5,984 research outputs found

    Training deep neural density estimators to identify mechanistic models of neural dynamics

    Get PDF
    Mechanistic modeling in neuroscience aims to explain observed phenomena in terms of underlying causes. However, determining which model parameters agree with complex and stochastic neural data presents a significant challenge. We address this challenge with a machine learning tool which uses deep neural density estimators-- trained using model simulations-- to carry out Bayesian inference and retrieve the full space of parameters compatible with raw data or selected data features. Our method is scalable in parameters and data features, and can rapidly analyze new data after initial training. We demonstrate the power and flexibility of our approach on receptive fields, ion channels, and Hodgkin-Huxley models. We also characterize the space of circuit configurations giving rise to rhythmic activity in the crustacean stomatogastric ganglion, and use these results to derive hypotheses for underlying compensation mechanisms. Our approach will help close the gap between data-driven and theory-driven models of neural dynamics

    Surrogate time series

    Full text link
    Before we apply nonlinear techniques, for example those inspired by chaos theory, to dynamical phenomena occurring in nature, it is necessary to first ask if the use of such advanced techniques is justified "by the data". While many processes in nature seem very unlikely a priori to be linear, the possible nonlinear nature might not be evident in specific aspects of their dynamics. The method of surrogate data has become a very popular tool to address such a question. However, while it was meant to provide a statistically rigorous, foolproof framework, some limitations and caveats have shown up in its practical use. In this paper, recent efforts to understand the caveats, avoid the pitfalls, and to overcome some of the limitations, are reviewed and augmented by new material. In particular, we will discuss specific as well as more general approaches to constrained randomisation, providing a full range of examples. New algorithms will be introduced for unevenly sampled and multivariate data and for surrogate spike trains. The main limitation, which lies in the interpretability of the test results, will be illustrated through instructive case studies. We will also discuss some implementational aspects of the realisation of these methods in the TISEAN (http://www.mpipks-dresden.mpg.de/~tisean) software package.Comment: 28 pages, 23 figures, software at http://www.mpipks-dresden.mpg.de/~tisea

    "Multivariate stochastic volatility"

    Get PDF
    We provide a detailed summary of the large and vibrant emerging literature that deals with the multivariate modeling of conditional volatility of financial time series within the framework of stochastic volatility. The developments and achievements in this area represent one of the great success stories of financial econometrics. Three broad classes of multivariate stochastic volatility models have emerged, one that is a direct extension of the univariate class of stochastic volatility model, another that is related to the factor models of multivariate analysis, and a third that is based on the direct modeling of time-varying correlation matrices via matrix exponential transformations, Wishart processes and other means. We discuss each of the various model formulations, provide connections and differences and show how the models are estimated. Given the interest in this area, further significant developments can be expected, perhaps fostered by the overview and details delineated in this paper, especially in the fitting of high dimensional models.
    • ā€¦
    corecore