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Abstract

The key challenge for in-band full-duplex wireless communication is managing self-interference. Many designs have
employed spatial isolation mechanisms, such as shielding or multi-antenna beamforming, to isolate the
self-interference waveform from the receiver. Because such spatial isolation methods confine the transmit and receive
signals to a subset of the available space, the full spatial resources of the channel may be under-utilized, expending a
cost that may nullify the net benefit of operating in full-duplex mode. In this paper, we leverage an
antenna-theory-based channel model to analyze the spatial degrees of freedom available to a full-duplex capable
base station. We observe that whether or not spatial isolation out-performs time-division (i.e., half-duplex) depends
heavily on the geometric distribution of scatterers. Unless the angular spread of the objects that scatter to the
intended users is overlapped by the spread of objects that backscatter to the base station, then spatial isolation
outperforms time division, otherwise time division may be optimal.

1 Introduction
Currently deployed wireless communications equipment
operates in half-duplex mode, meaning that transmis-
sion and reception are orthogonalized either in time
(time-division-duplex) or frequency (frequency-division-
duplex). Research in recent years [1–12] has investigated
the possibility of wireless equipment operating in full-
duplex mode, meaning that the transceiver will both
transmit and receive at the same time and in the same
spectrum. A potential benefit of full-duplex is illustrated
in. User 1 wishes to transmit uplink data to a base sta-
tion, and User 2 wishes to receive downlink data from the
same base station. If the base station is half-duplex, then it
must either service the users in orthogonal time slots or in
orthogonal frequency bands. However, if the base station
can operate in full-duplexmode, then it can enhance spec-
tral efficiency by servicing both users simultaneously. The
challenge to full-duplex communication, however, is that
the base station transmitter generates high-powered self-
interference which potentially swamps its own receiver,
precluding the detection of the uplink message.1
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For full-duplex to be feasible, the self-interference
must be suppressed. The two main approaches to self-
interference suppression are cancellation and spatial
isolation, andwe now define each. Self-interference cancel-
lation is any technique which exploits the foreknowledge
of the transmit signal by subtracting an estimate of the
self-interference from the received signal. Cancellation
can be applied at digital baseband, at analog baseband,
at RF, or, as is most common, applied at a combination
of these three domains [4–7, 11, 13, 14]. Spatial isola-
tion is any technique to spatially orthogonalize the self-
interference and the signal-of-interest. Some spatial isola-
tion techniques studied in the literature are multi-antenna
beamforming [1, 15–19], directional antennas [20], shield-
ing via absorptive materials [21], and cross-polarization
of transmit and receive antennas [10, 21]. The key dif-
ferentiator between cancellation and spatial isolation is
that cancellation requires and exploits knowledge of the
self-interference, while spatial isolation does not. To our
knowledge, all full-duplex designs to date have required
both cancellation and spatial isolation in order for full-
duplex to be feasible even at very short ranges (i.e., < 10
m). For example, see designs such as [5, 6, 10, 11], each of
which leverages cancellation techniques as well as at least
one spatial isolation technique. Moreover, because cancel-
lation performance is limited by transceiver impairments
such as phase noise [22], spatial isolation often accounts
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for an outsized portion of the overall self-interference
suppression.
For example, in the full-duplex design of [21] which

demonstrated full-duplex feasibility at WiFi ranges, of the
95 dB of self-interference suppression achieved, 70 dB is
due to spatial isolation, while only 25 dB is due to cancella-
tion. Therefore, if full-duplex feasibility is to be extended
from WiFi-typical ranges to the ranges typical of femto-
cells or even larger cells, then excellent spatial isolation
performance will be required, hence our focus is on spatial
isolation in this paper.
In a previous work [21], we studied three passive tech-

niques for spatial isolation: directional antennas, absorp-
tive shielding, and cross-polarization, and measured their
performance in a prototype base station both in an ane-
choic chamber that mimics free space, and in a reflec-
tive room. As expected, the techniques suppressed the
self-interference quite well (more than 70 dB) in an ane-
choic chamber, but scattering environments, the sup-
pression was much less, (no more than 45 dB), due to
the fact that passive techniques operate primarily on the
direct path between the transmit and receive antennas,
and do little to suppress paths that include an external
backscatterer. The direct-path limitation of passive spa-
tial isolation mechanisms raises the question of whether
or not spatial isolation can be useful in a backscatter-
ing environment. Another class of spatial isolation tech-
niques called “active” or “channel aware” spatial isolation
[23] can indeed suppress both direct and backscattered
self-interference. In particular, if multiple antennas are
used and if the self-interference channel response can
be estimated, then the radiation pattern can be shaped
adaptively to mitigate both direct-path and backscat-
tered self-interference. However, this pattern shaping (i.e.,
beamforming) will consume spatial degrees-of-freedom
that could have otherwise been leveraged for spatial mul-
tiplexing. Thus, there is an important tradeoff between
spatial self-interference isolation and achievable degrees
of freedom.
To appreciate the tradeoff, consider the example in

Fig. 1. The direct path from the base station transmit-
ter, T2, to its receiver R1, can be passively suppressed by
shielding the receiver from the transmitter as shown in
[21], but there will also be backscattered self-interference
due to objects near the base station (depicted by gray
blocks in Fig. 1). The self-interference caused by scat-
terer S0, for example, in Fig. 1, could be avoided by
creating a null in the direction of S0. However, losing
access to the scatterer could create a less-rich scattering
environment, diminishing the spatial degrees-of-freedom
of the uplink or downlink. Moreover, creating the null
consumes spatial degrees-of-freedom that could other-
wise be used for spatial multiplexing to the downlink
user, diminishing the achievable degrees-of-freedom of

Fig. 1 Three-node full-duplex model

the downlink. This example leads us to pose the following
question.
Question: Under what scattering conditions can spatial

isolation be leveraged in full-duplex operation to provide
a degree-of-freedom gain over half-duplex? More specifi-
cally, given a constraint on the size of the antenna arrays at
the base station and at the user devices, and given a char-
acterization of the spatial distribution of the scatterers in
the environment, what is the uplink/downlink degree-of-
freedom region when the only self-interference mitigation
strategy is spatial isolation?
Modeling approach: To answer the above question, we

leverage the antenna-theory-based channel model devel-
oped by Poon, Broderson, and Tse in [24–26], which we
will label the “PBT” model. In the PBT model, instead
of constraining the number of antennas, the size of the
array is constrained. Furthermore, instead of considering
a channel matrix drawn from a probability distribution,
a channel transfer function which depends on the geo-
metric position of the scatterers relative to the arrays is
considered (Fig. 2).

Fig. 2 Clustered scattering. Only one cluster for each transmit receive
pair is shown to prevent clutter
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Contribution: We extend the PBT model to the three-
node full-duplex topology of Fig. 1, and derive the
degree-of-freedom region, DFD: the set of all achievable
uplink/downlink degree-of-freedom tuples. By compar-
ing DFD to DHD, the degree-of-freedom region achieved
by time-division half-duplex, we observe that full-duplex
outperforms half-duplex, i.e.,DHD ⊂ DFD, in the following
two scenarios.

1. When the base station arrays are larger than the
corresponding user arrays, the base station has a
larger signal space than is needed for spatial
multiplexing and can leverage the extra signal
dimensions to form beams that avoid
self-interference (i.e., self-interference zero-forcing).

2. More interestingly, when the forward scattering
intervals and the backscattering intervals are not
completely overlapped, the base station can avoid
self-interference by signaling in the directions that
scatter to the intended receiver, but do not
backscatter to the base-station receiver. Moreover,
the base station can also signal in directions that do
cause self-interference, but ensure that the generated
self-interference is incident on the base-station
receiver only in directions in which uplink signal is
not incident on the base-station receiver, i.e., signal
such that the self-interference and uplink signal are
spatially orthogonal.

In [27], an experimental evaluation of a transmit-
beamforming-based method for full-duplex operation
called “SoftNull” is presented. Inspired by the achievabil-
ity proof in Section 3.1, the SoftNull algorithm presented
in [27] seeks to maximally suppress self-interference for a
given required number of downlink-degrees-of-freedom.
This paper presents an information theoretic analysis of
the performance limits of beamforming-based full-duplex
systems, whereas [27] presents an experimental evalua-
tion of a specific design. We would like to refer [27] to
readers who may be interested in how the theoretical
intuitions from this paper can guide the design and imple-
mentation of a beamforming-based full-duplex system.
Organization of the paper: Section 2 specifies the

system model: we begin with an overview of the PBT
model in Section 2.1 and then in Section 2.2 apply the
model to the scenario of a full-duplex base station with
uplink and downlink flows. Section 3 gives the main
analysis of the paper, the derivation of the degrees-of-
freedom region. We start Section 3 by stating the theorem
which characterizes the degrees-of-freedom region and
then give the achievability and converse arguments in
Sections 3.1 and 3.2, respectively. In Section 4, we assess
the impact of the degrees-of-freedom result on the design
and deployment of full-duplex base stations, and include

an application example, that shows how the results of this
paper are used to guide the design of a full-duplex base
station in [27]. We give concluding remarks in Section 5.

2 Systemmodel
We now give a brief overview of the PBT channel model
presented in [24]. We then extend the PBT model to the
case of the three-node full-duplex topology of Fig. 1, and
define the required mathematical formalism that will ease
the degrees-of-freedom analysis in the sequel.

2.1 Overview of the PBTmodel
As illustrated in Fig. 3, the PBT channel model consid-
ers a wireless communication link between a transmitter
equipped with a unipolarized continuous linear array of
length 2LT and a receiver with a similar array of length
2LR. The authors observe that there are two key domains:
the array domain, which describes the current distribu-
tion on the arrays, and the wavevector domain which
describes radiated and received field patterns. Channel
measurement campaigns show that the angles of depar-
ture and the angles of arrival of the physical paths from
a transmitter to a receiver tend to be concentrated within
a handful of angular clusters [28–31]. Thus the authors
of the PBT model [24] focus on the union of the clusters
of angles-of-departure from the transmit array, denoted
�T , and the union of the clusters of angles-of-arrival to
the receive array, �R. Because a linear array aligned to
the z-axis array can only resolve the z-component, the
intervals of interest are �T = {cos θ : θ ∈ �T } and
�R = {cos θ : θ ∈ �R}. In [24], it is shown from the first
principles of Maxwell’s equations that an array of length
2LT has a resolution of 1/(2LT ) over the interval �T , so
that the dimension of the transmit signal space of radiated
field patterns is 2LT |�T |. Likewise the dimension of the
receive signal space is 2LR|�R|, so that the spatial degrees
of freedom a point-to-point communication link, dP2P, is

dP2P = min {2LT |�T |, 2LR|�R|} . (1)

Fig. 3 The PBT Channel model for a point-to-point scenario
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2.2 Extension of PBTmodel to three-node full-duplex
Now we extend the PBT channel model in [24], which
considers a point-to-point topology, to the three-node
full-duplex topology of Fig. 1. The antenna-theory-based
PBT channel model is built upon far-field assumptions,
i.e., that the propagation path is much larger than a wave-
length. We acknowledge that direct-path self-interference
may not obey far-field behavior. However, the backscat-
tered self-interference, which will travel several wave-
lengths to reach an external scatterer and then return to
the base station, is indeed a far-field signal. As discussed
in the introduction, the intent of this paper is to under-
stand the impact of backscattered self-interference as a
function of the size of antenna arrays and the geometric
distribution of the scatterers. Since the backscattering is
indeed a far-field phenomenon, the PBT model is a quite
well-suited model for our study.
As in [24], we consider continuous linear arrays of

infinitely many infinitesimally small unipolarized antenna
elements.2 Each of the two transmitters Tj, j = 1, 2,
is equipped with a linear array of length 2LTj , and each
receiver, Ri, i = 1, 2, is equipped with a linear array
of length 2LRi . The lengths LTj and LRi are normalized
by the wavelength of the carrier, and thus are unitless
quantities. For each array, define a local coordinate sys-
tem with origin at the midpoint of the array and z-axis
aligned along the length of the array. Let θTj ∈[ 0,π)

denote the elevation angle relative to the Tj array, and
let θRi denote the elevation angle relative to the Ri array.
Denote the current distribution on the Tj array as xj(pj),
where pj ∈[−LTj , LTj ] is the position along the lengths
of the array, and xj :[−LTj , LTj ]→ C gives the magni-
tude and phase of the current. The current distribution,
xj(pj), is the transmit signal controlled by Tj, which we
constrain to be square integrable. Likewise, we denote the
received current distribution on the Ri array as yi(qi), qi ∈
[−LRi , LRi ].
The signal received by the base station receiver, R1, at a

point q1 ∈[−LR2 , LR2 ] along its array is given by

y1(q1) =
∫ LT1

−LT1
C11(q1, p1)x1(p1)dp1

︸ ︷︷ ︸
desired uplink signal

+
∫ LT2

−LT2
C12(q1, p2)x2(p2)dp2

︸ ︷︷ ︸
self-interference

+ z1(q1),︸ ︷︷ ︸
noise

(2)

where z1(q1), q1 ∈[−LR1 , LR1 ] is the noise along the R1
array. The channel response integral kernel, Cij(qi, pj),
gives the current excited at a point qi on the receive array
due to a current at the point pj on the transmit array.
Note that the first term in (2) gives the received uplink

signal-of-interest, while the second term gives the self-
interference generated by the base station’s own transmis-
sion. We assume that the mobile users are out of range of
each other, such that there is no channel from T1 to R2.3
Thus, R2’s received signal at a point q2 ∈[−LR2 , LR2 ] is

y2(q2) =
∫ LT2

−LT2
C22(q2, p2)x2(p2)dp2 + z2(q2). (3)

The channel response kernel, Cij(·, ·) is composed of a
transmit array response, ATj(·, ·), a scattering response,
Hij(·, ·), and a receive array response, ARi(·, ·) [24]. The
channel response kernel is given by

Cij(q, p) =
∫∫

ARi(q, κ̂)︸ ︷︷ ︸
Rx array response

scattering response︷ ︸︸ ︷
Hij(κ̂ , k̂)

× ATj(k̂, p)︸ ︷︷ ︸
Tx array response

dk̂dκ̂ ,
(4)

where k̂ is a unit vector that gives the direction of depar-
ture from the transmitter array, and κ̂ is a unit vector that
gives the direction of arrival to the receiver array. The
transmit array response kernel, ATj(k̂, p), maps the cur-
rent distribution along the Tj array (a function of p) to
the field pattern radiated from Tj (a function of direction
of departure, k̂). The scattering response kernel, Hij(κ̂ , k̂),
maps the fields radiated from Tj in direction k̂ to the fields
incident on Ri at direction κ̂ . The receive array response,
ARi(q, κ̂), maps the field pattern incident on Ri (a func-
tion of direction of arrival, κ̂) to the current distribution
excited on the Ri array (a function of position q), which is
the received signal.

2.3 Array responses
In [24], the transmit array response for a linear array is
derived from the first principles of Maxwell’s equations
and shown to be ATj(k̂, p) = ATj(cos θTj , p) =
e−i2πp cos θTj , p ∈ [−LTj , LTj

]
, where θTj ∈[ 0,π) is the ele-

vation angle relative to the Tj array. Due to the symmetry
of the array (aligned to the z-axis), the radiation pattern
is symmetric with respect to the azimuth angle and only
depends on the elevation angle θTj through cos θTj . For
notational convenience, let t ≡ cos θTj ∈[−1, 1], so that
we can simplify the transmit array response kernel to

ATj(t, p) = e−i2πpt , t ∈[−1, 1] , p ∈ [−LTj , LTj

]
. (5)

By reciprocity, the receive array response kernel,
ARi(q, κ̂), is

ARi(q, τ) = ei2πqτ , τ ∈[−1, 1] , q ∈ [−LRi , LRi
]
, (6)

where τ ≡ cos θRi ∈[−1, 1] is the cosine of the eleva-
tion angle relative to the Ri array. Note that the transmit
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and receive array response kernels are identical to the
kernels of the Fourier transform and inverse Fourier trans-
form, respectively, a relationship we will further explore in
Section 2.5.

2.4 Scattering responses
The scattering response kernel, Hij(κ̂ , k̂), gives the ampli-
tude and phase of the path departing from Tj at direction
k̂ and arriving at Ri at direction κ̂ . Since we are consid-
ering linear arrays which only resolve the cosine of the
elevation angle, we can consider Hij(τ , t) which gives the
superposition of the amplitude and phase of all paths ema-
nating from Tj with an elevation angle whose cosine is t
and arriving at Ri at an elevation angle whose cosine is τ .
As is done in [24], motivated by measurements show-

ing that scattering paths are clustered with respect to the
transmitter and receiver, we adopt a model that focuses
on the boundary of the scattering clusters rather than the
discrete paths themselves, as illustrated in Fig. 2.
Let�(k)

Tij
denote the angle subtended at transmitter Tj by

the kth cluster that scatters to Ri, and let �Tij = ⋃
k �

(k)
Tij

be the total transmit scattering interval from Tj to Ri.
This scattering interval, �Tij , is the set of directions that
when illuminated by Tj scatters energy to Ri. In Fig. 2, to
avoid clutter, we illustrate the case in which �

(k)
Tij

is a sin-
gle contiguous angular interval, but in general, the interval
will be non-contiguous and consist of several individual
clusters. Similarly let �

(k)
Rij denote the corresponding angle

subtended at Ri by the kth cluster illuminated by Tj, and
let �Rij = ⋃

k �
(k)
Rij be set of directions from which energy

can be incident on Ri from Tj.
Thus, we see in Fig. 2 that from the point-of-view of

the base-station transmitter, T2, �T22 is the angular inter-
val over which the base station can radiate signals that
will reach the intended downlink receiver, R2. The angu-
lar interval, �T12 , is the interval in which the base station’s
radiated signals will backscatter to the base station’s own
receiver, R1, as self-interference. Likewise, from the point-
of-view of the base station receiver, R1,�R11 , is the interval
over which the base station may receive signals from the
uplink transmitter, T1, while �R12 is the interval in which
self-interference may be present. Clearly, the extent to
which the self-interference intervals and the signal-of-
interest intervals overlap will have a major impact on the
degrees of freedom of the network. Because linear arrays
can only resolve the cosine of the elevation angle t ≡
cos θ , we define the “effective” scattering intervals for the
transmit and receive arrays, respectively, as

�Tij ≡ {
t : arccos(t) ∈ �Tij

} ⊂[−1, 1] ,
�Rij ≡ {

τ : arccos(τ ) ∈ �Rij
} ⊂[−1, 1] .

Define the size of the transmit and receive scattering
intervals as |�Tij | = ∫

�Tij
t dt and |�Rij | = ∫

�Rij
τ dτ .

As in [24], we assume the following characteristics of the
scattering responses:

1) Hij(τ , t) �= 0 only if (τ , t) ∈ �Rij × �Tij .
2)

∫ ||Hij(τ , t)||dt �= 0 ∀ τ ∈ �Rij .
3)

∫ ||Hij(τ , t)||dτ �= 0 ∀ t ∈ �Tij .
4) The point spectrum ofHij(·, ·), excluding 0, is infinite.
5) Hij(·, ·) is Lebesgue measurable, that is∫ 1

−1
∫ 1
−1 |Hij(τ , t)|2 dτ dt < ∞.

The first condition means that the scattering response is
zero unless the angle of arrival and angle of departure both
lie within their respective scattering intervals. The sec-
ond condition means that in any direction of departure,
t ∈ �Tij , there exists at least one path from transmitter Tj
receiver Ri. Similarly, the third condition implies that in
any direction of arrival, τ ∈ �Rij , there exists at least one
path from Tj to Ri. The fourth condition means that there
are many paths from the transmitter to the receiver within
the scattering intervals, so that the number of propagation
paths that can be resolved within the scattering intervals is
limited by the length of the arrays and not by the number
of paths. The final condition aids our analysis by ensuring
the corresponding integral operator is compact, but is also
a physically justified assumption since one could argue
for the stricter assumption

∫ 1
−1
∫ 1
−1 |Hij(τ , t)|2 dτ dt ≤ 1,

since no more energy can be scattered than is transmitted.

2.5 Hilbert space of wave-vectors
We can now write the original input-output relation given
in (2) and (3) as

y1(q) =
∫
�R11

AR1(q, τ)

∫
�T11

H11(τ , t)
∫ LT1

−LT1
AT1(t, p)x1(p) dτ dt dp

+
∫
�R12

AR1(q, τ)

∫
�T12

H12(τ , t)
∫ LT2

−LT2
AT2(t, p)x2(p) dτ dt dp

+ z1(q), (7)

y2(q) =
∫

�R22

AR2(q, τ)

∫
�T22

H22(τ , t)
∫ LT2

−LT2
AT2(t, p)x2(p) dτ dt dp

+ z2(q). (8)

The channel model of (7) and (8) is expressed in the
array domain, that is the transmit and receive signals are
expressed as the current distributions excited along the
array. Just as one can simplify a signal processing prob-
lem by leveraging the Fourier integral to transform from
the time domain to the frequency domain, we can lever-
age the transmit and receive array responses to transform
the problem from the array domain to the wave-vector
domain. In other words, we can express the transmit and
receive signals as field distributions over direction rather
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than current distributions over position along the array.
In fact, for our case of the unipolarized linear array, the
transmit and receive array responses are the Fourier and
inverse-Fourier integral kernels, respectively.
Let Tj be the space of all field distributions that trans-

mitter Tj’s array of length LTj can radiate towards the
available scattering clusters, �Tjj ∪ �Tij (both signal-of-
interest and self-interference). In the vernacular of [24], Tj
is the space of field distributions array-limited to LTj and
wavevector-limited to �Tjj ∪ �Tij . To be precise, define Tj
to be the Hilbert space of all square-integrable functions
Xj : �Tjj ∪ �Tij → C, that can be expressed as

Xj(t) =
∫ LTj

−LTj
ATj(t, p)xj(p) dp, t ∈ �Tjj ∪ �Tij

for some xj(p), p ∈[−LTj , LTj ]. The inner product defined
for this Hilbert Space between two member functions,
Uj,Vj ∈ Tj, is the usual inner product: 〈Uj,Vj〉 =∫
�Tjj∪�Tij

Uj(t)V ∗
j (t) dt. Likewise, let Ri be the space of

field distributions that can be incident on receiver Ri from
the available scattering clusters, �Rii ∪ �Rij , and resolved
by an array of length LRi . More precisely,Ri is the Hilbert
space of all square-integrable functions Yi : �Rii ∪ �Rij →
C, that can be expressed as

Yi(τ ) =
∫ LRi

−LRi
A∗
Ri(q, τ)yi(q) dq, τ ∈ �Rii ∪ �Rij

for some yi(q), q ∈[−LRi , LRi ], with the same inner
product. From [24], we know that the dimension of
these array-limited and wavevector-limited transmit and
receive spaces are, respectively,

dim Tj = 2LTj |�Tjj ∪ �Tij |, and (9)
dimRi = 2LRi |�Rii ∪ �Rij |. (10)

We can define the scattering integrals in (7) and (8)
as operators mapping from one Hilbert space to another.
Define the operator Hij : Tj → Ri by

(HijXj)(τ ) =
∫

�Tij∪�Tjj

Hij(τ , t)Xj(t) dt, τ ∈ �Rij ∪ �Rii .

(11)

We can now write the channel model of (7) and (8) in
the wave-vector domain as

Y1 = H11X1 + H12X2 + Z1, (12)
Y2 = H22X2 + Z2, (13)

where Xj ∈ Tj, for j = 1, 2 and Yi,Zi ∈ Ri for i = 1, 2. The
following lemma states key properties of the scattering
operators in (12–13) that we will leverage in our analysis.

Lemma 1 The scattering operators Hij, (i, j) ∈ {(1, 1),
(2, 2), (1, 2)} have the following properties:

1. The scattering operator, Hij : Tj → Ri, is a compact
operator.

2. The dimension of the range of the scattering
operator, dimR(Hij) ≡ dimN(Hij)⊥, (i.e., the
dimension of the space orthogonal to the operator’s
nullspace) is given by
dimR(Hij) =2min{LTj |�Tij |, LRi |�Rij |}.

3. There exists a singular system
{
σ

(k)
ij ,U(k)

ij ,V (k)
ij

}∞
k=1

for scattering operator Hij, where the singular value
σ

(k)
ij is nonzero if and only if

k ≤ 2min{LTj |�Tij |, LRi |�Rij |}.

Proof Property 1 holds because Hij(·, ·), the kernel of
integral operator Hij, is square integrable, and an inte-
gral operator with a square integrable kernel is compact
(see Theorem 8.8 of [32]). Property 2 is just a restate-
ment of the main result of [24]. Property 3 follows from
the first two properties: The compactness of Hij, estab-
lished in Property 1, implies the existence of a singular
system, since there exists a singular system for any com-
pact operator (see Section 16.1 of [32]). Property 2 implies
that only the first 2min{LTj |�Tij |, LRi |�Rij |} of the singu-
lar values will be nonzero, since the

{
U(k)
ij

}
corresponding

to nonzero singular values form a basis for R(Hij), which
has dimension 2min{LTj |�Tij |, LRi |�Rij |}. See Lemma 5 in
Appendix B for a description of the properties of singular
systems for compact operators, or see Section 2.2 of [33]
or Section 16.1 of [32] for a thorough treatment.

3 Spatial degrees-of-freedom analysis
We now give the main result of the paper: a characteriza-
tion of the spatial degrees-of-freedom region for the PBT
channel model applied to a full-duplex base station with
uplink and downlink flows.

Theorem 1 Let d1 and d2, respectively, denote the spa-
tial degrees of freedom of the uplink data flow from T1
to R1, and the downlink data flow from T2 to R2. The
spatial degrees-of-freedom region, DFD, of the three-node
full-duplex channel is the convex hull of all spatial degrees-
of-freedom tuples, (d1, d2), satisfying

d1 ≤ dmax
1 = 2min

(
LT1 |�T11 |, LR1 |�R11 |

)
, (14)

d2 ≤ dmax
2 = 2min

(
LT2 |�T22 |, LR2 |�R22 |

)
, (15)

d1 + d2 ≤ dmax
sum = 2LT2 |�T22 \�T12 | + 2LR1 |�R11 \ �R12 |

+ 2max(LT2 |�T12 |, LR1 |�R12 |). (16)

The degrees-of-freedom region characterized by
Theorem 1, DFD, is the pentagon-shaped region shown
in Fig. 4. Figure 5a shows a geometric interpretation of
the parameters in Theorem 1. The achievability part of
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Fig. 4 Degrees-of-freedom region,DFD

Theorem 1 is given in Section 3.1, and the converse is
given in Section 3.2.

3.1 Achievability
Overview of achievability proof: Before launching into
the full proof, we would like to give a brief sketch of the
achievability of corner point (d′

1, d′
2) of the degrees-of-

freedom regionDFD shown in Fig. 4. The steps for achiev-
ing the degrees-of-freedom tuple (d′

1, d′
2) = (dmax

1 , dmax
sum −

dmax
1 ) are illustrated in Fig. 5b.

1. First, the uplink transmitter, T1, transmits the
maximum number of data streams that the uplink
channel will support,
dmax
1 = 2min(LT1 |�T11 |, LR1 |�R11 |) (illustrated by

blue arrows in Fig. 5b). The base station downlink

transmitter, T2, must then structure its transmit
signal such that it does not interfere with the base
station receiver’s reception of these dmax

1 data
streams, as is described in the following steps.

2. Second, the base station transmitter, T2, transmits as
many data streams as can be supported in the interval
�T22 \ �T12 (illustrated by red arrows in Fig. 5b),
which is the interval over which signal will couple to
the downlink user R2, but will not present any
self-interference to the base station’s own receiver R1.

3. Third, the base station transmits as many data
streams as possible in the interval �T22 ∩ �T12 while
ensuring that the self-interference is only incident on
the base station receiver, R1 over the interval
�R11 \ �R12 (illustrated by green arrows in Fig. 5b),
which is the interval over which no uplink signal

Fig. 5 Diagrams illustrating the geometrical interpretation of the degrees-of-freedom regionDFD and the achievability strategy. a Array lengths and
scattering intervals. b Cartoon illustrating achievability of the corner point (d1, d2) = (

dmax
1 , dmax

sum − dmax
1

)
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form T1 will be incident on receiver R1. This step
occupies a majority of the proof.

The final step in the achievability proof is to show that
if the transmission strategies described in steps 1–3 are
employed, that the receivers, R1 and R2, can success-
fully recover the d1- and d2-dimensional data streams,
respectively.
Full achievability proof: We establish achievability of

DFD by way of two lemmas. The first lemma shows the
achievability of two specific spatial degrees-of-freedom
tuples, and the second shows that these tuples are indeed
the corner points ofDFD.

Lemma 2 The spatial degree-of-freedom tuples (d′
1, d′

2)
and (d′′

1 , d′′
2), given below, are achievable:

d′
1 =min

{
2LT1 |�T11 |, 2LR1 |�R11 |

}
, (17)

d′
2 =

{
min

{
dT2 , 2LR2 |�R22 |

}
, LT1 |�T11 | ≥ LR1 |�R11 |

min
{
δT2 , 2LR2 |�R22 |

}
, otherwise ,

(18)

d′′
1 =

{
min

{
2LT1 |�T11 |, dR1

}
, LR2 |�R22 | ≥ LT2 |�T22 |

min
{
2LT1 |�T11 |, δR1

}
, otherwise ,

(19)
d′′
2 =min

{
2LT2 |�T22 |, 2LR2 |�R22 |

}
, (20)

where the terms dT2 , δT2 dR1 , and δR1 are given in (17–20)
within the table at the bottom of the page.

dT2 = 2LT2 |�T22 \ �T12 |
+ 2min

{
LT2 |�T22∩ �T12 |, (LT2 |�T12 |−LR1 |�R12 |)+
+LR1 |�R12 \ �R11 |

}
(21)

δT2 = 2LT2 |�T22 \ �T12 |
+ 2min

{
LT2 |�T22 ∩ �T12 |, LT2 |�T12 |
− [

LT1 |�T11 | − (
LR1 |�R11 \ �R12 |

+(LR1 |�R12 | − LT2 |�T12 |)+
)]}

(22)

dR1 = 2LR1 |�R11 \ �R12 |
+2min

{
LR1 |�R11 ∩ �R12 |, (LR1 |�R12 |− LT2 |�T12 |)+

+LT2 |�T12 \ �T22 |
}

(23)

δR1 = 2LR1 |�R11 \ �R12 |
+ 2min

{
LR1 |	R11 ∩ �R12 |, LR1 |�R12 | − [

LR2 |�R22 |
− (

LT2 |�T22 \ �T12 | + (
LT2 |�T12 |

−LR1 |�R12 |
)+)]}

(24)

Proof Due to the symmetry of the problem, it suffices to
demonstrate achievability of only the first spatial degree-
of-freedom pair in Lemma 2, (d′

1, d′
2), as the second pair,

(d′′
1 , d′′

2), follows from symmetry. Thus we seek to prove
the achievability of the tuple (d′

1, d′
2) given in (17-18).

We will show achievability of (d′
1, d′

2) in the case where
LT1 |�T11 | ≥ LR1 |�R11 |, for which

d′
1 = 2LR1 |�R11 |, (25)

d′
2 = min

{
dT2 , 2LR2 |�R22 |

}
, (26)

where

dT2 = 2LT2 |�T22 \ �T12 |

+ min
{

2LT2 |�T22 ∩ �T12 |,
2(LT2 |�T12 | − LR1 |�R12 |)+ + 2LR1 |�R12 \ �R11 |

}
.

(27)

Achievability of (d′
1, d′

2) in the LT1 |�T11 | < LR1 |�R11 |
case is analogous.
We now begin the steps to show achievability of (25) and

(26).

3.1.1 Defining key subspaces
We first define key subspaces of the transmit and receive
wave-vector spaces (T1, T2, R1, and R2) that will be
crucial in demonstrating achievability.
Subspaces of T2: Recall that T2 is the space of all field

distributions that can be radiated by the base station
transmitter, T2, in the direction of the scatterer intervals,
�T22∪�T12 , (both signal-of-interest and self-interference).
Let T22\12 ⊆ T2 be the subspace of field distributions that
can be transmitted by T2, which are nonzero only in the
interval �T22 \ �T12 ,

T22\12 ≡ span
{
X2 ∈ T2 : X2(t) = 0 ∀ t ∈ �T12

}
. (28)

More intuitively, T22\12 is the space of transmissions
from the base station which couple only to the intended
downlink user, and do not couple back to the base station
receiver as self-interference. Similarly let T12 ⊆ T2 be the
subspace of functions that are only nonzero in the interval
�T12 ,

T12 ≡ span
{
X2 ∈ T2 : X2(t) = 0 ∀ t /∈ �T12

}
, (29)

that is, the space of base station transmissions which do
couple to the base station receiver as self-interference.
Finally, let T22∩12 ⊆ T12 ⊆ T2 be the subspace of field
distributions that are nonzero only in the interval �T22 ∩
�T12 ,

T22∩12 ≡ span{X2 ∈ T2 : X2(t) = 0 ∀ t /∈ �T22 ∩ �T12},
(30)

the space of base station transmission which couple both
to the downlink user and to the base station receiver. From
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the result of [24], we know that the dimension of each of
these transmit subspaces of T1 is as follows:

dim T12 = 2LT2 |�T12 |, (31)
dimT22\12 = 2LT2 |�T22 \ �T12 |, (32)
dimT22∩12 = 2LT2 |�T22 ∩ �T12 |. (33)

Definition 1 We say that Hilbert space A is the orthog-
onal direct sum of Hilbert spaces B and C if any a ∈ A
can be decomposed as a = b + c , for some b ∈ B and
c ∈ C, where a and b are orthogonal. We use the notation
A = B⊕ C to denote that A is the orthogonal direct sum of
B and C.

One can check that T12 and T22\12 are constructed such
that they form an orthogonal direct sum for space T2:

T2 = T12 ⊕ T22\12, (34)

thus any X2 ∈ T2 can be written as X2 = X2Orth + X2Int , for
some X2Orth ∈ T22\12 and X2Int ∈ T12, such that X2Orth ⊥
X2Int . By the construction of T22\12, H12X2Orth = 0, since
H12(τ , t) = 0 ∀ t /∈ �T12 and X2Orth ∈ T22\12 implies
X2Orth(t) = 0 ∀ t ∈ �T12 . In other words, X2Orth ∈ T22\12 is
zero everywhere the integral kernel H12(τ , t) is nonzero.
Thus, any transmitted field distribution that lies in the
subspace T22\12 will not present any interference to R2.
Subspaces of T1: Recall that T1 is the space of all field

distributions that can be radiated by the uplink user trans-
mitter, T1, towards the available scatterers. Let T11 ⊆ T1
be the subspace of field distributions that can be transmit-
ted by T1’s continuous linear array of length LT1 which are
nonzero only in the interval �T11 , more precisely

T11 ≡ span{X1 ∈ T1 : X1(t) = 0 ∀ t /∈ �T11}. (35)

More intuitively, T11 is the space of transmissions from
the uplink user which will couple to the base station
receiver. From the result of [24], we know that

dimT11 = 2LT1 |�T11 |. (36)

Note that T11 = T1, since we have assumed �T21 = ∅.
Although T11 is thus redundant, we define it for notational
consistency.
Subspaces ofR1: Recall thatR1 is the space of all inci-

dent field distributions that can be resolved by the base
station receiver, R1. Let R12 ⊆ R1 to be the subspace
of received field distributions which are nonzero only for
τ ∈ �R12 , that is

R12 ≡ span
{
Y1 ∈ R1 : Y1(τ ) = 0 ∀ τ /∈ �R12

}
. (37)

Less formally, R12 is the space of receptions at the base
station which could have emanated from the base stations
own transmitter. Similarly, let R12\11 ⊆ R12 ⊆ R1 be

the subspace of received field distributions that are only
nonzero for τ ∈ �R12 \ �R11 ,

R12\11 ≡ span
{
Y1 ∈ R1 : Y1(τ ) = 0 ∀ τ ∈ �R11

}
.
(38)

Less formally, R12\11 is the space of receptions at the
base station which could have emanated from the base sta-
tion transmitter, but could not have emanated from the
uplink user. Finally, define R11 ⊆ R1 to be the subspace
of received field distributions that are nonzero only for
τ ∈ �R11 ,

R11 ≡ span
{
Y1 ∈ R1 : Y1(τ ) = 0 ∀ τ /∈ �R11

}
, (39)

the space of base station receptions which could have
emanated from the intended uplink user. Note that R1 =
R11⊕R12\11. From the result of [24], we know the dimen-
sion of each of the above base-station receive subspaces is
as follows:

dimR11 = 2LR1 |�R11 |, (40)
dimR12\11 = 2LR1 |�R12 \ �R11 |, (41)

dimR12 = 2LR1 |�R12 |. (42)

Subspaces of R2: Recall that R2 is the space of all
incident field distributions that can be resolved by the
downlink user receiver, R2. Let R22 ⊆ R2 to be the sub-
space of received field distributions which are nonzero
only for τ ∈ �R22 , that is

R22 ≡ span
{
Y2 ∈ R2 : Y2(τ ) = 0 ∀ τ /∈ �R22

}
. (43)

Note that R22 = R2, since we have assumed �R21 = ∅.
Although R22 is thus redundant, we define it for nota-
tional consistency. By substituting the subspace dimen-
sions given above into (25) and (27), we can restate the
degree-of-freedom pair whose achievability we are estab-
lishing as

(
d′
1, d′

2
) = (

dimR11, min
{
dT2 , dimR22

} )
, where

(44)

dT2 = dimT22\12

+ min
{

dimT22∩12,
(dimT12 − dimR12)

+ + dimR12\11

}
.

(45)

Now that we have defined the relevant subspaces, we
can show how these subspaces are leveraged in the trans-
mission and reception scheme that achieves the spatial
degrees-of-freedom tuple (d′

1, d′
2).

3.1.2 Spatial processing at each transmitter/receiver
Wenow give the transmission schemes at each transmitter
and the recovery schemes at each receiver.
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Processing at uplink user transmitter, T1: Recall that
d′
1 = dimR11 is the number of spatial degrees-of-

freedom we wish to achieve for Flow1, the uplink flow.

Let
{
χ

(k)
1

}d′
1

k=1
, χ

(i)
1 ∈ C, be the d′

1 symbols that T1

wishes to transmit to R1. We know from Lemma 1 that
there exists a singular value expansion for H11, so let{
σ

(k)
11 ,U(k)

11 ,V
(k)
11

}∞
k=1

be a singular system for the opera-
tor H11 : T1 → R1 (see Lemma 5 in Appendix B for the
definition of a singular system).

Note that the functions
{
V (k)
11

}dimT1

k=1
form an orthonor-

mal basis for T1, and since d′
1 = dimR11 ≤ dimT1,

there are at least as many such basis functions as there are
symbols to transmit.
We construct X1, the transmit wave-vector signal trans-

mitted by T1, as

X1 =
d′
1∑

k=1
χ

(k)
1 V (k)

11 . (46)

Processing at the base station transmitter, T2:
Recall that d′

2 = min
{
dT2 , 2LR2 |�R22 |

}
, where dT2 is

given in (27), is the number of spatial degrees-of-freedom
we wish to achieve for Flow2, the downlink flow. Let{
χ

(k)
2

}d′
2

k=1
be the d′

2 symbols that T2 wishes to transmit
to R2. We split the T2 transmit signal into the sum of two
orthogonal components, X2Orth ∈ T22\12 and X2Int ∈ T12,
so that the wave-vector signal transmitted by T2 is

X2 = X2Orth + X2Int , X2Orth ∈ T22\12, X2Int ∈ T12.
(47)

Recall that X2Orth ∈ T22\12 implies H12X2Orth = 0. Thus,
we can construct X2Orth ∈ T22\12 without regard to the

structure of H12. Let
{
Q(i)
22\12

}dimT22\12

i=1
be an arbitrary

orthonormal basis for T22\12, and let

d′
2Orth ≡ min

{
dimT22\12, dimR22

}
, (48)

be the number of symbols that T2 will transmit along
X2Orth . We construct X2Orth as

X2Orth =
d′
2Orth∑
i=1

χ
(i)
2 Q(i)

22\12. (49)

Recall that there are d′
2 total symbols that T2 wishes to

transmit, and we have transmitted d′
2Orth symbols along

X2Orth , thus there are d′
2 − d′

2Orth symbols remaining to
transmit along X2Int . Let

d′
2Int ≡ d′

2 − d′
2Orth

= min

⎧⎨
⎩

dimT22∩12,
(dimT12 − dimR12)

+ + dimR12\11,(
dimR22 − dimT22\12

)+

⎫⎬
⎭ .

(50)

Now since X2Int ∈ T12, H12X2Int is nonzero in general,
X2Int will present interference to R1. Therefore, we must
construct X2Int such that it communicates d′

2Int symbols to
R2, without impeding R1 from recovering the d′

1 symbols
transmitted from T1. Thus, the construction of X2Int ∈ T12
will indeed depend on the structure of H12.
First consider the case where dimT12 ≤ dimR12. In

this case, Eq. (50), which gives the number of symbols
that must be transmitted along X2Int , simplifies to d′

2Int =
min

{
dimT22∩12, dimR12\11, (dimR22 − dimT22\12)+

}
.

Let
{
σ

(k)
12 ,U(k)

12 ,V
(k)
12

}∞
k=1

be a singular system for H12.

From Property 3 of Lemma 1, we know that σ
(k)
12 is zero

for k > dimT12 and nonzero for k ≤ dimT12. Note that{
V (k)
12

}dimT12

k=1
is an orthonormal basis for T12. In the case

of dimT12 ≤ dimR12 (the case for which are constructing
X2Int ), we have

d′
2Int = min

{
dimT22∩12, dimR12\11, (dimR22

−dimT22\12
)+} , (51)

≤ dimT22∩12 ≤ dimT12, (52)

so that there are at least as many V (k)
12 ’s as there are

symbols to transmit along X2Int . We construct X2Int as

X2Int =
d′
2Int∑
k=1

χ

(
k+d′

2Orth

)
2 V (k)

12 . (53)

Now we will consider the construction of X2Int for the
other case where dimT12 > dimR12. In the dimT12 >

dimR12 case Eq. (50), which gives the number of symbols
that must be transmitted along X2Int , simplifies to

d′
2Int = min

⎧⎨
⎩

dimT22∩12,
(dimT12 − dimR12) + dimR12\11,(

dimR22 − dimT22\12
)+

⎫⎬
⎭ .

Note that the signal that R1 receives from T1 will
lie only in R11. Thus, if we can ensure that the sig-
nal from T2 falls in the orthogonal space, R12\11, then
we have avoided interference. Let H′′

12 : T12 → R12
be the restriction of H12 : T2 → R1 to domain
T12 and codomain R12. We consider the constriction,
H′′
12, instead of H12 so that the preimage under H′′

12
is a subset of T12, so that any functions within this
preimage have not already been used in constructing
X2Orth . We can characterize the requirement that Y1(τ )
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not be interfered over τ ∈ �R11 as H′′
12X2Int ∈ R12\11, or

equivalently X2Int ∈ P12\11, where

P12\11 ≡ H′′
12

←
(R12\11) ⊆ T12, (54)

is the preimage ofR12\11 under H′′
12. Thus, any function in

P12\11 can be used for signaling to R2 without interfering
X1 at R1. The number of symbols that can be transmitted
will thus depend on the dimension of this interference-
free preimage. Corollary 1 in the appendix states that if
C : X → Y is a linear operator with closed range, and S is
a subspace of the range of C, S ⊂ R(C), then dimC←(S) =
dimN(C)+dim(S). Note that R(H′′

12) has finite dimension
(namely 2 min

{
LT2�T12 , LR1�R12

}
< ∞), and since any

finite dimensional subspace of a normed space is closed,
R(H′′

12) is closed. Further, note that since we are consid-
ering the case where dimT12 > dimR12, it is easy to see
that R(H′′

12) = R12, which impliesR12\11 ⊆ R(H′′
12), since

R12\11 ⊆ R12 by construction. Thus, the linear operator
H′′
12 : T12 → R12 and the subspaceR12\11 satisfy the con-

ditions on operator C and subspace S , respectively, in the
hypothesis of Corollary 1. Thus, we can apply Corollary 1
to show that, when dimT12 > dimR12, the dimension of
P12\11 is given by

dimP12\11 = dimN(H′′
12) + dimR1\11

= (dimT12 − dimR12) + dimR12\11 (55)

≥ min

⎧⎨
⎩

dimT22∩12,
(dimT12 − dimR12) + dimR12\11,

(dimR22 − dimT22\12)+

⎫⎬
⎭

= d′
2Int , dimT12 > dimR12.

Therefore, the dimension of P12\11, the preimage of
R12\11 under H′′

12, is indeed large enough to allow T2 to
transmit the remaining d′

2Int symbols along the basis func-

tions of dimP12\11. Let
{
P(i)
12

}dimP12\11

i=1
be an orthonormal

basis for P12\11. Then, we construct X2Int as

X2Int =
d′
2Int∑
k=1

χ

(
k+d′

2Orth

)
2 P(k)

12 . (56)

In summary, combining all cases we see that the
wavevector transmitted by T2 is

X2 = X2Orth + X2Int =
d′
2Orth∑
i=1

χ
(i)
2 Q(i)

22\12 +
d′
2Int∑
k=1

χ

(
k+d′

2Orth

)
2

×
(
V (k)
12 1(dimT12 ≤ dimR12) + P(k)

12 1(dimT12 > dimR12)
)

(57)

=
d′
2Orth∑
i=1

χ
(i)
2 Q(i)

22\12 +
d′
2∑

i=1+d′
2Orth

χ
(i)
2

(
V
(
i−d′

2Orth

)
12 1(dimT12 ≤ dimR12)

+P
(
i−d′

2Orth

)
12 1(dimT12 > dimR12)

)

(58)

=
d′
2∑

i=1
χ

(i)
2 B(i)

2 , where

B(i)
2 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Q(i)
22\12 : i ≤ d′

2Orth

V
(
i−d′

2Orth

)
12 : i > d′

2Orth , dimT12 ≤ dimR12

P
(
i−d′

2Orth

)
12 : i > d′

2Orth , dimT12 > dimR12

.

(59)

Now that we have constructed X1, the uplink wavevec-
tor signal transmitted on the the uplink user, and X2, the
wavevector signal transmitted on the dowlink by the base
station, we show how the base station receiver, R1 and the
downlink user R2 process their received signals to detect
the original information-bearing symbols.
Processing at the base station receiver, R1: We need

to show that R1 can obtain at least d′
1 = dimR11 indepen-

dent linear combinations of the d′
1 symbols transmitted

from T1, and that each of these linear combinations are
corrupted only by noise, and not interference from T2.
In the case where dimT12 > dimR12, T2 constructed

X2 such that H12X2 is orthogonal to any function in R11.
Therefore, R1 can eliminate interference from T2 by sim-
ply projecting Y1 onto R11 to recover the dimR11 linear
combinations it needs. We now formalize this projection
onto R11. Recall that the set of left-singular functions of

H11,
{
U(l)
11

}dimR11

l=1
, form an orthonormal basis for R11.

In the case where dimT12 > dimR12, receiver R2 con-
structs the set of complex scalars

{
ξ

(l)
1

}dimR11

l=1
, ξ

(l)
1 =〈

Y1,U(l)
11

〉
. One can check that result of each of these

projections is

ξ
(l)
1 = σ

(l)
11 χ

(l)
1 +

〈
Z1,U(l)

11

〉
, l = 1, 2, . . . , dimR11,

(60)

and thus obtains each of the d′
1 = dimR11 linear combi-

nations of the intended symbols corrupted only by noise,
as desired. Moreover, in this case the obtained linear
combinations are already diagonalized, with the lth pro-
jection only containing a contribution from the lth desired
symbol.
In the case where dimT12 ≤ dimR12, H12X2 in general

will not be orthogonal to every function inR11, and some
slightly more sophisticated processing must be performed
to decouple the interference from the signal of interest.



Everett and Sabharwal EURASIP Journal onWireless Communications and Networking  (2016) 2016:286 Page 12 of 23

First, R1 can recover dimR11\12 interference-free linear
combinations by projecting its received signal, Y1, onto

R11\12. Let
{
J(l)11\12

}dimR11\12

l=1
be an orthonormal basis for

R11\12. Receiver R1 forms a set of complex scalars

{
ξ

(l)
1

}dimR11\12

l=1
, ξ

(l)
1 = 〈Y1, J(l)11\12〉.

Note that each J(l)11\12 will be orthogonal to H12X2 for
any X2 since each J(l)11\12 ∈ R11\12, and H12X2 ∈ R12 for
any X2, andR11\12 is the orthogonal complement ofR12.
Therefore, each ξ

(l)
1 will be interference free, i.e., will be

a linear combination of the symbols
{
χ

(l)
1

}d′
1

l=1
plus noise,

and will contain no contribution from the
{
χ

(l)
2

}d′
2

l=1
sym-

bols. One can check that these dimR11\12 projections
result in

ξ
(l)
1 =

d′
1∑

m=1
σ

(l)
11

〈
U(m)
11 , J(l)11\12

〉
χ

(m)
1 +

〈
Z1, J(l)11\12

〉
,

l = 1, 2, . . . , dimR11\12. (61)

It remains to obtain d′
1 − dimR11\12 = dimR11 −

dimR11\12 = dimR11∩12 more independent and
interference-free linear combinations of T1’s symbols so
that R1 can solve the system and recover the symbols.
Receiver R1 will obtain these linear combinations via a
careful projection onto a subspace of R12 (which is the
orthogonal complement of R11\12, the space onto which
we have already projected Y1 to obtain the first dimR11\12
linear combinations). Recall that the set of left-singular

functions ofH12,
{
U(l)
12

}dimR12

l=1
, form an orthonormal basis

for R12. Receiver R1 obtains the remaining R11∩12 linear
combinations by projecting Y1 onto the last dimR11∩12
of these basis functions, forming

{
ξ

(l)
1

}dimR11

l=dimR11\12+1
by

computing

ξ
(k+dimR11\12)
1 =

〈
Y1,U(dimR12−k)

12

〉
, (62)

k = 0, 1, . . . , dimR11∩12 − 1,

=
〈
H11X1 + H12X2 + Z1,U(dimR12−k)

12

〉
(63)

=
〈
H11X1,U(dimR12−k)

12

〉

+
〈
H12X2,U(dimR12−k)

12

〉

+
〈
Z1,U(dimR12−k)

12

〉
. (64)

We compute the terms of Eq. (64) individually. The
contribution of T1’s transmit wavevector is

〈
H11X1, U(dimR12−k)

12

〉

=
〈 d′

1∑
m=1

σ
(m)
11 U(m)

11 〈V (m)
11 ,X1〉, U(dimR12−k)

12

〉
(65)

=
〈 d′

1∑
m=1

σ
(m)
11 U(m)

11

〈
V (m)
11 ,

d′
1∑

i=1
χ

(i)
1 V (i)

11

〉
, U(dimR12−k)

12

〉

(66)

=
d′
1∑

m=1
σ

(m)
11

〈
U(m)
11 , U(dimR12−k)

12

〉
χ

(m)
1 , k = 0, 1, . . . ,

dimR11∩12 − 1. (67)

In the first step, (65), we use the singular function
decomposition of H11. In the second step, (66), we plug
in the construction of X1 given in 46, and in the last step,
(67), we leverage the fact that

∑
i χ

(i)
1

〈
V (m)
11 ,V (i)

11

〉
= χ

(m)
1 ,

due to the orthonormality of the right singular functions.
The contribution of T2’s interfering wavevector is

〈
H12X2, U(dimR12−k)

12

〉

=
〈
H12

(
X2Orth + X2Int

)
, U(dimR12−k)

12

〉

=
〈
H12X2Int , U

(dimR12−k)
12

〉
(68)

=
〈dimT12∑

m=1
σ

(m)
12 U(m)

12

〈
V (m)
12 ,X2Int

〉
,

U(dimR12−k)
12

〉
(69)

=
〈dimT12∑

m=1
σ

(m)
12 U(m)

12

〈
V (m)
12 ,

d′
2Int∑
i=1

χ

(
i+d′

2Orth

)
2 V (i)

12

〉
,

U(dimR12−k)
12

〉
(70)

=
〈d′

2Int∑
i=1

χ

(
i+d′

2Orth

)
2

dimT12∑
m=1

σ
(m)
12 U(m)

12

〈
V (m)
12 ,V (i)

12

〉
,

U(dimR12−k)
12

〉
(71)

=
d′
2Int∑
i=1

χ

(
i+d′

2Orth

)
2 σ

(i)
12

〈
U(i)
12 , U

(dimR12−k)
12

〉
, (72)

=
d′
2Int∑
i=1

χ

(
i+d′

2Orth

)
2 σ

(i)
12 δ(i,dimR12−k), (73)

= 0, k = 0, 1, . . . , dimR11∩12 − 1, . (74)
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In step (68) above, we use the fact that H12X2Orth = 0
by the construction of X2Orth . Step (69) uses the singular
function expansion of H12, step (70) substitutes the con-
struction of X2Int , step (71) rearranges terms and step (72)
leverages the orthonormality of the right singular func-
tions. In the last step, (74), we have leveraged that when
dim T12 ≤ dimR12, d′

2Int ≤ dimR12\11 (see Eq. 50), which
means the largest value of i in the summation, d′

2Int , is
smaller that the smallest value of dimR12 − k under con-
sideration, dimR12 − R11∩12 + 1 = dimR12\11 + 1, so
that the delta-function δ(i,dimR12−k) will never evaluate to
one. Substituting (67) and (74) back into (64) shows that
the output symbols obtained by projecting Y1 onto the last

R11∩12 functions of
{
U(l)
12

}dimR12

l=1
are

ξ
(k+dimR11\12)
1 =

d′
1∑

m=1
σ

(m)
11

〈
U(m)
11 ,U(dimR12−k)

12

〉
χ

(m)
1

+
〈
Z1,U(dimR12−k)

12

〉
, k=0,1,...,dimR11∩12−1.

(75)

Combining the processing in all cases, we see that
receiver R1 has formed a set of d′

1 complex scalars{
ξ

(l)
1

}d′
1

l=1
, such that

ξ
(l)
1 =

d′
1∑

m=1
a(lm)
1 χ

(m)
1 + ζ

(l)
1 , l = 1, 2, . . . , d′

1, (76)

where

a(lm)
1

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

δlmσ
(l)
11 : dimT12 > dimR12

σ
(m)
11

〈
U(m)
11 , J(l)11\12

〉
:dimT12 ≤ dimR12, l ≤ dimR11\12

σ
(m)
11

〈
U(m)
11 ,U(dimR12+dimR11\12−l)

12

〉
:dimT12 ≤ dimR12, l > dimR11\12

,

(77)

and

ζ
(l)
1 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

〈
Z1,U(l)

11

〉
: dimT12 > dimR12〈

Z1, J(l)11\12
〉

: dimT12 ≤ dimR12, l ≤ dimR11\12〈
Z1,U

(dimR12+dimR11\12−l)
12

〉
: dimT12 ≤ dimR12, l > dimR11\12

.

(78)

Thus, as desired, in all cases the base station receiver
R1 is able to obtain d′

1 interference-free linear combina-
tions of the d′

1 symbols from the uplink user transmitter
T1. Now, we move to the processing at the downlink user
receiver.
Processing at R2: We wish to show that the down-

link receiver, R2, can recover the d′
2 symbols transmitted

by the base station transmitter, Tw. Let
{
σ

(k)
22 ,U(k)

22 ,V
(k)
22

}
be a singular system for the operator H22, and let
r22 ≡ min

{
2LT2 |�T22 |, 2LR2 |�R22 |

}
. From Property 2 of

Lemma 1, we know that σ
(k)
22 is zero for all k > r22 and

nonzero for k ≤ r22, so that

Y2 = H22X2 + Z2 =
r22∑
k=1

σ
(k)
22 U(k)

22

〈
V (k)
22 ,X2

〉
+ Z2.

(79)

One can check that

ξ
(l)
2 =

〈
U(l)
22 ,Y2

〉
=

d′
2∑

m=1
a(lm)
2 χ

(m)
2 + ζ

(l)
2 , l = 1, . . . , d′

2,

(80)

where

a(lm)
2 =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

σ
(l)
22

〈
V (l)
22 ,Q

(m)
22\12

〉
: m ≤ d′

2Orth

σ
(l)
22

〈
V (l)
22 ,V

(
m−d′

2Orth

)
12

〉
: m > d′

2Orth , dimT12 ≤ dimR12

σ
(l)
22

〈
V (l)
22 ,P

(
m−d′

2Orth

)
12

〉
: m > d′

2Orth , dimT12 > dimR12

(81)

and

ζ
(l)
2 = 〈U(l)

22 ,Z2〉. (82)

3.1.3 Reducing to parallel point-to-point vector channels
The above processing at each transmitter and receiver has
allowed the receivers R1 and R2 to recover the symbols

ξ
(l)
1 =

d′
1∑

m=1
a(lm)
1 χ

(m)
1 + ζ

(l)
1 , l = 1, 2, . . . , d′

1, (83)

ξ
(l)
2 =

d′
2∑

m=1
a(lm)
2 χ

(m)
2 + ζ

(l)
2 , l = 1, . . . , d′

2, (84)

respectively, where the linear combination coefficients,
a(lm)
1 and a(lm)

2 , are given in (77) and (81), respectively, and
the additive noise on each of the recovered symbols, ζ (l)

1
and ζ

(l)
2 , are given in (78) and (82), respectively.

We can rewrite (83-84) in matrix notation as

ξ1 = A1χ1 + ζ 1, (85)
ξ2 = A2χ2 + ζ 2, (86)

where χ1 and χ2 are the d′
1 × 1 and d′

2 × 1 vectors of
input symbols for transmitters T1 and T2, respectively,
ζ 1 and ζ 2 are the d′

1 × 1 and d′
2 × 1 vectors of additive

noise, respectively, and A1 and A2 are d′
1 × d′

1 and d′
2 × d′

2
square matrices whose elements are taken from a(lm)

1 and
a(lm)
2 , respectively. The matrices A1 and A2 will be full

rank for all but a measure-zero set of channel response
kernels. Also, since each of the ζ

(l)
j ’s are linear combina-

tions of Gaussian random variables, the the noise vectors,
ζ 1 and ζ 2, are Gaussian distributed. Therefore, the spatial
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processing has reduced the original channel to two paral-
lel full-rank Gaussian vector channels: the first a d′

1 × d′
1

channel and the second ad′
2 × d′

2 channel, which are well
known to have d′

1 and d′
2 degrees-of-freedom, respec-

tively [34]. Therefore, the spatial degrees-of-freedom pair
(d′

1, d′
2) is indeed achievable.

Lemma 3 The degree-of-freedom pairs (d′
1, d′

2) and
(d′′

1 , d′′
2), are the corner points ofDFD, that is

(d′
1, d′

2) = (
dmax
1 ,min

{
dmax
2 , dmax

sum − dmax
1

})
(87)

(d′′
1 , d′′

2) = (
min

{
dmax
1 , dmax

sum − dmax
2

}
, dmax

2
)
. (88)

Proof Note that it is sufficient to prove only
Eq. (87), as Eq. (88) follows by the symmetry of
the expressions. It is easy to see that d′

1 = min{
2LT1 |�T11 |, 2LR1 |�R11 |

} = dmax
1 , but it is not so obvious

that d′
2 = min

{
dmax
2 , dmax

sum − dmax
1

}
. However, one can

verify that d′
2 = min{dmax

2 , dmax
sum − dmax

1 } by evaluating
the left- and right-hand sides for all combinations of the
conditions

LT1 |�T11 | � LR1 |�R11 |, (89)
LT2 |�T12 | � LR1 |�R12 | (90)

and observing equality in each of the four cases.
Table 1 shows the expressions to which d′

2 and
min

{
dmax
2 , dmax

sum − dmax
1

}
both simplify in each of the four

possible cases.

Lemmas 2 and 3 show that the corner points of DFD,
(d′

1, d′
2) and (d′′

1 , d′′
2) are achievable. And, thus, all other

points withinDFD are achievable via time sharing between
the schemes that achieve the corner points.

3.2 Converse
To establish the converse part of Theorem 1, we must
show that the region DFD, which we have already shown

Table 1 Verifying that the corner points of inner and outer
bounds coincide

Case d′
2 = min

{
dmax
2 , dmax

sum − dmax
1

}
LT1 |�T11 | ≥ LR1 |�R11 |, min{dmax

2 , 2LT2 |�T22 ∪ �T12 |
− 2LR1 |�R11 ∩ �R12 |}LT2 |�T12 | ≥ LR1 |�R12 |

LT1 |�T11 | ≥ LR1 |�R11 |, min{dmax
2 , 2LT2 |�T22 \ �T12 |

+2LR1 |�R12 \ �R11 |}LT2 |�T12 | < LR1 |�R12 |

LT1 |�T11 | < LR1 |�R11 |, min{dmax
2 , 2LT2 |�T22 ∪ �T12 |

+2LR1 |�R11 \ �R12 | − 2LT1 |�T11 |}LT2 |�T12 | ≥ LR1 |�R12 |

LT1 |�T11 | < LR1 |�R11 |, min{dmax
2 , 2LT2 |�T22 \ �T12 |

+2LR1 |�R11 ∪ �R12 | − 2LT1 |�T11 |}LT2 |�T12 | < LR1 |�R12 |

is achievable, is also an outer bound on the degrees-of-
freedom, i.e., we want to show that if an arbitrary degree-
of-freedom pair (d1, d2) is achievable, then (d1, d2) ∈ DFD.
It is easy to see that if (d1, d2) is achievable, then the
singe-user constraints on DFD, given in (14) and (15),
must be satisfied as the degrees-of-freedom for each
flow cannot be more than the point-to-point degrees-of-
freedom shown in [24]. Thus, the only step remaining in
the converse is to establish an outer bound on the sum
degrees-of-freedom which coincides with dmax

sum , the sum-
degrees-of-freedom constraint on the achievable region,
DFD, given in (16).
Thus, to conclude the converse argument, we will now

prove the following Genie-aided outer bound on the
sum degrees-of-freedom which coincides with the sum-
degrees-of-freedom constraint on the achievable region.

Lemma 4

d1 + d2 ≤ dmax
sum = 2LT2 |�T22 \ �T12 | + 2LR1 |�R11 \ �R12 |

+ 2max(LT2 |�T12 |, LR1 |�R12 |).
(91)

Sketch of proof: Before diving into the full proof, we
would first like to give a brief overview of the steps in
the converse proof. Our process for proving Lemma 4 is
twofold.

1) First, a genie expands the transmit scattering
intervals �T22 and �T12 until the two intervals are
fully overlapped, and likewise expands expands �R11
and �R12 until they are fully overlapped, as shown in
Fig. 6. To ensure that the net manipulation of the
genie can only enlarge DFD, the genie also increases
the array lengths LT2 and LR1 sufficiently for any
added interference due to the expansion of �T12 and

Fig. 6 Genie-aided channel model



Everett and Sabharwal EURASIP Journal onWireless Communications and Networking  (2016) 2016:286 Page 15 of 23

�R12 to be compensated by the increased array
lengths.

2) After the above genie manipulation is performed, the
maximum of the T2 and R1 signaling dimensions are
equal to dmax

sum in constraint (16), and since the
scattering intervals are overlapped, the channel
model becomes the Hilbert space equivalent of the
well-studied MIMO Z-channel [35, 36]. The Hilbert
space analog to the bounding techniques employed
in [35, 36] are then leveraged to conclude the
converse proof.

Proof We prove Lemma 4 by way of a Genie that aids
the transmitters and receivers by enlarging the scattering
intervals and lengthening the antenna arrays in a way that
can only enlarge the degrees-of-freedom region. Applying
the point-to-point bounds to the Genie-aided system in
a careful way then establishes the outer bound. Assume
an arbitrary scheme achieves the degrees-of-freedom pair
(d1, d2). Thus receivers R1 and R2 can decode their corre-
sponding messages with probability of error approaching
zero. We must show that the assumption of (d1, d2) being
achievable implies the constraint in Eq. (91).
Let a Genie expand both scattering intervals at T2 into

the union of the two scattering intervals, that is expand
�T22 and �T12 to

� ′
T22 = � ′

T12 = � ′
T2 ≡ �T22 ∪ �T12 .

Likewise, the Genie expands the scattering intervals at
R1 into their union, that is expand �R11 and �R12 to

� ′
R11 = � ′

R12 ≡ � ′
R1 = �R11 ∪ �R12 .

The Genie’s expansion of �T22 to � ′
T2

can only enlarge
the degrees-of-freedom region, as T2 could simply not
transmit in the added interval � ′

T2
\ �T22 (i.e., ignore the

added dimensions for signaling to R2) to obtain the orig-
inal scenario. Likewise, expanding �R11 to � ′

R1 will only
enlarge the degrees-of-freedom region as R1 can ignore
the portion of the wavevector received over � ′

R1 \ �R11
to obtain the original scenario. However, expanding the
interference scattering clusters, �T12 and �R12 , to � ′

T2
and � ′

R1 , respectively, can indeed shrink the degrees-of-
freedom region due to the additional interference caused
by the added overlap with the signal-of-interest intervals
�T22 and �R22 , respectively. We need a final Genie manip-
ulation to compensate for this added interference, so that
the net Genie manipulation can only enlarge the degrees-
of-freedom region. Therefore, in the next step we will
have the Genie lengthen the arrays at T2 and R1 suffi-
ciently to allow any interference introduced by expanding
�T12 and �R12 , to � ′

T2
and � ′

R1 , respectively, to be zero-
forced without sacrificing any previously available degrees
of freedom. Expansion of �T12 to � ′

T2
≡ �T22 ∪ �T12

causes the dimension of the interference that T2 presents

to R1 to increase by at most 2LT2 |�T22 \ �T12 |. There-
fore, let the Genie also lengthen R1’s array from 2LR1 to
2L′R1 = 2LR1 + 2LT2

|�T22\�T12 |
|�R11∪�R12 | , so that the dimension of

the total receive space at R1, dimR1, is increased from
dimR1 = 2LR1 |�R11 ∪ �R12 | to

dimR′
1 = 2L′

R1 |�R11 ∪ �R12 | (92)

=
(
2LR1 + 2LT2

|�T22 \ �T12 |
|�R11 ∪ �R12 |

)
|�R11 ∪ �R12 |

(93)
= 2LR1 |�R11 ∪ �R12 | + 2LT2 |�T22 \ �T12 |

(94)
= dimR1 + 2LT2 |�T22 \ �T12 |. (95)

We observe in (95), that the Genie’s lengthening of the
T2 array by 2LT2

|�T22\�T12 |
|�R11∪�R12 | has increased the dimension

of R1’s total receive signal space by 2LT2 |�T22 \ �T12 |,
which is the worst case increase in the dimension of
the interference from T2 due to expansion of �T12 to
�T22 ∪ �T12 . Therefore, the dimension of the subspace of
R′

1 which is orthogonal to the interference from T2 will
be at least as large as in the original orthogonal space
of R1. Thus, the combined expansion of �T12 to � ′

T2
and lengthening of the R1 array to L′R1 can only enlarge
the degrees-of-freedom region. Analogously, expansion of
�R12 to � ′

R1 ≡ �R11 ∪ �R12 increases the dimension of
R12, the subspace of R1’s receive space which is vulnera-
ble to interference from T2, by at most 2LR1 |�R11 \ �R12 |.
Therefore, let the Genie lengthen T2’s array from 2LT2

to 2L′T2 = 2LT2 + 2LR1
|�R11\�R12 |
|�T22∪�T12 | , so that the dimen-

sion of the transmit space at T2, dimT2, is increased from
dimT2 = 2LT2 |�T22 ∪ �T12 | to

dimT ′
2 = 2L′

T2 |�T22 ∪ �T12 | (96)

=
(
2LT2 + 2LR1

|�R11 \ �R12 |
|�T22 ∪ �T12 |

)
|�T22 ∪ �T12 |

(97)
= 2LT2 |�T22 ∪ �T12 | + 2LR1 |�R11 \ �R12 | (98)
= dim T2 + 2LR1 |�R11 \ �R12 |. (99)

We see in (99) that the Genie’s lengthening of T2’s array
to 2L′T2 increases the dimension of T2’s transmit signal
space by 2LR1 |�R11\�R12 |, which is the worst case increase
in the dimension of the subspace of R1’s receive subspace
vulnerable to interference from T2. Therefore, T1 can
leverage these extra 2LR1 |�R11 \ �R12 | dimensions to zero
force to the subspace of R1’s receive space that has become
vulnerable to interference from T2 due to the expansion
�R12 to � ′

R1 . Thus, the net effect of the Genie’s expansion
of T2’s interference scattering interval, �R12 , to � ′

R1 and
lengthening of the T2 array to 2L′T2 can only enlarge the
degrees-of-freedom region.
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The Genie-aided channel is illustrated in Fig. 6, which
emphasizes the fact that the Genie has made the chan-
nel fully-coupled in the sense that the signal-of-interest
scattering and the interference scattering intervals are
identical: any direction of departure from T2 which scat-
ters to R2 also scatters to R1, and any direction of arrival
to R1 which signal can be received from T1 is a direction
from which signal can be received from T2. Note that for
the Genie-aided channel,

max(dimT ′
2 , dimR′

1)

= 2max(L′
T2 |� ′

T2 |, L′
R1 |� ′

R1 |) (100)

= 2max

⎧⎪⎪⎨
⎪⎪⎩

(
LT2 + LR1

|�R11\�R12 |
|� ′

T2
|

)
|� ′

T2
|,(

LR1 + LT2
|�T22\�T12 |

|� ′
R1

|

)
|� ′

R1 |

⎫⎪⎪⎬
⎪⎪⎭

(101)

= 2max
{
LT2 |� ′

T2
| + LR1 |�R11 \ �R12 |,

LR1 |� ′
R1 | + LT2 |�T22 \ �T12 |

}
(102)

= 2max
{
LT2 |�T22 ∪ �T12 | + LR1 |�R11 \ �R12 |,
LR1 |�R11 ∪ �R12 | + LT2 |�T22 \ �T12 |

}

(103)

= 2max
{
LT2

(|�T12 | + |�T22 \ �T12 |
)+ LR1 |�R11 \ �R12 |,

LR1
(|�R12 | + |�R11 \ �R12 |

)+ LT2 |�T22 \ �T12 |

}

(104)

= 2max
{
LT2 |�T12 | + LT2 |�T22 \ �T12 | + LR1 |�R11 \ �R12 |,
LR1 |�R12 | + LR1 |�R11 \ �R12 | + LT2 |�T22 \ �T12 |

}

(105)

= 2max(LT2 |�T12 |, LR1 |�R12 |) + 2LT2 |�T22 \ �T12 |
+ 2LR1 |�R11 \ �R12 |,

(106)

which is the outer bound on sum degrees-of-freedom that
we wish to prove. Thus, if we can show that for the Genie-
aided channel

d1 + d2 ≤ 2max
(
L′

T2 |� ′
T2 |, L′

R1 |� ′
R1 |
)

= max
(
dimT ′

2 , dimR′
1
) (107)

then the converse is established. Because the Genie-aided
channel is now fully coupled, it is similar to the continuous
Hilbert space analog of the full-rank discrete-antennas
MIMO Z interference channel. Thus, the remaining steps
in the converse argument are inspired by the techniques
used in [35–37] for outer bounding the degrees-of-
freedom of the MIMO interference channel.
Consider the case in which dimT ′

2 ≤ dimR′
1. Since our

Genie has enforced � ′
T22

= � ′
T12

and we have assumed
dim T ′

2 ≤ dimR′
1, receiver R1 has access to the entire

signal space of T2, i.e., T2 cannot zero force to R1. More-
over, by our hypothesis that (d1, d2) is achieved, R1 can
decode the message from T1, and can thus reconstruct
and subtract the signal received from T1 from its received
signal.
Since R1 has access to the entire signal-space of T2, after

removing the signal from T1 the only barrier to R1 also
decoding the message from T2 is the receiver noise pro-
cess. If it is not already the case, let a Genie lower the noise
at receiver R1 until T2 has a better channel to R1 than R2
(this can only increase the capacity region since R1 could
always locally generate and add noise to obtain the orig-
inal channel statistics). By hypothesis, R2 can decode the
message from T2, and since T2 has a better channel to R1
than R2, R1 can also decode the message from T1.
Since R1 can decode the messages from both T1 and

T2, we can bound the degrees-of-freedom region of the
Genie-aided channel by the corresponding point-to-point
channel in whichT1 andT2 cooperate to jointly communi-
cate their messages to R1, which has degrees-of-freedom
min

(
dim T ′

1 + dim T ′
2 , dimR′

1
)
, which implies that

d1 + d2 ≤ dimR′
1, when dimT ′

2 ≤ dimR′
1. (108)

Now, consider the alternate case in which dimT ′
2 <

dimR′
1. In this case, we let a Genie increase the length

of the R1 array once more from 2L′R1 to 2L′′R1 =
2L′T2

|� ′
T2

|
|� ′

R1
| > 2L′R1 , so that the dimension of the receive

signal space at R1, which we now callR′′
1, is expanded to

dimR′′
1 = 2L′

R2 |� ′
R1 | =

(
2L′

T2

|� ′
T2

|
|� ′

R1 |

)
|� ′

R1 | (109)

= 2L′
T2 |� ′

T2 | = dimT ′
2 . (110)

Since dimR′′
1 = dimT ′

2 and � ′
T22

= � ′
T12

, R1 again has
access to the entire transmit signal space of T2, we can use
the same argument we leveraged above in the dimT ′

2 ≤
dimR′

1 case to show that

d1 + d2 ≤ dimR′′
1 = dimT ′

2 , when dimT ′
2 > dimR′

1.
(111)

Combining the bounds in (108) and (111) yields,

d1 + d2 ≤ max(dimT ′
2 , dimR′

1)

= 2max
(
L′

T2 |� ′
T2 |, L′

R1 |� ′
R1 |
)

(112)
= 2max

(
LT2 |�T12 |, LR1 |�R12 |

)
+ 2LT2 |�T22 \ �T12 | + 2LR1 |�R11 \ �R12 |

(113)

thus showing that the sum-degrees-of-freedom bound
of Eq. (16) in Theorem 1 must hold for any achievable
degree-of-freedom pair.
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Combining Lemma 4 with the trivial point-to-point
bounds establishes that the region DFD, given in
Theorem 1, is an outer bound on any achievable degrees-
of-freedom pair, thus establishing the converse part of
Theorem 1.

4 Impact on full-duplex design
We have characterized, DFD, the degrees-of-freedom
region achievable by a full-duplex base-station which uses
spatial isolation to avoid self-interference while trans-
mitting the uplink signal while simultaneously receiving.
Now, we wish to discuss how this result impacts the oper-
ation of full-duplex base stations. In particular, we aim to
ascertain in what scenarios full-duplex with spatial iso-
lation outperforms half-duplex, and are there scenarios
in which full-duplex with spatial isolation achieves an
ideal rectangular degrees-of-freedom region (i.e., both the
uplink flow and downlink flow achieving their respective
point-to-point degrees-of-freedom).
To answer the above questions, we must first briefly

characterize DHD, the region of degrees-of-freedom pairs
achievable via half-duplex mode, i.e., by time-division-
duplex between uplink and downlink transmission. It is
easy to see that the half-duplex achievable region is char-
acterized by

d1 ≤ αmin
{
2LT1 |�T11 |, 2LR1 |�R11 |

}
, (114)

d2 ≤ (1 − α)min
{
2LT2 |�T22 |, 2LR2 |�R22 |

}
, (115)

where α ∈[ 0, 1] is the time sharing parameter. Obviously
DHD ⊆ DFD, but we are interested in contrasting the sce-
narios for which DHD ⊂ DFD, and full-duplex spatial iso-
lation strictly outperforms half-duplex time division, and
the scenarios for which DHD = DFD and half-duplex can
achieve the same performance as full-duplex.We will con-
sider two particularly interesting cases: the fully spread
environment, and the symmetric spread environment.

4.1 Overlapped scattering case
Consider the worst case for full-duplex operation in
which the self-interference backscattering intervals
perfectly overlap the forward scattering intervals of the
signals-of interest. By “overlapped” we mean that the
directions of departure from the base station transmitter,
T2, that scatter to the intended downlink receiver, R2, are
identical to the directions of departure that backscatter
to the base station receiver, R1, as self-interference, so
that �T11 = �T12 . Likewise, the directions of arrival
to the base station receiver, R1, of the intended uplink
signal from T1 are identical to the directions of arrival
of the backscattered self-interference from T2, so that
�R22 = �T12 . To reduce the number of variables in
the degrees-of-freedom expressions, we assume each
of the scattering intervals are of size |�|, so that

|�T11 |=|�R11 |=|�T22 | = |�R22 | = |�T12 | = |�R12 | ≡ |�|.
We further assume that the base station arrays are of
length 2LR1 = 2LT2 = 2LBS, and the user arrays are
of equal length 2LT1 = 2LR2 = 2LUsr. In this case, the
full-duplex degrees-of-freedom region,DFD, simplifies to

di ≤ |�|min{2LBS, 2LUsr}, i = 1, 2; d1 + d2 ≤ 2LBS|�|
(116)

while the half-duplex achievable region,DHD simplifies to

d1 + d2 ≤ |�|min{2LBS, 2LUsr}. (117)

The following remark characterizes the scenarios for
which full-duplex with spatial isolation beats half-duplex.

Remark In the overlapped scattering case, DHD ⊂ DFD

when 2LBS > 2LUsr, elseDHD = DFD.

We see that full-duplex outperforms half-duplex only
if the base station arrays are longer than the user arrays.
This is because in the overlapped scattering case, the only
way to spatially isolate the self-interference is zero forc-
ing, and zero forcing requires extra antenna resources at
the base station. When 2LBS ≤ 2LUsr, the base station
has no extra antenna resources it can leverage for zero
forcing, and thus, spatial isolation of the self-inference
is no better than isolation via time division. However,
when 2LBS > 2LUsr, the base station transmitter can
transmit (2LBS − 2LUsr)|�| zero-forced streams on the
downlink without impeding the reception of the the full
2LUsr|�| streams on the uplink, enabling a sum-degrees-
of-freedom gain of (2LBS − 2LUsr)|�| over half-duplex.
Indeed when the base station arrays are at least twice as
long as the user arrays, the degrees-of-freedom region is
rectangular, and both uplink and downlink achieve the
ideal 2LUsr|�| degrees-of-freedom.

4.2 Symmetric spread
The previous overlapped scattering case is the worst case
for full duplex operation. Let us now consider the more
general case where the self-interference backscattering
and the signal-of-interest forward scattering are not per-
fectly overlapped. This case illustrates the impact of the
overlap of the scattering intervals on full-duplex perfor-
mance. Once again, to reduce the number of variables, we
will make following symmetry assumptions. Assume all
the arrays in the network, the two arrays on the base sta-
tion as well as the array on each of the user devices, are of
the same length 2L, that is 2LT1 = 2LR1 = 2LT2 = 2LR2 ≡
2L. Also, assume that the size of the forward scattering
intervals to/from the intended receiver/transmitter is the
same for all arrays |�T11 | = |�R11 | = |�T22 | = |�R22 | ≡
|�Fwd|, and that the size of the backscattering interval is
the same at the base station receiver as at the base sta-
tion trasmitter |�T12 | = |�R12 | ≡ |�Back|. Finally, assume
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the amount of overlap between the backscattering and the
forward scattering is the same at the base station transmit-
ter as at the base station receiver so that |�T22 ∩ �T12 | =
|�R11 ∩�R12 | ≡ |�Fwd ∩�Back| = |�Fwd|− |�Fwd \�Back|.
We call�Back the backscatter interval since it is the angle

subtended at the base station by the back-scattering clus-
ters, while we call �Fwd the forward interval, since it is the
angle subtended by the clusters that scatter towards the
intended transmitter/receiver. In this case, the full-duplex
degree-of-freedom region,DFD simplifies to

di ≤ 2L|�Fwd|, i = 1, 2 (118)
d1 + d2 ≤ 2L(2|�Fwd \ �Back| + |�Back|) (119)

while the half-duplex achievable region,DHD is

d1 + d2 ≤ 2L|�Fwd|. (120)

Remark Comparing DFD and DHD above we see that in
the case of symmetric scattering, DHD = DFD if and only
if �Fwd = �Back, else DHD ⊂ DFD (we are neglecting the
trivial case of L = 0).

Thus, the full-duplex spatial isolation region is strictly
larger than the half-duplex time-division region unless
the forward interval and the backscattering interval are
perfectly overlapped. The intuition is that when �Fwd =
�Back the scattering interval is shared resource, just as is
time, thus trading spatial resources is equivalent to trading
time-slots. However, if �Fwd �= �Back, there is a portion
of space exclusive to each user which can be leveraged to
improve upon time division. Moreover, inspection of DFD

above leads to the following remark.

Remark In the case of symmetric scattering, the degrees-
of-freedom region is rectangular if and only if

|�Back \ �Fwd| ≥ |�Fwd ∩ �Back|. (121)

The above remark can be verified by comparing (118)
and (119) observing that the sum-rate bound, (119), is only
active when

2|�Fwd \ �Back| + |�Back| ≥ 2|�Fwd|. (122)

Straightforward set-algebraic manipulation of condition
(122) shows that it is equivalent to (121).
The intuition is that because �Back \ �Fwd are the set

directions in which the base station couples to itself but
not to the users, the corresponding 2L|�Back \ �Fwd|
dimensions are useless for spatial multiplexing, and there-
fore “free” for zero forcing the self-interference, which
has maximum dimension 2L|�Fwd ∩ �Back|. Thus, when
|�Back \ �Fwd| ≥ |�Fwd ∩ �Back|, we can zero force
any self-interference that is generated, without sacrificing
any resource needed for spatial multiplexing to intended
users.
Consider a numerical example in which |�Fwd| = 1 and

|�Back| = 1, thus the overlap between the two, |�Fwd ∩
�Back|, can vary from zero to one. Figure 7 plots the half-
duplex region, DHD, and the full-duplex region, DFD, for
several different values of overlap, |�Fwd ∩ �Back|. We see
that when �Fwd = �Back so that |�Fwd ∩ �Back| = 1,
both DHD and DFD are the same triangular region. When
|�Fwd ∩ �Back| = 0.75, we get a rectangular region. Once
|�Fwd ∩ �Back| ≤ 0.5, |�Back \ �Fwd| becomes greater
than 0.5, such that condition of (121) is satisfied and the
degree-of-freedom region becomes rectangular.
The overall takeaway is that as the amount of backscat-

tering increases, more degrees of freedom must be sac-
rificed to achieve sufficient self-interference suppression,
and less degrees of freedom are left for signaling to
the desired users. Therefore, full-duplex operation, where
self-interference is suppressed by beamforming, is indeed
feasible, when the antenna array at the base station is suf-
ficiently large, and when the backscattering is sufficiently
limited.

Fig. 7 Symmetric-spread degree-of-freedom regions for different amounts of scattering overlap
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4.3 Simulation example
We now consider a simple simulation example that illus-
trates the results of Theorem 1. In particular, this example
illustrates that as the angular spread of the backscattering
increases, more transmit degrees of freedom must be sac-
rificed in order to sufficiently suppress self-interference
at the base station. Theorem 1 was derived under sev-
eral theoretical assumptions which are relaxed in this
simulation to show that the same trends still apply. The
channel model of (2) focuses on backscattering only; in
this simulation, we also consider the direct-path self-
interference from the transmit array to the receive array.
Moreover, Theorem 1 was derived using continuous lin-
ear arrays, but to make the simulation closer to practical
implementations, we consider discrete arrays rather than
continuous arrays.
As depicted in Fig. 8, the base station transmit array

is a 36-element linear array, and likewise for the receive
array. The separation between antenna elements within
each array is � = λ/2, where λ is the wavelength. These
discrete arrays would therefore roughly correspond to a
continuous arrays of length L = 18 (normalized by wave-
length). The transmit and receive arrays are parallel to
each other and side-by-side, with a separation between the
transmit and receive arrays of 5λ. We model the antenna
elements as ideal point sources, such that the direct-path
channel between transmit antennam and receive antenna
n can be simply modeled as [38, 39]

[Cdirect]nm = ejkrnm
rnm

, (123)

where, rnm is the distance between antennas m and n,
k = 2π

λ
is the wavenumber, and j = √−1. As is done in the

simulation examples of [25], the backscattering is mod-
eled via a simple discretization of the original continuous
channel model

[Cscat]nm = 1
�
C12(qn, pm)

=
∫ ∫

AR1(qn, τ)H12(τ , t)AT2(t, pn) dτ dt

(124)

where C12 is the continuous self-interference channel
response described in Eqs. (2)–(8). We generate channel
realizations by drawing H(τ , t) from a two-dimensional
white gaussian process over (τ , t) ∈ �R12 × �T12 , and

set H(τ , t) = 0 for (τ , t) /∈ �R12 × �T12 . As in the
symmetric-spread example, for convenience we let�T12 =
�R12 = �Back. The total self-interference channel is
Hself = Cdirect + αCscat., where α is a scalar chosen such
that the backscattered self-interference is 20 dB weaker
(on average) than the direct-path self-interference. We
assume the noise floor is 80 dB below the transmit sig-
nal power. We consider the case of no backscattering, as
well as cases where the backscattering subtends angles of
15°, 45°, 90°, and the fully backscattered case where the
backscattering subtends 180°.
We simulate a transmit beamforming scheme inspired

by the degrees-of-freedom achievability proof of section 3.
Let dT denote the dimension of the base stations trans-
mit signal (i.e., the number of data streams the base
station wishes to transmit).4 In the achievability proof,
the base station transmitter avoids self-interference by
projecting the dT transmit symbols onto the nullspace
of the self-interference channel. Here, we generalize this
nullspace-projection approach by having the base station
transmitter project its dT transmit symbols onto the dT
weakest singular vectors (i.e., the dT left singular vec-
tors corresponding to the dT smallest singular values)
of the self-interference channel, Hself. This beamform-
ing approach, which we call “soft nulling” allows a flex-
ible tradeoff between number of downlink dimensions,
dT , and the amount of self-interference generated: better
self-interference suppression can be achieved by sacrific-
ing transmit dimension. This concept of soft nulling is
explored in depth in [27].
The results of the simulation are shown in Fig. 9. We see

that for the case of no backscattering, the self-interference
can be suppressed to the noise floor while maintain-
ing a 32-dimensional downlink signal, only sacrificing
4 of the 36 downlink dimensions in order to suppress
self-interference. However, in concurrence with the trend
predicted by Theorem 1, as the angular spread of the
backscattering increases, more transmit dimension must
be sacrificed in order to suppress the self-interference
to the noise floor. Merely increasing the backscatter-
ing spread to 15° has a large impact: only 22 downlink
transmit dimensions can be maintained while suppress-
ing the self-interference to the noise floor—14 of the
36 transmit dimensions must be sacrificed to suppress
the self-interference. In the case of a fully-backscattered
self-interference channel, the self-interference cannot be

Fig. 8 Simulated base station array configuration. Both the transmit and receive arrays have 36 antennas with half-wavelength spacing between
antenna elements, and 5-wavelength spacing between the transmit and receive arrays
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Fig. 9 Simulation results: self-interference versus dimension of downlink transmit signal

suppressed to the noise floor even if only one transmit
dimension is used. In summary, we see that the angular
spread of the backscattering dictates how many trans-
mit dimensions must be sacrificed in order to sufficiently
suppress self-interference.

5 Conclusions
Full-duplex operation presents an opportunity for base
stations to as much as double their spectral efficiency by
both transmitting downlink signal and receiving uplink
signal at the same time in the same band. The challenge
to full-duplex operation is high-powered self-interference
that is received both directly from the base station
transmitter and backscattered from nearby objects. The
receiver can be spatially isolated from the transmitter
by leveraging multi-antenna beamforming to avoid self-
interference, but such beamforming can also decrease the
degrees-of-freedom of the intended uplink and downlink
channels. We have leveraged a spatial antenna-theory-
based channel model to analyze the spatial degrees-
of-freedom available to a full-duplex base station. The
analysis has shown the full-duplex operation can indeed
outperform half-duplex operation when either (1) the base
station arrays are large enough for the base station to
zero-force the backscattered self-interference or (2) the
backscattering directions are not fully overlapped with the
forward scattering directions, so that the base station can
leverage the non-overlapped intervals for interference free
signaling to/from the intended users.

Endnotes
1An additional challenge is the potential for the uplink

user’s transmission to interfere with the downlink user’s
reception, but in this paper we focus solely on the chal-
lenge of self-interference.

2We acknowledge that a continuous array which can
support arbitrary current distributions may not be fea-
sible to construct in practice due to the complications

of feeding the array and achieving impedance match.
However, as has been shown in the work of [24–26], a
continuous array is nonetheless a very useful theoretical
construct to develop performance bounds for any discrete
antenna array subject to the same size constraint.

3 There is extensive ongoing research on scheduling
algorithms to select uplink and downlink users such that
the uplink user generates little interference to the down-
link user [40–44] (and references within). Thus, we make
the simplifying assumption that there is no channel from
the uplink transmitter, T1, to the downlink receiver, R2.
This assumption allows the analysis to focus on the chal-
lenge of backscattered self-interference. An extension of
this work, [45], which is outside the scope of this paper,
focuses on the challenge of inter-user interference in a
full-duplex network, and provides analysis for the case
where there is a nonzero channel from T1 to R2.

4We call dT the “dimension of the transmit signal”
instead of “degrees of freedom”, because in this simula-
tion, where SNR is finite, the term “degrees of freedom”
is not correct by the rigorous definition used in the prior
analysis.

Appendix A: Functional analysis definitions
Let X be a Hilbert space, the orthogonal complement of
S ⊆ X , denoted S⊥, is the subset S⊥ ≡ {x ∈ X : 〈x,u〉 =
0 ∀ u ∈ S}. Let X and Y be vector spaces (e.g., Hilbert
spaces) and let C : X → Y be a linear operator. Let S ⊆ Y
be a subspace of Y . The nullspace of C, denoted N(C), is
the subspace N(C) ≡ {x ∈ X : Cx = 0}. The range of
C, denoted R(C), is the subspace R(C) ≡ {Cx : x ∈ X }.
The preimage of S under C, C←(S), is the subspace (one
can check that if S is a subspace then C←(S) is a subspace
also). C←(S) ≡ {x ∈ X : Cx ∈ S}. The rank of C is the
dimension of the range of C. A fundamental result in func-
tional analysis is that the dimension of the range of C is
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also the dimension of the orthogonal complement of the
nullspace of C (i.e. the coimage of C) so that we can write
rankC ≡ dimR(C) = dimN(C)⊥.

Appendix B: functional analysis lemmas
Lemma 5 Let X and Y be Hilbert spaces and let C :

X → Y be a compact linear operator. There exists a sin-
gular system {σk , vk ,uk}, for C defined as follows. The set
of functions {uk} form an orthonormal basis for R(C), the
closure of the range of C, and the set of functions {vk} form
an orthonormal basis for N(C)⊥, the coimage of C. The set
of positive real numbers σk, called the singular values of C,
are the nonzero eigenvalues of (C∗C) arranged in decreas-
ing order. The singular system diagonalizes C in the sense
that for any (σk , vk ,uk) ∈ {σk , vk ,uk}, Cvk = σkuk . More-
over, the operation of C on any x ∈ X can be expanded
as Cx = ∑

k σk〈x, vk〉uk , which is called the singular value
expansion of Cx. See Section 16.1 and 16.2 of [32] for a
proof.

Lemma 6 Let X and Y be Hilbert spaces and let C :
X → Y be a linear operator with closed range. There
exists a unique linear operator C+, called the Moore-
Penrose pseudoinverse of C, with the following properties:
(i) C+Cx = x ∀x ∈ N(C)⊥ (ii) CC+y = y ∀y ∈ R(C) (iii)
R(C+) = N(C)⊥ (iv) N(C+) = R(C)⊥.
See Definition 2.2 and Proposition 2.3 of [33] for a proof.

Lemma 7 Let X and Y be finite-dimensional Hilbert
spaces and let C : X → Y be a linear operator with closed
range. Let S ⊆ Y be a subspace of Y . Then the dimension
of the preimage of S under C is

dimC←(S) = dimN(C) + dim (R(C) ∩ S). (125)

Proof For notational convenience, let dP ≡ dimC←(S),
dN ≡ dimN(C), and dR∩S ≡ dim (R(C) ∩ S). Thus
we wish to show that dP = dN + dR∩S . First note that
N(C) ⊆ C←(S), since S is a subspace and hence contains
the zero vector, and the preimage of the zero vector under
C is the nullspace of C. Denote the intersection between
the preimage of S under C and the orthogonal complement
of the nullspace of C (i.e., the coimage) as

B ≡ C←(S) ∩ N(C)⊥. (126)

Note that B is a subspace of X since the intersection of
any collection of subspaces is itself a subspace (see Thm.
1 on p. 3 of [46]). Every x ∈ C←(S) can be expressed as
x = w + u for some w ∈ N(C) and u ∈ B, and 〈w,u〉 = 0
for any w ∈ N(C) and u ∈ B. Thus, we can say that
the preimage, C←(S), is the orthogonal direct sum of sub-
spaces N(C) and B ([32] Def. 4.26), a relationship we note
we denote as C←(S) = N(C) ⊕ B.

Let {ai}dNi=1 be a basis for N(C) and {bi}dBi=1 be a basis for
B, where dN = dimN(C) and dB = dimB. Construct the
set {ei}dN+dB

i=1 according to

{ei}dNi=1 = {ai}dNi=1, {ei}dN+dB
i=dN+1 = {bi}dBi=1. (127)

We claim that {ei}dN+dB
i=1 forms a basis for C←(S). To

check that {ei}dN+dB
i=1 is a basis for C←(S), we must first

show {ei}dN+dB
i=1 spans C←(S), and then show that the ele-

ments of {ei}dN+dB
i=1 are linearly independent. Consider an

arbitrary x ∈ C←(S). Since C←(S) = N(C)⊕B, x = w+u
for some w ∈ N(C) and u ∈ B. Since by construction,
{ei}dNi=1 is a basis for N(C) and {ei}dN+dB

i=1+dN is a basis for
N(C), one can choose λi such that that w = ∑dN

i=1 λiei and
u = ∑dN+dB

i=1+dN λiei. Thus,

x = w + v =
dN∑
i=1

λiei +
dN+dB∑
i=1+dN

λiei =
dN+dB∑
i=1

λiei (128)

for some λi. Thus {ei}dN+dB
i=1 spans C←(S). Now let us

show linear independence: that
∑dN+dB

i=1 λiei = 0 if and
only if λi = 0 for all i ∈ {1, 2, . . . , dN + dB}. The “if” part
is trivial, thus it remains to show that

∑dN+dB
i=1 λiei = 0

implies λi = 0 ∀i. The condition∑dN+dB
i=1 λiei = 0 implies

dN∑
i=1

λiei = −
dN+dB∑
i=dN+1

λiei, (129)

which implies w = −u for some w ∈ N(C) and u ∈ B.
Every element of N(C) is orthogonal to every element of
B by construction, hence the only way Eq. (129) can be
satisfied is if w = u = 0, that is if both sides of Eq. (129)
are zero, implying λi = 0 for all i ∈ {1, 2, . . . , dN + dB}
as desired. Thus, we have shown {ei}dN+dB

i=1 is a basis for
C←(S), and hence

dP = dN + dB . (130)

Consider the set {Cei}dN+dB
i=1+dN . By the definition of range,

each element of the set {Cei}dN+dB
i=1+dN is in R(C), and since

by construction each ei is in C←(S), each element of
{Cei}dN+dB

i=1+dN is also in S . We therefore have that

span {Cei}dN+dB
i=1+dN ⊆ R(C) ∩ S , (131)

and since there are dB elements in {Cei}dN+dB
i=1+dN , it must

be that dB ≤ dR∩S . Substituting the above inequality into
Eq. (130) gives dP ≤ dN + dR∩S .
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To complete the proof we must show that dP ≥ dN +
dR∩S . Let {si}dR∩S

i=1 be a basis for R(C) ∩ S . By assump-
tion R(C) is closed, thus we have by Lemma 6 that the
Moore-Penrose pseudoinverse, C+, exists and satisfies the
properties listed in Lemma 6. Consider the set

{
C+si

}dR∩S
i=1 .

We claim that

span
{
C+si

}dR∩S
i=1 ⊆ N(C)⊥ ∩ C←(S) ≡ B. (132)

By property (iv) in Lemma 6, we have that C+si ∈ N(C)⊥

for each C+si ∈ {
C+si

}dR∩S
i=1 . Since si ∈ R(C), we have that

C(C+si) = si by property (ii) of the pseudoinverse, and
since si ∈ S , we have that CC+si = si ∈ S for each C+si ∈{
C+si

}dR∩S
i=1 . Thus, each element of {C+si}dR∩S

i=1 is also in
C←(S), the preimage of S under C. Thus we have that
each element of

{
C+si

}dR∩S
i=1 is in N(C)⊥ ∩ C←(S) which

justifies the claim of Eq. (132). Now, Eq. (132) implies
that dR∩S ≤ dB . Substituting the above inequality into
Eq. (130) gives dP ≥ dN +dR∩S , concluding the proof.

Corollary 1 Let X and Y be finite-dimensional Hilbert
spaces and let C : X → Y be a linear operator with closed
range. Let S ⊆ R(C) ⊆ Y be a subspace of the range of
C. Then, the dimension of the preimage of S under C is
dimC←(S) = dimN(C) + dim (S).

Proof The proof follows trivially from Lemma 7 by not-
ing that since S ⊆ R(C), R(C)∩S = S , which we substitute
into Eq. 125 to obtain the corollary.
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