719 research outputs found

    Hacking Smart Machines with Smarter Ones: How to Extract Meaningful Data from Machine Learning Classifiers

    Full text link
    Machine Learning (ML) algorithms are used to train computers to perform a variety of complex tasks and improve with experience. Computers learn how to recognize patterns, make unintended decisions, or react to a dynamic environment. Certain trained machines may be more effective than others because they are based on more suitable ML algorithms or because they were trained through superior training sets. Although ML algorithms are known and publicly released, training sets may not be reasonably ascertainable and, indeed, may be guarded as trade secrets. While much research has been performed about the privacy of the elements of training sets, in this paper we focus our attention on ML classifiers and on the statistical information that can be unconsciously or maliciously revealed from them. We show that it is possible to infer unexpected but useful information from ML classifiers. In particular, we build a novel meta-classifier and train it to hack other classifiers, obtaining meaningful information about their training sets. This kind of information leakage can be exploited, for example, by a vendor to build more effective classifiers or to simply acquire trade secrets from a competitor's apparatus, potentially violating its intellectual property rights

    Temporal Pattern Classification using Kernel Methods for Speech

    Get PDF
    There are two paradigms for modelling the varying length temporal data namely, modelling the sequences of feature vectors as in the hidden Markov model-based approaches for speech recognition and modelling the sets of feature vectors as in the Gaussian mixture model (GMM)-based approaches for speech emotion recognition. In this paper, the methods using discrete hidden Markov models (DHMMs) in the kernel feature space and string kernel-based SVM classifier for classification of discretised representation of sequence of feature vectors obtained by clustering and vector quantisation in the kernel feature space are presented. The authors then present continuous density hidden Markov models (CDHMMs) in the explicit kernel feature space that use the continuous valued representation of features extracted from the temporal data. The methods for temporal pattern classification by mapping a varying length sequential pattern to a fixed-length sequential pattern and then using an SVM-based classifier for classification are also presented. The task of recognition of spoken letters in E-set, it is possible to build models that use a discretised representation and string kernel SVM based classification and obtain a classification performance better than that of models using the continuous valued representation is demonstrated. For modelling sets of vectors-based representation of temporal data, two approaches in a hybrid framework namely, the score vector-based approach and the segment modelling based approach are presented. In both approaches, a generative model-based method is used to obtain a fixed length pattern representation for a varying length temporal data and then a discriminative model is used for classification. These two approaches are studied for speech emotion recognition task. The segment modelling based approach gives a better performance than the score vector-based approach and the GMM-based classifiers for speech emotion recognition.Defence Science Journal, 2010, 60(4), pp.348-363, DOI:http://dx.doi.org/10.14429/dsj.60.49

    SVMs for Automatic Speech Recognition: a Survey

    Get PDF
    Hidden Markov Models (HMMs) are, undoubtedly, the most employed core technique for Automatic Speech Recognition (ASR). Nevertheless, we are still far from achieving high-performance ASR systems. Some alternative approaches, most of them based on Artificial Neural Networks (ANNs), were proposed during the late eighties and early nineties. Some of them tackled the ASR problem using predictive ANNs, while others proposed hybrid HMM/ANN systems. However, despite some achievements, nowadays, the preponderance of Markov Models is a fact. During the last decade, however, a new tool appeared in the field of machine learning that has proved to be able to cope with hard classification problems in several fields of application: the Support Vector Machines (SVMs). The SVMs are effective discriminative classifiers with several outstanding characteristics, namely: their solution is that with maximum margin; they are capable to deal with samples of a very higher dimensionality; and their convergence to the minimum of the associated cost function is guaranteed. These characteristics have made SVMs very popular and successful. In this chapter we discuss their strengths and weakness in the ASR context and make a review of the current state-of-the-art techniques. We organize the contributions in two parts: isolated-word recognition and continuous speech recognition. Within the first part we review several techniques to produce the fixed-dimension vectors needed for original SVMs. Afterwards we explore more sophisticated techniques based on the use of kernels capable to deal with sequences of different length. Among them is the DTAK kernel, simple and effective, which rescues an old technique of speech recognition: Dynamic Time Warping (DTW). Within the second part, we describe some recent approaches to tackle more complex tasks like connected digit recognition or continuous speech recognition using SVMs. Finally we draw some conclusions and outline several ongoing lines of research

    Real-time robust automatic speech recognition using compact support vector machines

    Get PDF
    In the last years, support vector machines (SVMs) have shown excellent performance in many applications, especially in the presence of noise. In particular, SVMs offer several advantages over artificial neural networks (ANNs) that have attracted the attention of the speech processing community. Nevertheless, their high computational requirements prevent them from being used in practice in automatic speech recognition (ASR), where ANNs have proven to be successful. The high complexity of SVMs in this context arises from the use of huge speech training databases with millions of samples and highly overlapped classes. This paper suggests the use of a weighted least squares (WLS) training procedure that facilitates the possibility of imposing a compact semiparametric model on the SVM, which results in a dramatic complexity reduction. Such a complexity reduction with respect to conventional SVMs, which is between two and three orders of magnitude, allows the proposed hybrid WLS-SVC/HMM system to perform real-time speech decoding on a connected-digit recognition task (SpeechDat Spanish database). The experimental evaluation of the proposed system shows encouraging performance levels in clean and noisy conditions, although further improvements are required to reach the maturity level of current context-dependent HMM based recognizers.Spanish Ministry of Science and Innovation TEC 2008-06382 and TEC 2008-02473 and Comunidad Autónoma de Madrid-UC3M CCG10-UC3M/TIC-5304.Publicad

    Speech and neural network dynamics

    Get PDF

    Standard Yorùbá context dependent tone identification using Multi-Class Support Vector Machine (MSVM)

    Get PDF
    Most state-of-the-art large vocabulary continuous speech recognition systems employ context dependent (CD) phone units, however, the CD phone units are not efficient in capturing long-term spectral dependencies of tone in most tone languages. The Standard Yorùbá (SY) is a language composed of syllable with tones and requires different method for the acoustic modeling. In this paper, a context dependent tone acoustic model was developed. Tone unit is assumed as syllables, amplitude magnified difference function (AMDF) was used to derive the utterance wide F contour, followed by automatic syllabification and tri-syllable forced alignment with speech phonetization alignment and syllabification SPPAS tool. For classification of the context dependent (CD) tone, slope and intercept of F values were extracted from each segmented unit. Supervised clustering scheme was utilized to partition CD tri-tone based on category and normalized based on some statistics to derive the acoustic feature vectors. Multi-class support vector machine (MSVM) was used for tri-tone training. From the experimental results, it was observed that the word recognition accuracy obtained from the MSVM tri-tone system based on dynamic programming tone embedded features was comparable with phone features. A best parameter tuning was obtained for 10-fold cross validation and overall accuracy was 97.5678%. In term of word error rate (WER), the MSVM CD tri-tone system outperforms the hidden Markov model tri-phone system with WER of 44.47%.Keywords: Syllabification, Standard Yorùbá, Context Dependent Tone, Tri-tone Recognitio

    Deep Learning For Sequential Pattern Recognition

    Get PDF
    Projecte realitzat en el marc d’un programa de mobilitat amb la Technische Universität München (TUM)In recent years, deep learning has opened a new research line in pattern recognition tasks. It has been hypothesized that this kind of learning would capture more abstract patterns concealed in data. It is motivated by the new findings both in biological aspects of the brain and hardware developments which have made the parallel processing possible. Deep learning methods come along with the conventional algorithms for optimization and training make them efficient for variety of applications in signal processing and pattern recognition. This thesis explores these novel techniques and their related algorithms. It addresses and compares different attributes of these methods, sketches in their possible advantages and disadvantages
    • …
    corecore