−1 4.74 19.4 11.7 1.7 1.5
Blue liquid soap 5.15× 10−1 5.82 8.6 8.0 1.1 1.3

Honey 2.67× 10−1 7.86 7.5 9.0 0.6 0.6

6.6.3 Real-to-Virtual Parameter Transfer

The identified viscosity parameters can be used in novel scenarios. Figure 6.9 demonstrates a chocolate

coating for a cake with the identified viscosity parameter for the ganache. Figure 6.10 shows a honey pouring

onto a honey dipper with the identified parameter of the honey. Figure 6.11 demonstrates a pouring of

magenta hand soap, light-lavender body soap, and aqua-green shampoo onto a hand with the identified

parameters. Note that the differences in fluid behaviors in the example videos are sufficiently reflected in this

scene, generating distinct fluid flows. Thus, I believe that it is undesirable to randomly choose viscosity

parameters from the range of typical viscosity values for soap materials, even if such data are available.
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Figure 6.7: Plots of the objective functions with different viscosity values for Figure 6.6.

Figure 6.1 (right) demonstrates a scene with simulated donuts covered by chocolate syrup, caramel, and

honey with the identified parameters. In this scene, I also clearly observe that caramel, chocolate syrup, and

honey behave very differently according to their material properties.

6.6.4 Discussions

My framework can identify material parameters effectively as demonstrated. However, it is not guaranteed

that the resulting parameters are close to the measured parameters unless the experiments are conducted under

relatively ideal, controlled conditions. There are some factors for this discrepancy. First, fluid simulation

is a numerical approximation of the complex fluid flows with a relatively simplified model derived based

on various assumptions (e.g., no slip boundary condition and uniformly distributed fluid particles), which

might not hold in some cases. In addition, while my focus is on purely Newtonian fluids, some real-world

materials exhibit non-Newtonian properties as well, and thus simulation results would deviate from the real

fluid behaviors. Given the relatively coarse simulation resolution, it is not possible to accurately capture

the small scale details of fluids and solid boundaries, and their resulting influence to the simulation (e.g.,

neglected boundary details and strong surface tension due to thin fluid sheets).
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Figure 6.8: Convergence plot for the parameter identification in Figure 6.6.

6.7 Conclusions and Future Work

I proposed perhaps the first parameter identification framework to automate parameter-tuning for fluid

simulation with example data captured from real-world fluid phenomena. My framework takes example fluid

videos as a reference and minimizes the differences between the reference and simulated fluids (using my

solver) to identify material parameters. For the difference measurement with example videos, I presented a

screen space evaluation method, which compares the reference and simulation results on the 2D screen space,

avoiding erroneous and ambiguous 3D reconstruction of fluid data. I validated my parameter identification

framework with a range of synthetic and real-world data and demonstrated that identified material parameters

can be effectively used to infer hidden physical variables of real fluids and to simulate viscous fluids in

novel scenarios, generating fluid behaviors visually consistent to the example data.

There are several promising future research directions. In the real world, there are many different types

of fluid materials, such as non-Newtonian fluids, which require more complex constitutive laws to simulate

. In addition, material parameters for fluids can vary, e.g., due to heat and stress. It would be interesting

to develop parameter identification framework that can take into account more sophisticated physics and

property change.
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Figure 6.9: Simulated chocolate ganache poured onto a cake with the identified viscosity parameter η =
1.25 kg/(s ·m).

In general, it is difficult to obtain meaningful and reliable fluid data with simple computer vision

techniques, such as background subtraction, from normal videos available in public. Thus, it would be

necessary to explore some descriptors for fluids which can be reliably used for the difference measurements.

I would also like to investigate advanced computer vision techniques and deep learning, to extract fluid

information. Along this direction, I believe that learning-based approaches for video analysis and processing

are promising.
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Figure 6.10: Virtual honey dripped onto a honey dipper with the identified viscosity parameter η =
7.86 kg/(s ·m).

Figure 6.11: From left to right, magenta hand soap, light-lavender body soap, and aqua-green shampoo
poured onto a hand with the identified viscosity parameters η = 0.22, 4.74, and 5.82 kg/(s ·m), respectively.
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Figure 6.12: Validation results with synthetic videos for the scenario of flowing fluids. (First row) from left to
right, simulated video as input, with viscosity parameters η = 1.0×100, 3.0×100, 1.0×101, 3.0×101, 1.0×
102, and 3.0× 102 kg/(s ·m). (Second row) recovered results using my framework with identified viscosity
parameters, η = 1.06 × 100, 2.94 × 100, 0.98 × 101, 3.02 × 101, 1.01 × 102, and 3.10 × 102 kg/(s ·m).
The relative errors are 5.85%, 1.93%, 1.52%, 0.80%, 1.35%, and 3.23%, respectively. Cutaway particle
visualization for pressure profiles for the input (third row) and simulation with the identified parameters
(fourth row). Cutaway particle visualization using rainbow colors for velocity profiles as the input (fifth row)
and simulation with the identified parameters (sixth row).
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CHAPTER 7: Conclusion

In this dissertation, I have proposed various methods for simulating incompressible viscous liquids and

an optimization framework for the video-guided parameter transfer. These proposed methods enabled robust,

efficient, and scalable simulations of particle-based fluids, capturing of characteristic rotational behaviors

of viscous fluids and more accurate two-way fluid-solid interactions, and transfer of viscosity parameters

from the real world to the virtual environment. I have demonstrated the effectiveness and capability of the

proposed approaches in a wide variety of scenarios. The proposed methods and framework can be used not

only for computer graphics applications but also for engineering applications.

7.1 Summary of Results

To efficiently simulate incompressible fluids, I first proposed a particle-based solver based on incompress-

ible SPH. The method includes three main contributions: kernel blending, free surface boundary handling, and

solid boundary handling. To consistently blend density computed with spiky and smooth kernels, I normalized

the density computations for both kernels, and then blended the computed densities. This scheme improved

the robustness of the fluid solver and allowed for taking larger time steps with a negligible computational cost.

For the free surface boundary handling, I first analyzed possible configurations and the cause of the failure in

the pressure solve. Based on the analysis, then, I appropriately classify particle roles in the pressure solve.

Consequently, the free surface handling method also improved the robustness without introducing artifacts,

as compared to previous techniques. For the solid boundary handling, I also analyzed possible particle

configurations and detected the failure cases. To address the failure cases, I introduced a new regularizer term

to ensure the solvability of the linear system regardless of the particle configurations. This scheme further

improved the robustness and accuracy in the pressure solve. In addition, the solid boundary handling method

enabled us to simulate objects floating in the air. By combining these contributions, my incompressible fluid

solver outperformed one of the state-of-the-art particle-based solver, IISPH by a factor of 3.78 (Chapter 2,

(Takahashi et al., 2016)).
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Simulating incompressible liquids can be computationally expensive. This becomes more noticeable

when we simulate fluids at high-resolution since the computational cost for solving incompressibility

constraints increases superlinearly. To address this issue, I proposed a geometric multilevel solver for

efficiently solving linear systems arising from particle-based methods. To apply this method to particle

systems, I constructed the hierarchy of the simulation particles and grids, and established the correspondence

between solutions at the particle and grid levels. I also proposed a coarsening scheme, which takes simulation

elements into account and can ensure the solvability of the linear systems at coarser levels. In addition, I

proposed a new solid boundary handling method for solving a pressure Poisson equation in a unified manner.

I have demonstrated that the computational cost of my multilevel solver scales nearly linearly with respect to

the number of particles, unlike previous particle-based methods that use Jacobi or CG solvers, outperforming

the state-of-the-art IISPH solver up to 10x, and my solver can be used to simulate various complex scenarios,

including moving solid boundaries and two-way fluid-solid interactions (Chapter 3, (Takahashi and Lin,

2016)).

Unlike inviscid fluids, viscous fluids exhibit characteristic behaviors, such as coiling and buckling

phenomena, and specialized techniques have been required to capture such behaviors of viscous fluids. I

have proposed a stable and efficient particle-based solver for simulating highly viscous fluids to capture

rotational behaviors of fluids and handle spatially varying viscosity values. In contrast to previous methods

that use explicit viscosity integration, I employed an implicit integration and formulated the implicit viscosity

integration as a minimization problem based on the variational principle, which naturally enforces the bound-

ary conditions. The minimization is quadratic with respect to particle velocities, and thus the minimization

problem can be handled by solving a linear system with a sparse positive definite matrix. To efficiently solve

the resulting linear system for the implicit viscosity integration, I proposed a coefficient extraction method,

which assembles a linear system accessing neighbor particles’ neighbor particles. The method enabled the

use of larger time steps and higher viscosity values. By taking advantage of our implicit formulation and

coefficient extraction method, I achieved an accelerated performance by a factor of 3.4 compared to previous

methods that use explicit integration (Chapter 4, (Takahashi et al., 2015)).

While the recent research due to the high demand for numerous applications significantly advanced

viscous fluid simulation approaches, few research has been conducted to simulate how viscous fluids interact

with solid objects. Thus, I have proposed a grid-based fluid solver for simulating viscous materials and their

interactions with solid objects. My method formulates the implicit viscosity integration as a minimization
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problem for robustness and efficiency. To handle the interplay between fluids and solid objects with viscosity

forces, I also formulate the two-way fluid-solid coupling as a unified minimization problem based on the

variational principle, which naturally enforces the boundary conditions. My formulation leads to a symmetric

positive definite linear system with a sparse matrix regardless of the monolithically coupled solid objects. To

improve the accuracy, I also propose a geometrically-consistent volume estimation method that can more

accurately compute the volume fractions for the minimization, taking into account the sub-grid details of

free surfaces and solid boundaries. Additionally, I presented a position-correction method using density

constraints to enforce the uniform distributions of fluid particles, preventing the loss of fluid volumes. I

evaluated the accuracy of the proposed method by comparing the results with the analytical solutions, and

improved the accuracy by several orders of magnitude, compared to previous techniques. I have demonstrated

the effectiveness of my method in a wide range of viscous fluid scenarios (Chapter 5, (Takahashi and Lin,

2019a)).

In physically-based simulation, it is essential to choose appropriate material parameters to generate

desirable simulation results. In many cases, however, choosing material parameters is very challenging,

and often tedious trial-and- error parameter tuning steps are inevitable. Thus, I proposed a real-to-virtual

parameter transfer framework for helping the parameter identification of viscous fluids with example video

data captured from real-world phenomena. My method first extracts positional data of fluids and then uses the

extracted data as a reference to identify the viscosity parameters, combining forward viscous fluid simulations

and parameter optimization in an iterative process. I evaluated my method with a range of synthetic and

real-world example data, and demonstrated that my method can identify the hidden physical variables and

viscosity parameters. This set of recovered physical variables and parameters can then be effectively used in

novel scenarios to generate viscous fluid behaviors visually consistent with the example videos (Chapter 6,

(Takahashi and Lin, 2019b)).

7.2 Limitations

I discussed specific limitations for each of my proposed methods and framework in their corresponding

chapters. In this chapter, I discuss the limitations on my general approach. Fluid simulation is a powerful and

essential tool to simulate fluid behaviors because we can efficiently and conveniently predict or visualize

the dynamics of fluids without repetitive manual processing and fluid capturing in the real-world. However,
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fluid simulation is one way to approximate the behaviors of real fluids based on the Navier-Stokes equations,

and thus there exist some differences between behaviors of real fluids and simulated fluids. In addition, the

Navier-Stokes equations are one model simplified to make the simulation tractable on computers. As such,

even though we accurately solve the Navier-Stokes equations, the discrepancy between real and simulated

fluids may still exist. In practice, there are so many factors for the discrepancy, including physical model

differences, resolution limits, geometry approximation, simplification for boundaries. Because of these

and many other unknown factors, the results of the simulations are not necessarily closer to the real-world

counterparts even though the accuracy of the simulation is increased with the proposed methods, closely

following the solutions for the Navier-Stokes equations. To more closely approximate the real world fluid

phenomena or to generate some user-desirable fluid effects, it is necessary to establish a mathematical model

to describe the desired fluid dynamics.

7.3 Future Work

While the proposed methods improved the efficiency and robustness for the viscous fluid simulation, and

the parameter transfer framework facilitated the parameter tuning, still there are many open challenges. Here,

I list some of challenges.

In fluid simulation, handling boundary conditions have been investigated over many years since it

is generally not possible to fully resolve the real boundaries in the simulation, and we are required to

approximate the boundary conditions as accurate as possible. However, because of the approximation, it is

challenging to generate fluid effects closely matching the real world counterparts while maintaining numerical

stability issues. In Chapter 2, I have proposed a method for handling free surfaces and solid boundaries,

and this improved the efficiency and robustness. However, it is not clear whether these boundary handling

schemes are appropriate in terms of physical fidelity. In Chapters 4 and 5, I presented viscous fluid simulation

methods assuming the no-slip boundary conditions for the solid boundary because it is empirically known

that the no-slip boundary condition leads to better behaviors for viscous fluids. However, this treatment is

inappropriate for less viscous fluids, and such mixture of highly viscous fluids and inviscid fluids cannot

be appropriately handled. While one reason for this problem is due to the numerical approximation for

simulation, another reason is that, still how fluids behave on the solid boundaries is not well understood in

terms of the mechanism. As such, we would need to explore how fluid behaves on the solid boundaries, and
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then how to approximate the real fluid behaviors on the boundary in simulation. While I focused on boundary

conditions related to my works in this dissertation, how to handle boundary conditions is an essential problem,

which can arise in many different simulation and applications.

The expensive cost for the fluid simulation has been also an major issue. While I focused on the

algorithmic improvement to address the issue in this dissertation, there are other ways to tackle this issue. One

of them is to exploit parallel computations. While most of the presented algorithms are already parallelized

with multi-core CPUs and shared memory, I expect that using many-core CPUs with distributed memory

would further improve the performance, and similarly GPU would significantly accelerate the fluid simulation.

The use of these parallel computation architectures would enable much more efficient simulations.

To address the parameter tuning problem, I proposed a parameter identification framework for viscous

fluids in Chapter 6. While I focused on the viscosity parameter for fluids, the framework can be extended

or adapted to identify different parameters for fluids, such as surface tension, viscoelasticity, and plasiticity.

Furthermore, the framework could also be extended not only for fluids but other materials, e.g., to rigid bodies,

deformable objects, and granular materials. I hope that the presented framework for parameter identification

with real-world video data opens a door for new directions.
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APPENDIX A: ALGORITHMS FOR MULTILEVEL SOLVER

For implementation of my method, I give algorithms for my incompressible SPH solver (Algorithm 5),

the PPE solve (Algorithm 6), and V-cycle (Algorithm 7).

Algorithm 5 Incompressible SPH Solver

1: for all particle i do
2: find neighbor fluid and solid particles
3: for all fluid particle i do
4: compute density ρi
5: for all fluid particle i do
6: predict intermediate velocity u∗i
7: for all fluid particle i do
8: predict intermediate density ρ∗i
9: Solve the PPE (Algorithm 6)

10: for all particle i do
11: compute pressure force Fp

i

12: for all particle i do
13: integrate velocity ui and position xi

Algorithm 6 PPE Solve
1: for all fluid particle i do
2: if i is Dirichlet or isolated particle then
3: pi = 0
4: else
5: for all neighbor solid particle s do
6: compute 1

δs
∇Wis

7: compute αi =
ρ2

0

ρ2
i
‖
∑

s
1
δs
∇Wis‖2 and bi =

ρ∗i−ρ0

∆t2

8: if i is separated particle then
9: pi = max(0, biαi

)
10: else if i is Poisson particle then
11: for all neighbor fluid particle j do
12: compute aij
13: Assemble the matrix and source term (right hand side)
14: Solve the PPE with my MGCG solver
15: for all Poisson particle i do
16: pi = max(0, pi)
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Algorithm 7 V cycle(l)
1: //r: residual
2: //kpre and kpost: the number of pre- and post-smoothing.
3: if l == 0 then
4: Solve A0p0 = b0

5: else
6: for k = 1 to kpre do
7: PreSmooth(Al,bl,pl)
8: rl = bl −Alpl

9: bl−1 = Restrict(rl)
10: pl−1 = 0
11: V cycle(l − 1)
12: pl = pl + Interporate(pl−1)
13: for k = 1 to kpost do
14: PostSmooth(Al,bl,pl)
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APPENDIX B: DETAILS OF COEFFICIENT EXTRACTION

Due to complexity of extracting coefficients and similarity of computing coefficients, I divide them into

three groups: Gi (cuiui , cviui , and cwiui), Gj (cujui , cvjui , and cwjui), and Gk (cukui , cvkui , and cwkui).

By scanning particle j once from particle i, I can easily compute and extract coefficients in Gi.

Since computing coefficients in Gj requires aij and ωij (summation of ∇Wij over particle j), and

∇Wij and αjk (summation of Vk∇Wjk over particle k), I need to compute ωij and αij (I can access αjk

from particle j if αij is computed in a previous loop) in advance using another loop unlike the case of Gi.

Therefore, I first compute ωij and αij in the first loop and then use them to compute and extract coefficients

in Gj in the second loop. Computed ωij and αij can also be used to obtain coefficients in Gi.

To compute coefficients in Gk, I need to access particle k from particle i. However, since particle k is a

neighbor of particle j, I cannot directly access particle k from particle i. Hence, I access particle k via particle

j. In that case, however, I cannot take a sum of quantities computed between particles i and j at particle

k (another scan for particle j at particle k leads to quadruple loops, which are costly and make coefficient

extractions more complex). Therefore, I decompose coefficients cukui , cvkui , and cwkui without taking a sum

over particle j and separately extract coefficients at particle k. Assuming that I am accessing particle k∗ via

particle j∗, I can write a part of coefficients cukui |j∗k∗ , cvkui |j∗k∗ , and cwkui |j∗k∗ for cukui , cvkui , and cwkui

from Eqs. (4.10), (4.11), and (4.12) as

cukui |j∗k∗ = −m̂µj∗

(2∇Wij∗,xaj∗k∗,x + ∇Wij∗,yaj∗k∗,y +∇Wij∗,zaj∗k∗,z),

cvkui |j∗k∗ = −m̂µj∗∇Wij∗,yaj∗k∗,x,

cwkui |j∗k∗ = −m̂µj∗∇Wij∗,zaj∗k∗,x.

By adding the part of coefficients above to the matrix at particle k while also scanning particle j from particle

i, I can extract all coefficients of the matrix.

Adding coefficients to the matrix separately does work. However, this approach is inefficient because I

generally use structures specialized for a sparse matrix, e.g., CSR and Coordinate list, and adding values to

such structures frequently is costly. To avoid this, I use auxiliary storage, which is associated with particle i,
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Add parts of

coefficients
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Figure B.1: Illustration of computational flow for extracting coefficients in Gk. Particle k is accessed from
particle i via particle j. At particle k, parts of coefficients in Gk are added to a cell in particle i’s storage,
whose id matches k’s id, as shown by red arrows. Black arrows represent accessible particles and storage.

to preserve coefficients from particle k to i with k’s id. I add parts of coefficients to i’s storage at particle k,

grouping them based on k’s id to minimize the number of adding coefficients to the matrix. Then, after scans

over particles j and k from particle i are finished, I add coefficients in Gk to the matrix using the storage. In

my experiments, minimizing the number of access to the matrix using the auxiliary storage accelerated my

coefficient extractions by a factor of 4.5 as compared to adding coefficients to the matrix directly at particle k.

A flow for coefficient extractions for Gk is illustrated in Figure B.1.

I also perform similar procedures explained above to extract coefficients

cuivi , cvivi , cwivi , cujvi , cvjvi , cwjvi , cukvi , cvkvi , and cwkvi for vi and

cuiwi , cviwi , cwiwi , cujwi , cvjwi , cwjwi , cukwi , cvkwi , and cwkwi for wi. I show my algorithm for coefficient

extraction in Algorithm 8.
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Algorithm 8 Algorithm for coefficient extraction
1: initialize a matrix
2: for all fluid particle i do
3: compute µ̂i, ωij and αij
4: compute m̂
5: for all fluid particle i do
6: initialize storage for uk, vk, and wk
7: add cuiui , cviui , cwiui , cuivi , cvivi , cwivi , cuiwi , cviwi , and cwiwi to the matrix
8: for all fluid particle j do
9: compute∇Wij and aij

10: add cujui , cvjui , cwjui , cujvi , cvjvi , cwjvi , cujwi , cvjwi , and cwjwi to the matrix
11: for all fluid particle k do
12: compute ajk
13: add cukui , cvkui , cwkui , cukvi , cvkvi , cwkvi , cukwi , cvkwi , and cwkwi to the i’s storage with k’s id
14: for all i’s storage do
15: add cukui , cvkui , cwkui , cukvi , cvkvi , cwkvi , cukwi , cvkwi , and cwkwi to the matrix using the storage
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APPENDIX C: DERIVATION OF IMPLICIT FORMULATION

I derive our implicit formulation for the full form of viscosity using SPH. I have the following equations

for the viscosity term.

ui = u∗i +
∆t

ρi
∇ · si, (C.1)

si = µi
(
∇ui + (∇ui)T

)
(C.2)

∇ · si = mρi
∑
j

(
si
ρ2
i

+
sj
ρ2
j

)
∇Wij (C.3)

ui = u∗i +m∆t
∑
j

(
si
ρ2
i

+
sj
ρ2
j

)
∇Wij (C.4)

ui = u∗i +m∆t
∑
j

(
µi
ρ2
i

(
∇ui + (∇ui)T

)
+
µj
ρ2
j

(
∇uj + (∇uj)T

))
∇Wij (C.5)

∇ui =
∑
j

Vj(uj − ui)∇W T
ij (C.6)

=
∑
j

Vj


uj − ui

vj − vi

wj − wi


[
∇Wij,x ∇Wij,y ∇Wij,z

]
(C.7)

=
∑
j

Vj


(uj − ui)∇Wij,x (uj − ui)∇Wij,y (uj − ui)∇Wij,z

(vj − vi)∇Wij,x (vj − vi)∇Wij,y (vj − vi)∇Wij,z

(wj − wi)∇Wij,x (wj − wi)∇Wij,y (wj − wi)∇Wij,z

 (C.8)
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(∇ui)T =
∑
j

Vj∇Wij(uj − ui)
T (C.9)

=
∑
j

Vj


∇Wij,x

∇Wij,y

∇Wij,z


[
uj − ui vj − vi wj − wi

]
(C.10)

=
∑
j

Vj


(uj − ui)∇Wij,x (vj − vi)∇Wij,x (wj − wi)∇Wij,x

(uj − ui)∇Wij,y (vj − vi)∇Wij,y (wj − wi)∇Wij,y

(uj − ui)∇Wij,z (vj − vi)∇Wij,z (wj − wi)∇Wij,z

 (C.11)

ui +m∆t
∑
j

(
µi
ρ2
i

(
−∇ui − (∇ui)T

)
+
µj
ρ2
j

(
−∇uj − (∇uj)T

))
∇Wij = u∗i (C.12)

ui + m̂
∑
j

(µ̂iQij + µ̂jQjk)∇Wij = u∗i (C.13)

Qij = −∇ui − (∇ui)T =


qij,xx qij,xy qij,xz

qij,xy qij,yy qij,yz

qij,xz qij,yz qij,zz

 , (C.14)

qij,xx = 2
∑
j

Vj∇Wij,x(ui − uj) = 2
∑
j

aij,x(ui − uj), (C.15)

qij,xy =
∑
j

Vj (∇Wij,y(ui − uj) +∇Wij,x(vi − vj)) =
∑
j

(aij,y(ui − uj) + aij,x(vi − vj)) (C.16)

qij,xz =
∑
j

Vj (∇Wij,z(ui − uj) +∇Wij,x(wi − wj)) =
∑
j

(aij,z(ui − uj) + aij,x(wi − wj)) , (C.17)

qij,yy = 2
∑
j

Vj∇Wij,y(vi − vj) = 2
∑
j

aij,y(vi − vj), (C.18)

qij,yz =
∑
j

Vj (∇Wij,z(yi − yj) +∇Wij,y(wi − wj)) =
∑
j

(aij,z(yi − yj) + aij,y(wi − wj)) , (C.19)

qij,zz = 2
∑
j

Vj∇Wij,z(wi − wj) = 2
∑
j

aij,z(wi − wj),(C.20)
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ui + m̂
∑
j

(
µ̂i

(
2
∑
j

aij,x(ui − uj)∇Wij,x +

∑
j

(aij,y(ui − uj) + aij,x(vi − vj))∇Wij,y∑
j

(aij,z(ui − uj) + aij,x(wi − wj))∇Wij,z

)
+

µ̂j

(
2
∑
k

ajk,x(uj − uk)∇Wij,x +∑
k

(ajk,y(uj − uk) + ajk,x(vj − vk))∇Wij,y

∑
k

(ajk,z(uj − uk) + ajk,x(wj − wk))∇Wij,z

))
= u†i . (C.21)

ui + m̂
∑
j

(
µ̂i

(
2(
∑
j

aij,xui −
∑
j

aij,xuj)∇Wij,x +

(
∑
j

aij,yui −
∑
j

aij,yuj +
∑
j

aij,xvi −
∑
j

aij,xvj)∇Wij,y

(ui
∑
j

aij,z −
∑
j

aij,zuj +
∑
j

aij,xwi −
∑
j

aij,xwj)∇Wij,z

)
+

µ̂j

(
2(
∑
k

ajk,xuj −
∑
k

ajk,xuk)∇Wij,x +

(
∑
k

ajk,yuj −
∑
k

ajk,yuk +
∑
k

ajk,xvj −
∑
k

ajk,xvk)∇Wij,y

(
∑
k

ajk,zuj −
∑
k

ajk,zuk +
∑
k

ajk,xwj −
∑
k

ajk,xwk)∇Wij,z

))
= u†i . (C.22)
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ui + m̂
∑
j

(
µ̂i

(
2(ui

∑
j

aij,x −
∑
j

aij,xuj)∇Wij,x +

(ui
∑
j

aij,y −
∑
j

aij,yuj + vi
∑
j

aij,x −
∑
j

aij,xvj)∇Wij,y

(ui
∑
j

aij,z −
∑
j

aij,zuj + wi
∑
j

aij,x −
∑
j

aij,xwj)∇Wij,z

)
+

µ̂j

(
2(uj

∑
k

ajk,x −
∑
k

ajk,xuk)∇Wij,x +

(uj
∑
k

ajk,y −
∑
k

ajk,yuk + vj
∑
k

ajk,x −
∑
k

ajk,xvk)∇Wij,y

(uj
∑
k

ajk,z −
∑
k

ajk,zuk + wj
∑
k

ajk,x −
∑
k

ajk,xwk)∇Wij,z

))
= u†i . (C.23)

ui + m̂
∑
j

(
µ̂i

(
2(uiαij,x −

∑
j

aij,xuj)∇Wij,x +

(uiαij,y −
∑
j

aij,yuj + viαij,x −
∑
j

aij,xvj)∇Wij,y

(uiαij,z −
∑
j

aij,zuj + wiαij,x −
∑
j

aij,xwj)∇Wij,z

)
+

µ̂j

(
2(ujαjk,x −

∑
k

ajk,xuk)∇Wij,x +

(ujαjk,y −
∑
k

ajk,yuk + vjαjk,x −
∑
k

ajk,xvk)∇Wij,y

(ujαjk,z −
∑
k

ajk,zuk + wjαjk,x −
∑
k

ajk,xwk)∇Wij,z

))
= u†i . (C.24)
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ui + m̂
∑
j

(
µ̂i

(
2∇Wij,xuiαij,x − 2∇Wij,x

∑
j

aij,xuj +

∇Wij,yuiαij,y −∇Wij,y

∑
j

aij,yuj +∇Wij,yviαij,x −∇Wij,y

∑
j

aij,xvj

∇Wij,zuiαij,z −∇Wij,z

∑
j

aij,zuj +∇Wij,zwiαij,x −∇Wij,z

∑
j

aij,xwj

)
+

µ̂j

(
2∇Wij,xujαjk,x − 2∇Wij,x

∑
k

ajk,xuk) +

∇Wij,yujαjk,y −∇Wij,y

∑
k

ajk,yuk +∇Wij,yvjαjk,x −∇Wij,y

∑
k

ajk,xvk

∇Wij,zujαjk,z −∇Wij,z

∑
k

ajk,zuk +∇Wij,zwjαjk,x −∇Wij,z

∑
k

ajk,xwk

))
= u†i . (C.25)

ui + m̂µ̂i
∑
j

(
2∇Wij,xuiαij,x − 2∇Wij,x

∑
j

aij,xuj +

∇Wij,yuiαij,y −∇Wij,y

∑
j

aij,yuj +∇Wij,yviαij,x −∇Wij,y

∑
j

aij,xvj

∇Wij,zuiαij,z −∇Wij,z

∑
j

aij,zuj +∇Wij,zwiαij,x −∇Wij,z

∑
j

aij,xwj

)
+

m̂
∑
j

µ̂j

(
2∇Wij,xujαjk,x − 2∇Wij,x

∑
k

ajk,xuk +

∇Wij,yujαjk,y −∇Wij,y

∑
k

ajk,yuk +∇Wij,yvjαjk,x −∇Wij,y

∑
k

ajk,xvk

∇Wij,zujαjk,z −∇Wij,z

∑
k

ajk,zuk +∇Wij,zwjαjk,x −∇Wij,z

∑
k

ajk,xwk

)
= u†i . (C.26)
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ui + 2m̂µ̂i
∑
j

∇Wij,xuiαij,x − 2m̂µ̂i
∑
j

∇Wij,x

∑
j

aij,xuj +

m̂µ̂i
∑
j

∇Wij,yuiαij,y − m̂µ̂i
∑
j

∇Wij,y

∑
j

aij,yuj +

m̂µ̂i
∑
j

∇Wij,yviαij,x − m̂µ̂i
∑
j

∇Wij,y

∑
j

aij,xvj +

m̂µ̂i
∑
j

∇Wij,zuiαij,z − m̂µ̂i
∑
j

∇Wij,z

∑
j

aij,zuj +

m̂µ̂i
∑
j

∇Wij,zwiαij,x − m̂µ̂i
∑
j

∇Wij,z

∑
j

aij,xwj +

2m̂
∑
j

µ̂j∇Wij,xujαjk,x − 2m̂
∑
j

µ̂j∇Wij,x

∑
k

ajk,xuk +

m̂
∑
j

µ̂j∇Wij,yujαjk,y − m̂
∑
j

µ̂j∇Wij,y

∑
k

ajk,yuk +

m̂
∑
j

µ̂j∇Wij,yvjαjk,x − m̂
∑
j

µ̂j∇Wij,y

∑
k

ajk,xvk +

m̂
∑
j

µ̂j∇Wij,zujαjk,z − m̂
∑
j

µ̂j∇Wij,z

∑
k

ajk,zuk +

m̂
∑
j

µ̂j∇Wij,zwjαjk,x − m̂
∑
j

µ̂j∇Wij,z

∑
k

ajk,xwk

= u†i . (C.27)
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ui + 2m̂µ̂iωij,xuiαij,x − 2m̂µ̂iωij,x
∑
j

aij,xuj +

m̂µ̂iωij,yuiαij,y − m̂µ̂iωij,y
∑
j

aij,yuj +

m̂µ̂iωij,yviαij,x − m̂µ̂iωij,y
∑
j

aij,xvj +

m̂µ̂iωij,zuiαij,z − m̂µ̂iωij,z
∑
j

aij,zuj +

m̂µ̂iωij,zwiαij,x − m̂µ̂iωij,z
∑
j

aij,xwj +

2m̂
∑
j

µ̂j∇Wij,xujαjk,x − 2m̂
∑
j

µ̂j∇Wij,x

∑
k

ajk,xuk +

m̂
∑
j

µ̂j∇Wij,yujαjk,y − m̂
∑
j

µ̂j∇Wij,y

∑
k

ajk,yuk +

m̂
∑
j

µ̂j∇Wij,yvjαjk,x − m̂
∑
j

µ̂j∇Wij,y

∑
k

ajk,xvk +

m̂
∑
j

µ̂j∇Wij,zujαjk,z − m̂
∑
j

µ̂j∇Wij,z

∑
k

ajk,zuk +

m̂
∑
j

µ̂j∇Wij,zwjαjk,x − m̂
∑
j

µ̂j∇Wij,z

∑
k

ajk,xwk

= u†i . (C.28)
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(1 + m̂µ̂i(2ωij,xαij,x + ωij,yαij,y + ωij,zαij,z))ui +

m̂µ̂iωij,yαij,xvi +

m̂µ̂iωij,zαij,xwi +

m̂µ̂i(−2ωij,x
∑
j

aij,xuj − ωij,y
∑
j

aij,yuj − ωij,z
∑
j

aij,zuj) +

m̂µ̂i(−ωij,y
∑
j

aij,xvj) +

m̂µ̂i(−ωij,z
∑
j

aij,xwj) (C.29)

∑
j

µ̂j(2∇Wij,xαjk,x +∇Wij,yαjk,y∇Wij,zαjk,z)uj∑
j

µ̂j∇Wij,yαjk,xvj∑
j

µ̂j∇Wij,zαjk,xwj∑
j

µ̂j(−2∇Wij,x

∑
k

ajk,xuk −∇Wij,y

∑
k

ajk,yuk −∇Wij,z

∑
k

ajk,zuk) +

−m̂
∑
j

µ̂j∇Wij,y

∑
k

ajk,xvk +

−m̂
∑
j

µ̂j∇Wij,z

∑
k

ajk,xwk

= u†i . (C.30)

Then, I further convert Eq. (4.9) into the following equation with coefficients

cuiui , cviui , cwiui , cujui , cvjui , cwjui , cukui , cvkui , and cwkui :


cuiui

cviui

cwiui


T 

ui

vi

wi

+
∑
j


cujui

cvjui

cwjui


T 

uj

vj

wj

+
∑
k


cukui

cvkui

cwkui


T 

uk

vk

wk

 = u†i , (C.31)
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cuiui = 1 + m̂µ̂i (2ωij,xαij,x + ωij,yαij,y + ωij,zαij,z) ,

cviui = m̂µ̂iωij,yαij,x, (C.32)

cwiui = m̂µ̂iωij,zαij,x, (C.33)

cujui = m̂
(
−µ̂i(2aij,xωij,x + aij,yωij,y + aij,zωij,z) +

µ̂j(2∇Wij,xαjk,x +∇Wij,yαjk,y +∇Wij,zαjk,z)
)
, (C.34)

cvjui = m̂ (−µ̂iaij,xωij,y + µ̂j∇Wij,yαjk,x) , (C.35)

cwjui = m̂ (−µ̂iaij,xωij,z + µ̂j∇Wij,zαjk,x) ,

cukui = −m̂
∑
j

µ̂j(2∇Wij,xajk,x +∇Wij,yajk,y +∇Wij,zajk,z), (C.36)

cvkui = −m̂
∑
j

µ̂j∇Wij,yajk,x, (C.37)

cwkui = −m̂
∑
j

µ̂j∇Wij,zajk,x, (C.38)

where αij = [αij,x, αij,y, αij,z]
T =

∑
j aij and ωij = [ωij,x, ωij,y, ωij,z]

T =
∑

j ∇Wij . I use cuiui to

denote a coefficient of ui to ui, and cviui a coefficient of vi to ui, and similarly define other coefficients.

Similarly, for vi, I compute coefficients cuivi , cvivi , cwivi , cujvi , cvjvi , cwjvi , cukvi , cvkvi , and cwkvi :


cuivi

cvivi

cwivi


T 

ui

vi

wi

+
∑
j


cujvi

cvjvi

cwjvi


T 

uj

vj

wj

+
∑
k


cukvi

cvkvi

cwkvi


T 

uk

vk

wk

 = v†i , (C.39)

cui,vi = m̂µ̂iωij,xαij,y, (C.40)

cvi,vi = 1 + m̂µ̂i (ωij,xαij,x + 2ωij,yαij,y + ωij,zαij,z) , (C.41)

czi,vi = m̂µ̂iωij,zαij,y, (C.42)
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cujvi = m̂ (−µ̂iaij,yωij,x + µ̂j∇Wij,xαjk,y) , (C.43)

cvjvi = m̂

(
−µ̂i(aij,xωij,x + 2aij,yωij,y + aij,zωij,z) +

µ̂j(∇Wij,xαjk,x + 2∇Wij,yαjk,y +∇Wij,zαjk,z)

)
, (C.44)

cwjvi = m̂ (−µ̂iaij,yωij,z + µ̂j∇Wij,zαjk,y) , (C.45)

cukvi = −m̂
∑
j

µ̂j∇Wij,xajk,y, (C.46)

cvkvi = −m̂
∑
j

µ̂j(∇Wij,xajk,x + 2∇Wij,yajk,y +∇Wij,zajk,z), (C.47)

cwkvi = −m̂
∑
j

µ̂j∇Wij,zajk,y. (C.48)

Similarly, for wi, I compute coefficients cuiwi , cviwi , cwiwi , cujwi , cvjwi , cwjwi , cukwi , cvkwi , and cwkwi :


cuiwi

cviwi

cwiwi


T 

ui

vi

wi

+
∑
j


cujwi

cvjwi

cwjwi


T 

uj

vj

wj

+
∑
k


cukwi

cvkwi

cwkwi


T 

uk

vk

wk

 = w†i , (C.49)

cuiwi = m̂µ̂iωij,xαij,z, (C.50)

cviwi = m̂µ̂iωij,yαij,z, (C.51)

cwiwi = 1 + m̂µ̂i (ωij,xαij,x + ωij,yαij,y + 2ωij,zαij,z) , (C.52)
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cujwi = m̂ (−µ̂iaij,zωij,x + µ̂j∇Wij,xαjk,z) , (C.53)

cvjwi = m̂ (−µ̂iaij,zωij,y + µ̂j∇Wij,yαjk,z) , (C.54)

cwjwi = m̂

(
−µ̂i(aij,xωij,x + aij,yωij,y + 2aij,zωij,z) +

µ̂j(∇Wij,xαjk,x +∇Wij,yαjk,y + 2∇Wij,zαjk,z)

)
, (C.55)

cukwi = −m̂
∑
j

µ̂j∇Wij,xajk,z, (C.56)

cvkwi = −m̂
∑
j

µ̂j∇Wij,yajk,z, (C.57)

cwkwi = −m̂
∑
j

µ̂j(∇Wij,xajk,x +∇Wij,yajk,y + 2∇Wij,zajk,z). (C.58)
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APPENDIX D: DETAILS FOR THE VISCOUS FLUID SOLVER

D.1 Statistics

Table D.1 summarizes the simulation condition and performance for all the results. I note that the

computational overhead for my geometrically consistent volume estimation is relatively small compared to

the inconsistent volume estimation and the supersampling. Similarly, my strong two-way coupling requires

almost the same amount of time for one-way and weak two-way coupling methods. My position-correction

method can better enforce the uniform distributions of particles leading to the smaller number of neighbor

particles, and consequently, my method is at least 6 times faster than the distance-based position correction

and is 2.5 times faster than the density-based position correction.

D.2 Derivation of Terminal Velocity for Solid Spheres

The analytical solution for the terminal velocity of a spherical solid in viscous fluids can be derived by

equating the drag, buoyant, and gravity forces. When the Reynolds numberRe = 2
ρf ||V||2r

η (ρf : fluid density,

V: solid velocity, r: solid radius, η: dynamic viscosity of fluids) is sufficiently low (typically Re � 1)

and the domain is open boundaries (i.e., domain boundaries are far apart, and their influence to the solid is

negligible), the drag force due to the viscosity Fd is Fd = 6πηrV according to the Stokes’ law. Since the

sum of buoyant and gravity forces is Fg = 4
3(ρs − ρf )gπr3 (ρs: solid density, g: gravity), the analytical

terminal velocity V̂∞ is given by

V̂∞ =
2

9

ρs − ρf
η

gr2.

I note that this equation is valid only with a sufficiently low Reynolds number and open boundaries.

D.3 Two-Way Fluid-Solid Coupling

To validate the accuracy of the two-way fluid-solid coupling method compared to one-way coupling and

weak two-way coupling in a wide range of viscosity values, I performed several experiments using a scenario,

where a solid ball is falling inside of viscous fluids. In this experiment, I use η = 1.0× 101, 1.0× 102, 1.0×
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103, 1.0× 104, and 1.0× 105 kg/(s ·m), and visual results and solid velocity profiles are shown in Figures

D.1, D.2, D.3, D.4, and D.5, respectively.

Except for the case with viscosity η = 1.0 × 101 kg/(s ·m) (Figure D.1), where the Stokes’ law and

thus the analytical terminal velocity are not valid due to the high Reynolds number, the velocities of the solid

balls simulated with strong two-way coupling are in good agreement with the analytical solutions. I note that

while it requires a small amount of time for the simulated solid balls to reach the equilibrium, the solid ball

for the analytical solution is directly moved from the beginning with the velocity given by the Stokes’ law. As

such, the height of the balls can be different for the simulation and analytical solution (e.g., in Figure D.2).

By contrast, the velocities of solid balls simulated with one-way coupling and weak two-way coupling

significantly deviate from the analytical solutions, unnaturally oscillate, and do not sufficiently reflect the

differences of viscosity values. In addition, the incorrect behaviors of the solid ball with one-way and weak

two-way coupling unnaturally deform the viscous fluid blocks (see the top of the blocks in the figures).

D.4 Position Correction

Figure D.6 compares my position-correction method with methods using no position corrections and

distance-based position corrections, and I use up to 50 iterations for my method and the distance-based

position correction method. In this scene, a bulk of highly viscous fluids is successively compressed by

circular plates with multiple holes.

The method with no position corrections can easily lose fluid volumes, and the viscous fluid does not

reach the top. While the method with the distance-based position correction can preserve the volume better

reaching the top, my method enables more volumes to reach the top. The color-coding for simulation particles

also clarify that my method can resolve the compression of particles better compared to the distance-based

position corrections. Additionally, I note that compared to my method, the distance-based position correction

method can be more costly due to the large number of neighboring particles.
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Table D.1: Simulation conditions and performance results. “Volume” represents which method is used
for volume computation. “Coupling” represents a scheme used for the fluid-solid coupling. “Uniform”
represents a scheme used to enforce the uniform distributions of particles, and the number of maximum
iterations. tvol, tpres, tvisc, tdens, trest, and ttotal represent computation time in seconds per frame for volume
fraction computation, pressure solve, viscosity solve, density solve, rest (e.g., data transfers, particle advection,
velocity extrapolation), and total, respectively. * indicates figure numbers in chapter 5. The computational
time for the inconsistent volume estimation, supersampling, and consistent volume estimation are comparable
(in orange). My strong two-way coupling requires about the same amount of time for one-way and weak
two-way coupling (in cyan). My position-correction method is at least 6 times faster than distance-based and
2.5 times faster than density-based position corrections (in magenta).

Scene Grid resolution Particles η kg/(s ·m) Volume Coupling Uniform tvol tpres tvisc tdens trest ttotal

Fig. 1* (leftmost) 128× 128× 128 2,798.2k 1.0× 103 Mine One-way Mine/3 11.2 2.2 26.0 16.2 10.1 65.7
Fig. 1* (left) 128× 128× 128 2,798.2k 1.0× 103 Mine Weak Mine/3 10.1 2.0 20.4 15.3 8.6 56.4
Fig. 1* (right) 128× 128× 128 2,798.2k 1.0× 103 Mine Strong Mine/3 8.9 1.8 20.4 9.0 5.7 45.7
Fig. 4* (left) 192× 192× 192 800.5k 1.0× 101 Inconsistent N/A Mine/3 11.0 4.7 49.5 5.5 19.4 90.2
Fig. 4* (middle) 192× 192× 192 800.5k 1.0× 101 Supersampling N/A Mine/3 11.0 5.7 47.1 5.3 19.9 89.0
Fig. 4* (right) 192× 192× 192 800.5k 1.0× 101 Mine N/A Mine/3 12.5 5.2 51.7 5.4 19.6 94.5
Fig. 5* (left) 144× 96× 96 3,721.8k up to 1.0× 108 Mine One-way Mine/3 12.3 3.3 32.7 23.8 32.6 104.7
Fig. 5* (middle) 144× 96× 96 3,721.8k up to 1.0× 108 Mine Weak Mine/3 15.3 4.1 44.0 33.3 40.3 137.0
Fig. 5* (right) 144× 96× 96 3,721.8k up to 1.0× 108 Mine Strong Mine/3 11.2 3.0 42.2 21.3 26.7 104.4
Fig. 6* (middle) 128× 128× 128 up to 344.2k 1.0× 103 Mine N/A Dist/50 12.9 0.6 5.9 75.6 3.8 98.8
Fig. 6* (middle) 128× 128× 128 up to 344.2k 1.0× 103 Mine N/A Dens/50 15.3 0.7 7.0 29.7 4.7 57.4
Fig. 6* (right) 128× 128× 128 up to 344.2k 1.0× 103 Mine N/A Mine/50 11.7 0.6 5.6 11.7 3.5 33.1
Fig. 7* (left) 64× 128× 64 2,405.0k 1.0× 103 Mine One-way Mine/3 3.3 1.3 10.6 16.9 9.2 40.7
Fig. 7* (middle) 64× 128× 64 2,405.0k 1.0× 103 Mine Weak Mine/3 3.0 1.2 9.6 16.2 3.5 33.5
Fig. 7* (right) 64× 128× 64 2,405.0k 1.0× 103 Mine Strong Mine/3 2.7 1.1 9.7 7.3 2.9 23.7
Fig. 8* (left) 128× 128× 128 1,891.5k 1.0× 108 mine N/A None/0 43.4 6.6 38.6 0.0 71.5 160.1
Fig. 8* (middle) 128× 128× 128 1,891.5k 1.0× 108 mine N/A Dist/3 42.3 9.3 46.5 39.3 74.2 211.6
Fig. 8* (right) 128× 128× 128 1,891.5k 1.0× 108 mine N/A mine/3 39.8 8.6 43.6 22.1 72.9 187.1
Fig. 9* (left) 192× 384× 192 up to 1,805.0k 1.0× 101 mine Strong mine/3 152.1 13.5 81.8 11.5 82.8 341.8
Fig. 9* (middle) 192× 384× 192 up to 1,805.0k 1.0× 102 mine Strong mine/3 129.6 11.0 95.4 9.4 69.9 315.2
Fig. 9* (right) 192× 384× 192 up to 1,805.0k 1.0× 103 mine Strong mine/3 84.8 6.7 101.1 9.6 45.1 247.1
Fig. 10* 128× 128× 128 2,756.6k 1.0× 102 mine Strong mine/3 30.0 5.5 70.8 28.4 43.5 178.2
Fig. 11* (left) 128× 128× 128 258.5k 3.0× 102 mine Strong mine/50 17.1 1.5 11.9 16.1 10.8 57.4
Fig. D.1 (left) 64× 128× 64 2,405.0k 1.0× 101 mine One-way mine/3 4.4 1.8 9.7 21.0 12.5 49.5
Fig. D.1 (middle) 64× 128× 64 2,405.0k 1.0× 101 mine Weak mine/3 3.0 1.2 6.4 16.3 5.7 32.6
Fig. D.1 (right) 64× 128× 64 2,405.0k 1.0× 101 mine Strong mine/3 2.8 1.1 5.9 15.1 4.1 29.0
Fig. D.2 (left) 64× 128× 64 2,405.0k 1.0× 102 mine One-way mine/3 4.3 1.7 9.3 22.3 10.2 47.8
Fig. D.2 (middle) 64× 128× 64 2,405.0k 1.0× 102 mine Weak mine/3 3.0 1.2 7.6 16.0 3.5 31.3
Fig. D.2 (right) 64× 128× 64 2,405.0k 1.0× 102 mine Strong mine/3 2.8 1.2 7.7 8.1 2.9 22.8
Fig. D.3 (left) 64× 128× 64 2,405.0k 1.0× 103 mine One-way mine/3 3.3 1.3 10.6 16.9 9.2 40.7
Fig. D.3 (middle) 64× 128× 64 2,405.0k 1.0× 103 mine Weak mine/3 3.0 1.2 9.6 16.2 3.5 33.5
Fig. D.3 (right) 64× 128× 64 2,405.0k 1.0× 103 mine Strong mine/3 2.7 1.1 9.7 7.3 2.9 23.7
Fig. D.4 (left) 64× 128× 64 2,405.0k 1.0× 104 mine One-way mine/3 3.7 1.4 13.2 17.6 10.5 46.3
Fig. D.4 (middle) 64× 128× 64 2,405.0k 1.0× 104 mine Weak mine/3 3.1 1.1 11.3 16.8 3.7 36.0
Fig. D.4 (right) 64× 128× 64 2,405.0k 1.0× 104 mine Strong mine/3 2.6 1.0 11.8 6.9 2.7 24.9
Fig. D.5 (left) 64× 128× 64 2,405.0k 1.0× 105 mine One-way mine/3 3.6 1.6 20.0 18.0 9.3 52.5
Fig. D.5 (middle) 64× 128× 64 2,405.0k 1.0× 105 mine Weak mine/3 3.2 1.2 13.1 17.6 3.8 39.0
Fig. D.5 (right) 64× 128× 64 2,405.0k 1.0× 105 mine Strong mine/3 2.8 1.0 11.8 7.4 2.9 25.8
Fig. D.6 (left) 128× 128× 128 1,891.5k 1.0× 108 mine N/A None/0 43.4 6.6 38.6 0.0 71.5 160.1
Fig. D.6 (middle) 128× 128× 128 1,891.5k 1.0× 108 mine N/A Dist/50 45.7 10.5 54.7 538.6 87.1 735.5
Fig. D.6 (right) 128× 128× 128 1,891.5k 1.0× 108 mine N/A mine/50 39.7 10.2 48.3 190.9 78.8 367.8
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Figure D.1: A solid ball falling inside of fluids with viscosity η = 1.0 × 101 kg/(s ·m). (Top) From left
to right, one-way coupling, weak two-way coupling, and strong two-way coupling. Red, green, and blue
particles represent large, medium, and small velocity magnitudes, respectively. (Bottom) Profile of the
y-directional velocity of the solid balls. Note that due to the high Reynolds number, the analytical solution is
not valid and thus the figure and plot for the analytical solution is excluded.
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Figure D.2: A solid ball falling inside of fluids with viscosity value η = 1.0× 102 kg/(s ·m). (Top) From
left to right, one-way coupling, weak two-way coupling, and strong two-way coupling. (Bottom) Profile of
the y-directional velocity of the solid balls. My strong two-way coupling gives solid velocities very close to
the analytical solution while the solid velocities given with one-way and weak two-way coupling significantly
deviate from the analytical solution.

150



50 100 150 200 250 300
Frames

−0.6

−0.4

−0.2

0.0

Y-
ve

lo
cit

y 
(m

/s
)

One-way
Weak two-way
Strong two-way
Analytical solution

Figure D.3: A solid ball falling inside of fluids with viscosity values η = 1.0× 103 kg/(s ·m). (Top) From
left to right, one-way coupling, weak two-way coupling, and strong two-way coupling. (Bottom) Profile of
the y-directional velocity of the solid balls. My strong two-way coupling gives solid velocities very close to
the analytical solution while the solid velocities given with one-way and weak two-way coupling significantly
deviate from the analytical solution.
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Figure D.4: A solid ball falling inside of fluids with viscosity values η = 1.0× 104 kg/(s ·m). (Top) From
left to right, one-way coupling, weak two-way coupling, and strong two-way coupling. (Bottom) Profile of
the y-directional velocity of the solid balls. My strong two-way coupling gives solid velocities very close to
the analytical solution while the solid velocities given with one-way and weak two-way coupling significantly
deviate from the analytical solution.
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Figure D.5: A solid ball falling inside of fluids with viscosity values η = 1.0× 105 kg/(s ·m). (Top) From
left to right, one-way coupling, weak two-way coupling, and strong two-way coupling. (Bottom) Profile of
the y-directional velocity of the solid balls. My strong two-way coupling gives solid velocities very close to
the analytical solution while the solid velocities given with one-way and weak two-way coupling significantly
deviate from the analytical solution.
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Figure D.6: (Top) A viscous fluid volume successively compressed by prescribed circular plates with several
holes. From left to right, no position correction, distance-based position correction, and my method for
surface rendering and particle view with color coding (white and red represent low and high densities,
respectively). (Bottom) Profile of the maximum particle density, which indicates the inverse of local volumes.
Compared to other approaches, my method preserves the density closer to the original one.

154



D.5 Implementation Details on J

Given viscous stress s = (sxx, sxy, sxz, syy, syz, szz)
T defined on the staggered grid, the translational

viscosity forces (Fx, Fy, Fz) applied from fluids to a rigid body can be written with grid indices i, j, k, control

volumes V and voxel size ∆x as

Fx =
∑
i,j,k

(Jxx,i,j,ksxx,i,j,k + Jxy,i−1/2,j−1/2,ksxy,i−1/2,j−1/2,k + Jxz,i−1/2,j,k−1/2sxz,i−1/2,j,k−1/2),

Fy =
∑
i,j,k

(Jyx,i−1/2,j−1/2,ksxy,i−1/2,j−1/2,k + Jyy,i,j,ksyy,i,j,k + Jyz,i,j−1/2,k−1/2syz,i,j−1/2,k−1/2),

Fz =
∑
i,j,k

(Jzx,i−1/2,j,k−1/2szx,i−1/2,j,k−1/2 + Jzy,i,j−1/2,k−1/2syz,i,j−1/2,k−1/2 + Jzz,i,j,kszz,i,j,k),

where

Jxx,i,j,k =
−Vi+1/2,j,k + Vi−1/2,j,k

∆x
,

Jxy,i−1/2,j−1/2,k =
−Vi−1/2,j,k + Vi−1/2,j−1,k

∆x
,

Jxz,i−1/2,j,k−1/2 =
−Vi−1/2,j,k + Vi−1/2,j,k−1

∆x
,

Jyx,i−1/2,j−1/2,k =
−Vi,j−1/2,k + Vi−1,j−1/2,k

∆x
,

Jyy,i,j,k =
−Vi,j+1/2,k + Vi,j−1/2,k

∆x
,

Jyz,i,j−1/2,k−1/2 =
−Vi,j−1/2,k + Vi,j−1/2,k−1

∆x
,

Jzx,i−1/2,j,k−1/2 =
−Vi,j,k−1/2 + Vi−1,j,k−1/2

∆x
,

Jzy,i,j−1/2,k−1/2 =
−Vi,j,k−1/2 + Vi,j−1,k−1/2

∆x
,

Jzz,i,j,k =
−Vi,j,k+1/2 + Vi,j,k−1/2

∆x
.

Ignoring the grid indices for readability (as of now), the rotational forces Frx, Fry, Frz can be written

with positions of viscous stress defined on a grid x = (x, y, z)T and the center of mass for the rigid body
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X = (X,Y, Z)T as

Frx =
∑

((y − Y )(Jzxsxz + Jzysyz + Jzzszz)− (z − Z)(Jyxsxy + Jyysyy + Jyzsyz)) ,

Fry =
∑

((z − Z)(Jxxsxx + Jxysxy + Jxzsxz)− (x−X)(Jzxsxz + Jzysyz + Jzzszz)) ,

Frz =
∑

((x−X)(Jyxsxy + Jyysyy + Jyzsyz)− (y − Y )(Jxxsxx + Jxysxy + Jxzsxz)) .

Since the viscous stresses are defined at different locations on the grid in the staggered manner, in practice, I

compute the rotational forces above, e.g., for Frz by

Frz =
∑
i,j,k

(
(xi,j,k −X)Jyy,i,j,ksyy,i,j,k − (yi,j,k − Y )Jxx,i,j,ksxx,i,j,k

+
(
(xi−1/2,j−1/2,k −X)Jyx,i−1/2,j−1/2,k − (yi−1/2,j−1/2,k − Y )Jxy,i−1/2,j−1/2,k

)
sxy,i−1/2,j−1/2,k

+(xi−1/2,j,k−1/2 −X)Jyz,i,j−1/2,k−1/2syz,i,j−1/2,k−1/2

−(yi,j−1/2,k−1/2 − Y )Jxz,i−1/2,j,k−1/2sxz,i−1/2,j,k−1/2

)
.

Similarly, I can compute Frx and Fry. Given F = (Fx, Fy, Fz, Frx, Fry, Frz)
T as the generalized six-

dimensional viscosity forces for a rigid body, by extracting coefficients for the viscosity forces to assemble J,

I obtain the following relation:

F = Js.
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APPENDIX E: VISCOSITY PARAMETER IDENTIFICATION WITH PIV

E.1 Introduction

In this appendix, I describe the viscosity parameter identification with particle image velocimetry (PIV)

data for viscous fluids captured from real-world experiments. In the experiments, I use a simple setup, where

a solid ball falls inside of viscous fluids, to capture the velocity fields with PIV because of the ease of the

experiments in the same condition without a special setup. Although it is possible to identify viscosity

parameters with a simpler way, e.g., by matching the velocity of the solid ball with a simulated solid ball,

in this scenario, I note that the simple approach is not applicable if the solid ball is moved in a prescribed

manner while PIV data can still be used for parameter identification, and thus can be considered as more

general. In this report, I explain the parameter identification with PIV data and provide some experimental

results as an extra validation for my general parameter identification framework.

The algorithm of my framework with PIV data is essentially same as the one for example videos, and my

goal is to identify viscosity parameters with which my viscous fluid simulator generates fluid flows as close

as possible to the PIV data. Similar to the case of example videos, my framework first captures velocity fields

using PIV from real world fluid phenomena, and preprocesses the captured data to make them amenable

for the optimization. Then, I perform iterative optimization with forward viscous fluid simulations and

finally output identified viscosity parameters. In the following, I describe major processes for PIV data, i.e.,

objective function formulation §E.1.1, velocity field capture §E.1.2, preprocess §E.1.3, and objective function

evaluation §E.1.4. The iterative optimization can be performed in the same way as for the identification with

example videos.

E.1.1 Objective Function

PIV is an optical method for directly capturing the velocity fields of fluid flows in the real world, and is

widely used in the scientific fields for validation purposes. While there are various types of PIV setup and

related algorithm, e.g., to capture 3D velocity fields (Xiong et al., 2017), one commonly available PIV system

captures 2D velocity fields on a laser sheet injected by the system, as shown in Figure E.1.
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Figure E.1: My PIV setup to capture velocity fields. Laser is injected into viscous fluids to capture the 2D
velocity fields on the sheet.

Since PIV can directly measure the fluid velocities from real fluid flows, I formulate my objective

function as

E =
1

M

N−1∑
f=0

‖C
1
2
f (ũf − ûf )‖22, (E.1)

where M denotes the number of velocity samples used in the optimization, f index for frames, N total count

of frames considered in the optimization, C a diagonal coefficient matrix, ũ the 2-dimensional interpolated

fluid velocities from the simulation, and û the 2-dimensional fluid velocities captured with PIV.
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E.1.2 Capturing Velocity Fields

To capture the velocity fields using PIV, I setup an experimental setting, as shown in Figure E.1. In

my setting, I first prepare a container filled with viscous fluids, two calibrated and synchronized cameras

positioned next to each other, and a laser device to inject thin sheet-shaped laser into the viscous fluids.

Then, I put tiny metal particles into the viscous fluids so that these particles reflect the injected laser, and

the cameras can capture the movement and velocities of these particles using optical flow algorithms. The

resulting velocity fields computed with PIV are uniformly aligned and within a small window on the 2D (xy)

plane produced by the injected laser.

To induce fluid velocities, I chose a simple scenario, where a solid ball falls down inside of the viscous

fluids, so that one can easily and consistently regenerate a similar setup (see Figure E.3 (left)). I carefully put

the solid ball such that the center of the solid ball is exactly on the sheet created by the laser device not to

induce out of plane velocities (i.e., z-component of fluid velocities equals 0), and then measure velocity fields

perturbed due to the falling solid ball. One example of the 2D velocity fields captured with PIV is shown in

Figure E.2 (top left).

E.1.3 Preprocessing

While the velocity fields taken with PIV can sufficiently capture an overall flow of viscous fluids, there

are some inconsistency due to the noise, which can be interpreted as unnatural, sudden velocity changes.

Thus, I aim to remove the inconsistency from the captured velocity fields to make them temporally consistent

and amenable in the optimization step.

Since the captured velocity fields are taken from the real fluid flows, their behaviors should follow the

Newton’s law, and thus the velocity fields should be sufficiently smooth in the temporal direction. Thus, I

first measure the smoothness of the captured velocity fields with the Laplacian on the temporal direction:

∇2
f û =

ûf+1 − 2ûf + ûf−1

∆t2
. (E.2)

Then, I evaluate the validity of the captured velocities by comparing the magnitude of the Laplacian ‖∇2
f û‖

with the norm of the measured velocity itself ‖û‖, and treat velocity fields as valid if ‖∇2
f û‖ < α‖û‖, where

α denotes a threshold parameter to adjust the necessary smoothness to be valid. In practice, I eliminate
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invalid velocities by setting coefficients in the objective function as

cf =

 1 if ‖∇2
f û‖ < α‖û‖

0 otherwise

(E.3)

where c denotes a diagonal entry of the coefficient matrix. It is worth noting that although non-binary

coefficients could be used, I found that binary coefficients are generally preferable because the binary

coefficients can completely eliminate the noisy velocity fields, and in general there are sufficient numbers of

valid velocity fields to be used as a reference. Figure E.2 (top right) illustrates only valid velocity fields.

E.1.4 Evaluating Objective Function

To evaluate the objective function, it is necessary to perform the fluid simulation. For the simulation setup,

I measure the size of the container and solid ball and density of the ball. Then, I manually estimate positions

of the ball and compute solid velocities from the positions using finite difference. During the simulation, I

interpolate the fluid velocities at the positions, where valid velocities are defined (see Figure E.2 (bottom

left)). Since the velocity fields from the fluid simulation are available over the entire simulation domain

(unlike PIV velocity fields), I can straightforwardly interpolate the velocities and compute the objective

function. The difference between the valid PIV data and the interpolated velocities is illustrated in Figure E.2

(bottom right). I note that since fluid velocities are extrapolated into the solid ball, the computation of the

objective function is valid even if the positions of the solid ball deviate from those in the example data.

In my framework, velocity fields obtained from PIV are available only within a small window on the 2D

sheet. As such, it is not possible to replace the PIV velocity fields as initial or intermediate velocity fields

for each step of the forward simulation. Consequently, it is necessary to rely on the simulation results at

each frame, which would deviate from the example data due to the accumulated errors over multiple steps.

However, I minimize the velocity deviations from the example data over multiple frames as a space-time

optimization problem, and thus the resulting viscosity parameters are considered as optimal over the given

time span although different parameters would generate smaller velocity deviations from the example data

for a specific short term.
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Table E.1: Viscosity parameter identification results with PIV velocity fields. ρf denotes fluid density
(kg/m3), η̂ fluid viscosity (kg/(s ·m)), r solid ball radius 1.0×10−3(m), ρs solid ball density (kg/m3), u∞
the terminal velocity of the solid ball (m/s), Re Reynolds number, η identified viscosity value (kg/(s ·m)),
and ε relative error (%). In general, relative errors are small.

Name ρf η̂ r ρs u∞ Re η ε

plastic 970.79 1.03 6.25 1555.00 -0.04 0.47 0.96 6.80
steel 970.79 1.03 4.76 8050.00 -0.12 1.07 1.12 8.73

E.2 Validation Results

I implemented my framework with C++, and used a viscous fluid solver based on (Batty and Bridson,

2008; Takahashi and Lin, 2019a) My experiments are executed on a Linux machine with 24-core 2.50GHz

Intel Xeon and 256 GB RAMs. For the parameter identification, I typically formulate the objective function

with up to 50 frames to make the space-time optimization manageable.

E.2.1 PIV Velocity Fields

To validate my framework, I use a simple experimental setting, where a solid ball is falling inside of

viscous fluids. This experimental setting is shown in Figure E.3 (left). I capture velocity fields with this setup,

and used the captured velocity fields as input for my framework. In this experiment, I use silicone oils as

viscous fluids and measured their viscosity values with a viscometer for comparison. I use different types of

balls: “plastic” and “steel”. Because of different size and density of the balls, the falling speed of the balls

are also different leading to distinct fluid flow patterns (i.e., different Reynolds numbers). The parameters

and results are summarized in Table E.1. I note that in the scenes “plastic” and “steel”, Stokes’ law is not

valid since Reynolds number is not sufficiently low (Re� 1), and thus it is not possible to identify viscosity

parameters based on the Stokes’ law. In this experiment, for the identification results of “plastic” and “steel”,

the relative errors are small and is within 10%.

For the demonstration of the parameter identification result, I simulate the falling sphere scenario, where

I captured the PIV velocity fields. The result is given in Figure E.3 (right) and in the accompanying video.

The resulting movement of the simulated solid ball is in good agreement with the ball in the real world

counterpart.
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Figure E.2: Velocity field illustration. White sphere represents the solid ball falling inside the viscous fluids.
(Top left) velocity fields captured with PIV. (Top right) valid velocity fields. (Bottom left) velocity fields
interpolated from velocity fields generated with my solver. (Bottom right) Velocity field differences between
the valid velocity fields and the interpolated velocity fields.
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Figure E.3: A sphere falling inside of viscous fluids. (Left) experimental setup for capturing PIV velocity
fields. (Right) my simulation results with the identified viscosity parameter. The falling behavior of the
simulated ball is in good agreement with the falling ball in the real world used to capture PIV data.
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