2,085 research outputs found

    A Signal-Space Analysis of Spatial Self-Interference Isolation for Full-Duplex Wireless

    Full text link
    The challenge to in-band full-duplex wireless communication is managing self-interference. Many designs have employed spatial isolation mechanisms, such as shielding or multi-antenna beamforming, to isolate the self-interference wave from the receiver. Such spatial isolation methods are effective, but by confining the transmit and receive signals to a subset of the available space, the full spatial resources of the channel be under-utilized, expending a cost that may nullify the net benefit of operating in full-duplex mode. In this paper we leverage an antenna-theory-based channel model to analyze the spatial degrees of freedom available to a full-duplex capable base station, and observe that whether or not spatial isolation out-performs time-division (i.e. half-duplex) depends heavily on the geometric distribution of scatterers. Unless the angular spread of the objects that scatter to the intended users is overlapped by the spread of objects that backscatter to the base station, then spatial isolation outperforms time division, otherwise time division may be optimal.Comment: To Appear at 2014 International Symposium on Information Theor

    Spatial degrees-of-freedom in large-array full-duplex: the impact of backscattering

    Get PDF
    The key challenge for in-band full-duplex wireless communication is managing self-interference. Many designs have employed spatial isolation mechanisms, such as shielding or multi-antenna beamforming, to isolate the self-interference waveform from the receiver. Because such spatial isolation methods confine the transmit and receive signals to a subset of the available space, the full spatial resources of the channel may be under-utilized, expending a cost that may nullify the net benefit of operating in full-duplex mode. In this paper, we leverage an antenna-theory-based channel model to analyze the spatial degrees of freedom available to a full-duplex capable base station. We observe that whether or not spatial isolation out-performs time-division (i.e., half-duplex) depends heavily on the geometric distribution of scatterers. Unless the angular spread of the objects that scatter to the intended users is overlapped by the spread of objects that backscatter to the base station, then spatial isolation outperforms time division, otherwise time division may be optimal

    Hardware Impairments Aware Transceiver Design for Full-Duplex Amplify-and-Forward MIMO Relaying

    Full text link
    In this work we study the behavior of a full-duplex (FD) and amplify-and-forward (AF) relay with multiple antennas, where hardware impairments of the FD relay transceiver is taken into account. Due to the inter-dependency of the transmit relay power on each antenna and the residual self-interference in an FD-AF relay, we observe a distortion loop that degrades the system performance when the relay dynamic range is not high. In this regard, we analyze the relay function in presence of the hardware inaccuracies and an optimization problem is formulated to maximize the signal to distortion-plus-noise ratio (SDNR), under relay and source transmit power constraints. Due to the problem complexity, we propose a gradient-projection-based (GP) algorithm to obtain an optimal solution. Moreover, a nonalternating sub-optimal solution is proposed by assuming a rank-1 relay amplification matrix, and separating the design of the relay process into multiple stages (MuStR1). The proposed MuStR1 method is then enhanced by introducing an alternating update over the optimization variables, denoted as AltMuStR1 algorithm. It is observed that compared to GP, (Alt)MuStR1 algorithms significantly reduce the required computational complexity at the expense of a slight performance degradation. Finally, the proposed methods are evaluated under various system conditions, and compared with the methods available in the current literature. In particular, it is observed that as the hardware impairments increase, or for a system with a high transmit power, the impact of applying a distortion-aware design is significant.Comment: Submitted to IEEE Transactions on Wireless Communication
    • …
    corecore