68 research outputs found

    Downlink and Uplink Intelligent Reflecting Surface Aided Networks: NOMA and OMA

    Full text link
    Intelligent reflecting surfaces (IRSs) are envisioned to provide reconfigurable wireless environments for future communication networks. In this paper, both downlink and uplink IRS-aided non-orthogonal multiple access (NOMA) and orthogonal multiple access (OMA) networks are studied, in which an IRS is deployed to enhance the coverage by assisting a cell-edge user device (UD) to communicate with the base station (BS). To characterize system performance, new channel statistics of the BS-IRS-UD link with Nakagami-mm fading are investigated. For each scenario, the closed-form expressions for the outage probability and ergodic rate are derived. To gain further insight, the diversity order and high signal-to-noise ratio (SNR) slope for each scenario are obtained according to asymptotic approximations in the high-SNR regime. It is demonstrated that the diversity order is affected by the number of IRS reflecting elements and Nakagami fading parameters, but the high-SNR slope is not related to these parameters. Simulation results validate our analysis and reveal the superiority of the IRS over the full-duplex decode-and-forward relay.Comment: Accepted for publication in the IEEE Transactions on Wireless Communication

    Opportunistic Reflection in Reconfigurable Intelligent Surface-Assisted Wireless Networks

    Full text link
    This paper focuses on multiple-access protocol design in a wireless network assisted by multiple reconfigurable intelligent surfaces (RISs). By extending the existing approaches in single-user or single-RIS cases, we present two benchmark schemes for this multi-user multi-RIS scenario. Inspecting their shortcomings, a simple but efficient method coined opportunistic multi-user reflection (OMUR) is proposed. The key idea is to opportunistically select the best user as the anchor for optimizing the RISs, and non-orthogonally transmitting all users' signals simultaneously. A simplified version of OMUR exploiting random phase shifts is also proposed to avoid the complexity of RIS channel estimation.Comment: IEEE PIMRC 2023, Toronto, Canada. arXiv admin note: text overlap with arXiv:2303.09183. text overlap with arXiv:2309.0632

    User Pairing and Power Allocation for IRS-Assisted NOMA Systems with Imperfect Phase Compensation

    Get PDF
    In this letter, we analyze the performance of the intelligent reflecting surface (IRS) assisted downlink non-orthogonal multiple access (NOMA) systems in the presence of imperfect phase compensation. We derive an upper bound on the imperfect phase compensation to achieve minimum required data rates for each user. Using this bound, we propose an adaptive user pairing algorithm to maximize the network throughput. We then derive bounds on the power allocation factors and propose power allocation algorithms for the paired users to achieve the maximum sum rate or ensure fairness. Through extensive simulations, we show that the proposed algorithms significantly outperform the state-of-the-art algorithms
    corecore