23,185 research outputs found

    Width of Non-deterministic Automata

    Get PDF
    International audienceWe introduce a measure called width, quantifying the amount of nondeterminism in automata. Width generalises the notion of good-for-games (GFG) automata, that correspond to NFAs of width 1, and where an accepting run can be built on-the-fly on any accepted input. We describe an incremental determinisation construction on NFAs, which can be more efficient than the full powerset determinisation, depending on the width of the input NFA. This construction can be generalised to infinite words, and is particularly well-suited to coBüchi automata in this context. For coBüchi automata, this procedure can be used to compute either a deterministic automaton or a GFG one, and it is algorithmically more efficient in this last case. We show this fact by proving that checking whether a coBüchi automaton is determinisable by pruning is NP-complete. On finite or infinite words, we show that computing the width of an automaton is PSPACE-hard. 1 Introduction Determinisation of non-deterministic automata (NFAs) is one of the cornerstone problems of automata theory, with countless applications in verification. There is a very active field of research for optimizing or approximating determinisation, or circumventing it in contexts like inclusion of NFA or Church Synthesis. Indeed, determinisation is a costly operation, as the state space blow-up is in O(2 n) on finite words, O(3 n) for coBüchi automata [16], and 2 O(n log(n)) for Büchi automata [17]. If A and B are NFAs, the classical way of checking the inclusion L(A) ⊆ L(B) is to determinise B, complement it, and test emptiness of L(A) ∩ L(B). To circumvent a full determinisation, the recent algorithm from [3] proved to be very efficient, as it is likely to explore only a part of the powerset construction. Other approaches use simulation games to approximate inclusion at a cheaper cost, see for instance [8]. Another approach consists in replacing determinism by a weaker constraint that suffices in some particular context. In this spirit, Good-for-Games automata (GFG for short) were introduced in [9], as a way to solve the Church synthesis problem. This problem asks, given a specification L, typically given by an LTL formula, over an alphabet of inputs and outputs, whether there is a reactive system (transducer) whose behaviour is included in L. The classical solution computes a deterministic automaton for L, and solves a game defined on this automaton. It turns out that replacing determinism by the weaker constraint of being GFG is sufficient in this context. Intuitively, GFG automata are non-deterministic * This work was supported by the grant PALSE Impulsion

    Scale-invariant cellular automata and self-similar Petri nets

    Full text link
    Two novel computing models based on an infinite tessellation of space-time are introduced. They consist of recursively coupled primitive building blocks. The first model is a scale-invariant generalization of cellular automata, whereas the second one utilizes self-similar Petri nets. Both models are capable of hypercomputations and can, for instance, "solve" the halting problem for Turing machines. These two models are closely related, as they exhibit a step-by-step equivalence for finite computations. On the other hand, they differ greatly for computations that involve an infinite number of building blocks: the first one shows indeterministic behavior whereas the second one halts. Both models are capable of challenging our understanding of computability, causality, and space-time.Comment: 35 pages, 5 figure

    Model checking Quantitative Linear Time Logic

    Get PDF
    This paper considers QLtl, a quantitative analagon of Ltl and presents algorithms for model checking QLtl over quantitative versions of Kripke structures and Markov chains

    Temporalized logics and automata for time granularity

    Full text link
    Suitable extensions of the monadic second-order theory of k successors have been proposed in the literature to capture the notion of time granularity. In this paper, we provide the monadic second-order theories of downward unbounded layered structures, which are infinitely refinable structures consisting of a coarsest domain and an infinite number of finer and finer domains, and of upward unbounded layered structures, which consist of a finest domain and an infinite number of coarser and coarser domains, with expressively complete and elementarily decidable temporal logic counterparts. We obtain such a result in two steps. First, we define a new class of combined automata, called temporalized automata, which can be proved to be the automata-theoretic counterpart of temporalized logics, and show that relevant properties, such as closure under Boolean operations, decidability, and expressive equivalence with respect to temporal logics, transfer from component automata to temporalized ones. Then, we exploit the correspondence between temporalized logics and automata to reduce the task of finding the temporal logic counterparts of the given theories of time granularity to the easier one of finding temporalized automata counterparts of them.Comment: Journal: Theory and Practice of Logic Programming Journal Acronym: TPLP Category: Paper for Special Issue (Verification and Computational Logic) Submitted: 18 March 2002, revised: 14 Januari 2003, accepted: 5 September 200

    Groups and Semigroups Defined by Colorings of Synchronizing Automata

    Full text link
    In this paper we combine the algebraic properties of Mealy machines generating self-similar groups and the combinatorial properties of the corresponding deterministic finite automata (DFA). In particular, we relate bounded automata to finitely generated synchronizing automata and characterize finite automata groups in terms of nilpotency of the corresponding DFA. Moreover, we present a decidable sufficient condition to have free semigroups in an automaton group. A series of examples and applications is widely discussed, in particular we show a way to color the De Bruijn automata into Mealy automata whose associated semigroups are free, and we present some structural results related to the associated groups

    Trace Complexity of Chaotic Reversible Cellular Automata

    Full text link
    Delvenne, K\r{u}rka and Blondel have defined new notions of computational complexity for arbitrary symbolic systems, and shown examples of effective systems that are computationally universal in this sense. The notion is defined in terms of the trace function of the system, and aims to capture its dynamics. We present a Devaney-chaotic reversible cellular automaton that is universal in their sense, answering a question that they explicitly left open. We also discuss some implications and limitations of the construction.Comment: 12 pages + 1 page appendix, 4 figures. Accepted to Reversible Computation 2014 (proceedings published by Springer

    Intrinsic universality and the computational power of self-assembly

    Full text link
    This short survey of recent work in tile self-assembly discusses the use of simulation to classify and separate the computational and expressive power of self-assembly models. The journey begins with the result that there is a single universal tile set that, with proper initialization and scaling, simulates any tile assembly system. This universal tile set exhibits something stronger than Turing universality: it captures the geometry and dynamics of any simulated system. From there we find that there is no such tile set in the noncooperative, or temperature 1, model, proving it weaker than the full tile assembly model. In the two-handed or hierarchal model, where large assemblies can bind together on one step, we encounter an infinite set, of infinite hierarchies, each with strictly increasing simulation power. Towards the end of our trip, we find one tile to rule them all: a single rotatable flipable polygonal tile that can simulate any tile assembly system. It seems this could be the beginning of a much longer journey, so directions for future work are suggested.Comment: In Proceedings MCU 2013, arXiv:1309.104

    Boundedness in languages of infinite words

    Full text link
    We define a new class of languages of ω\omega-words, strictly extending ω\omega-regular languages. One way to present this new class is by a type of regular expressions. The new expressions are an extension of ω\omega-regular expressions where two new variants of the Kleene star L∗L^* are added: LBL^B and LSL^S. These new exponents are used to say that parts of the input word have bounded size, and that parts of the input can have arbitrarily large sizes, respectively. For instance, the expression (aBb)ω(a^Bb)^\omega represents the language of infinite words over the letters a,ba,b where there is a common bound on the number of consecutive letters aa. The expression (aSb)ω(a^Sb)^\omega represents a similar language, but this time the distance between consecutive bb's is required to tend toward the infinite. We develop a theory for these languages, with a focus on decidability and closure. We define an equivalent automaton model, extending B\"uchi automata. The main technical result is a complementation lemma that works for languages where only one type of exponent---either LBL^B or LSL^S---is used. We use the closure and decidability results to obtain partial decidability results for the logic MSOLB, a logic obtained by extending monadic second-order logic with new quantifiers that speak about the size of sets
    • …
    corecore