5,103 research outputs found

    Quantum metrology and its application in biology

    Full text link
    Quantum metrology provides a route to overcome practical limits in sensing devices. It holds particular relevance to biology, where sensitivity and resolution constraints restrict applications both in fundamental biophysics and in medicine. Here, we review quantum metrology from this biological context, focusing on optical techniques due to their particular relevance for biological imaging, sensing, and stimulation. Our understanding of quantum mechanics has already enabled important applications in biology, including positron emission tomography (PET) with entangled photons, magnetic resonance imaging (MRI) using nuclear magnetic resonance, and bio-magnetic imaging with superconducting quantum interference devices (SQUIDs). In quantum metrology an even greater range of applications arise from the ability to not just understand, but to engineer, coherence and correlations at the quantum level. In the past few years, quite dramatic progress has been seen in applying these ideas into biological systems. Capabilities that have been demonstrated include enhanced sensitivity and resolution, immunity to imaging artifacts and technical noise, and characterization of the biological response to light at the single-photon level. New quantum measurement techniques offer even greater promise, raising the prospect for improved multi-photon microscopy and magnetic imaging, among many other possible applications. Realization of this potential will require cross-disciplinary input from researchers in both biology and quantum physics. In this review we seek to communicate the developments of quantum metrology in a way that is accessible to biologists and biophysicists, while providing sufficient detail to allow the interested reader to obtain a solid understanding of the field. We further seek to introduce quantum physicists to some of the central challenges of optical measurements in biological science.Comment: Submitted review article, comments and suggestions welcom

    Soliton microcomb based spectral domain optical coherence tomography

    Full text link
    Spectral domain optical coherence tomography (SD-OCT) is a widely used and minimally invaive technique for bio-medical imaging [1]. SD-OCT typically relies on the use of superluminescent diodes (SLD), which provide a low-noise and broadband optical spectrum. Recent advances in photonic chipscale frequency combs [2, 3] based on soliton formation in photonic integrated microresonators provide an chipscale alternative illumination scheme for SD-OCT. Yet to date, the use of such soliton microcombs in OCT has not yet been analyzed. Here we explore the use of soliton microcombs in spectral domain OCT and show that, by using photonic chipscale Si3N4 resonators in conjunction with 1300 nm pump lasers, spectral bandwidths exceeding those of commercial SLDs are possible. We demonstrate that the soliton states in microresonators exhibit a noise floor that is ca. 3 dB lower than for the SLD at identical power, but can exhibit significantly lower noise performance for powers at the milliWatt level. We perform SD-OCT imaging on an ex vivo fixed mouse brain tissue using the soliton microcomb, alongside an SLD for comparison, and demonstrate the principle viability of soliton based SD-OCT. Importantly, we demonstrate that classical amplitude noise of all soliton comb teeth are correlated, i.e. common mode, in contrast to SLD or incoherent microcomb states [4], which should, in theory, improve the image quality. Moreover, we demonstrate the potential for circular ranging, i.e. optical sub-sampling [5, 6], due to the high coherence and temporal periodicity of the soliton state. Taken together, our work indicates the promising properties of soliton microcombs for SD-OCT

    State-of-the art of acousto-optic sensing and imaging of turbid media

    Get PDF
    Acousto-optic (AO) is an emerging hybrid technique for measuring optical contrast in turbid media using coherent light and ultrasound (US). A turbid object is illuminated with a coherent light source leading to speckle formation in the remitted light. With the use of US, a small volume is selected,which is commonly referred to as the “tagging” volume. This volume acts as a source of modulated light, where modulation might involve phase and intensity change. The tagging volume is created by focusing ultrasound for good lateral resolution; the axial resolution is accomplished by making either the US frequency, amplitude, or phase time-dependent. Typical resolutions are in the order of 1 mm. We will concentrate on the progress in the field since 2003. Different schemes will be discussed to detect the modulated photons based on speckle detection, heterodyne detection, photorefractive crystal (PRC) assisted detection, and spectral hole burning (SHB) as well as Fabry-Perot interferometers. The SHB and Fabry-Perot interferometer techniques are insensitive to speckle decorrelation and therefore suitable for in vivo imaging. However, heterodyne and PRC methods also have potential for in vivo measurements. Besides measuring optical properties such as scattering and absorption, AO can be applied in fluorescence and elastography applications

    Assessment and in vivo scoring of murine experimental autoimmune uveoretinitis using optical coherence tomography

    Get PDF
    Despite advances in clinical imaging and grading our understanding of retinal immune responses and their morphological correlates in experimental autoimmune uveoretinitis (EAU), has been hindered by the requirement for post-mortem histology. To date, monitoring changes occurring during EAU disease progression and evaluating the effect of therapeutic intervention in real time has not been possible. We wanted to establish whether optical coherence tomography (OCT) could detect intraretinal changes during inflammation and to determine its utility as a tool for accurate scoring of EAU. EAU was induced in C57BL/6J mice and animals evaluated after 15, 26, 36 and 60 days. At each time-point, contemporaneous Spectralis-OCT scanning, topical endoscopic fundal imaging (TEFI), fundus fluorescein angiography (FFA) and CD45-immunolabelled histology were performed. OCT features were further characterised on retinal flat-mounts using immunohistochemistry and 3D reconstruction. Optic disc swelling and vitreous opacities detected by OCT corresponded to CD45+ cell infiltration on histology. Vasculitis identified by FFA and OCT matched perivascular myeloid and T-cell infiltrates and could be differentiated from unaffected vessels. Evolution of these changes could be followed over time in the same eye. Retinal folds were visible and found to encapsulate mixed populations of activated myeloid cells, T-cells and microglia. Using these features, an OCT-based EAU scoring system was developed, with significant correlation to validated histological (Pearson r(2) = 0.6392, P<0.0001, n = 31 eyes) and TEFI based scoring systems (r(2) = 0.6784, P<0.0001). OCT distinguishes the fundamental features of murine EAU in vivo, permits dynamic assessment of intraretinal changes and can be used to score disease severity. As a result, it allows tissue synchronisation with subsequent cellular and functional assessment and greater efficiency of animal usage. By relating OCT signals with immunohistochemistry in EAU, our findings offer the opportunity to inform the interpretation of OCT changes in human uveitis

    Development Of Optical Coherence Tomography For Tissue Diagnostics

    Get PDF
    Microvasculature can be found in almost every part of the human body, including the internal organs. Importantly, abnormal changes in microvasculature are usually related to pathological development of the tissue cells. Monitoring of changes in blood flow properties in microvasculature, therefore, provides useful diagnostic information about pathological conditions in biological tissues as exemplified in glaucoma, diabetes, age related macular degeneration, port wine stains, burn-depth, and potentially skin cancer. However, the capillary network is typically only one cell in wall thickness with 5 to 10 microns in diameter and located in the dermis region of skin. Therefore, a non-invasive flow imaging technique that is capable of depth sectioning at high resolution and high speed is demanded. Optical coherence tomography (OCT), particularly after its advancement in frequency domain OCT (FD-OCT), is a promising tool for non-invasive high speed, high resolution, and high sensitivity depth-resolved imaging of biological tissues. Over the last ten years, numerous efforts have been paid to develop OCTbased flow imaging techniques. An important effort is the development of phase-resolved Doppler OCT (PR-DOCT). Phase-resolved Doppler imaging using FD-OCT is particularly of interest because of the direct access to the phase information of the depth profile signal. Furthermore, the high speed capability of FD-OCT is promising for real time flow monitoring as well as 3D flow segmentation applications. However, several challenges need to be addressed; 1) Flow in biological samples exhibits a wide dynamic range of flow velocity caused by, for example, the iv variation in the flow angles, flow diameters, and functionalities. However, the improvement in imaging speed of FD-OCT comes at the expense of a reduction in sensitivity to slow flow information and hence a reduction in detectable velocity range; 2) A structural ambiguity socalled \u27mirror image\u27 in FD-OCT prohibits the use of maximum sensitivity and imaging depth range; 3) The requirement of high lateral resolution to resolve capillary vessels requires the use of an imaging optics with high numerical aperture (NA) that leads to a reduction in depth of focus (DOF) and hence the imaging depth range (i.e. less than 100 microns) unless dynamic focusing is performed. Nevertheless, intrinsic to the mechanism of FD-OCT, dynamic focusing is not possible. In this dissertation, the implementation of PR-DOCT in a high speed swept-source based FD-OCT is investigated and optimized. An acquisition scheme as well as a processing algorithm that effectively extends the detectable velocity dynamic range of the PR-DOCT is presented. The proposed technique increased the overall detectable velocity dynamic range of PR-DOCT by about five times of that achieved by the conventional method. Furthermore, a novel technique of mirror image removal called ‘Dual-Detection FD-OCT’ (DD-FD-OCT) is presented. One of the advantages of DD-FD-OCT to Doppler imaging is that the full-range signal is achieved without manipulation of the phase relation between consecutive axial lines. Hence the full-range DD-FDOCT is fully applicable to phase-resolved Doppler detection without a reduction in detectable velocity dynamic range as normally encountered in other full-range techniques. In addition, PRDOCT can utilize the maximum SNR provided by the full-range capability. This capability is particularly useful for imaging of blood flow that locates deep below the sample surface, such as v blood flow at deep posterior human eye and blood vessels network in the dermis region of human skin. Beside high speed and functional imaging capability, another key parameter that will open path for optical diagnostics using OCT technology is high resolution imaging (i.e. in a regime of a few microns or sub-micron). Even though the lateral resolution of OCT can be independently improved by opening the NA of the imaging optics, the high lateral resolution is maintained only over a short range as limited by the depth of focus that varies inversely and quadratically with NA. Recently developed by our group, ‘Gabor-Domain Optical Coherence Microscopy’ (GD-OCM) is a novel imaging technique capable for invariant resolution of about 2-3 m over a 2 mm cubic field-of-view. This dissertation details the imaging protocol as well as the automatic data fusion method of GD-OCM developed to render an in-focus high-resolution image throughout the imaging depth of the sample in real time. For the application of absolute flow measurement as an example, the precise information about flow angle is required. GDOCM provides more precise interpretation of the tissue structures over a large field-of-view, which is necessary for accurate mapping of the flow structure and hence is promising for diagnostic applications particularly when combined with Doppler imaging. Potentially, the ability to perform high resolution OCT imaging inside the human body is useful for many diagnostic applications, such as providing an accurate map for biopsy, guiding surgical and other treatments, monitoring the functional state and/or the post-operative recovery process of internal organs, plaque detection in arteries, and early detection of cancers in the gastrointestinal tract. Endoscopic OCT utilizes a special miniature probe in the sample arm to vi access tubular organs inside the human body, such as the cardiovascular system, the lung, the gastrointestinal tract, the urinary tract, and the breast duct. We present an optical design of a dynamic focus endoscopic probe that is capable of about 4 to 6 m lateral resolution over a large working distance (i.e. up to 5 mm from the distal end of the probe). The dynamic focus capability allows integration of the endoscopic probe to GD-OCM imaging to achieve high resolution endoscopic tomograms. We envision the future of this developing technology as a solution to high resolution, minimally invasive, depth-resolved imaging of not only structure but also the microvasculature of in vivo biological tissues that will be useful for many clinical applications, such as dermatology, ophthalmology, endoscopy, and cardiology. The technology is also useful for animal study applications, such as the monitoring of an embryo’s heart for the development of animal models and monitoring of changes in blood circulation in response to external stimulus in small animal brains

    Short-coherence off-axis holographic phase microscopy of live cell dynamics

    Get PDF
    We demonstrate a single-shot holographic phase microscope that combines short-coherence laser pulses with an off-axis geometry. By introducing a controlled pulse front tilt, ultrashort pulses are made to interfere over a large field-of-view without loss of fringe contrast. With this microscope, quantitative phase images of live cells can be recorded in a fullfield geometry without moving parts. We perform phase imaging of HEK293 cells, to study the dynamics of cell volume regulation in response to an osmotic shock

    Optically and Electrically assisted Micro-Indentation

    Get PDF
    corecore