112 research outputs found

    Strong converse for the classical capacity of entanglement-breaking and Hadamard channels via a sandwiched Renyi relative entropy

    Get PDF
    A strong converse theorem for the classical capacity of a quantum channel states that the probability of correctly decoding a classical message converges exponentially fast to zero in the limit of many channel uses if the rate of communication exceeds the classical capacity of the channel. Along with a corresponding achievability statement for rates below the capacity, such a strong converse theorem enhances our understanding of the capacity as a very sharp dividing line between achievable and unachievable rates of communication. Here, we show that such a strong converse theorem holds for the classical capacity of all entanglement-breaking channels and all Hadamard channels (the complementary channels of the former). These results follow by bounding the success probability in terms of a "sandwiched" Renyi relative entropy, by showing that this quantity is subadditive for all entanglement-breaking and Hadamard channels, and by relating this quantity to the Holevo capacity. Prior results regarding strong converse theorems for particular covariant channels emerge as a special case of our results.Comment: 33 pages; v4: minor changes throughout, accepted for publication in Communications in Mathematical Physic

    Short proofs of the Quantum Substate Theorem

    Full text link
    The Quantum Substate Theorem due to Jain, Radhakrishnan, and Sen (2002) gives us a powerful operational interpretation of relative entropy, in fact, of the observational divergence of two quantum states, a quantity that is related to their relative entropy. Informally, the theorem states that if the observational divergence between two quantum states rho, sigma is small, then there is a quantum state rho' close to rho in trace distance, such that rho' when scaled down by a small factor becomes a substate of sigma. We present new proofs of this theorem. The resulting statement is optimal up to a constant factor in its dependence on observational divergence. In addition, the proofs are both conceptually simpler and significantly shorter than the earlier proof.Comment: 11 pages. Rewritten; included new references; presented the results in terms of smooth relative min-entropy; stronger results; included converse and proof using SDP dualit

    Strong converse exponents for the feedback-assisted classical capacity of entanglement-breaking channels

    Get PDF
    Quantum entanglement can be used in a communication scheme to establish a correlation between successive channel inputs that is impossible by classical means. It is known that the classical capacity of quantum channels can be enhanced by such entangled encoding schemes, but this is not always the case. In this paper, we prove that a strong converse theorem holds for the classical capacity of an entanglement-breaking channel even when it is assisted by a classical feedback link from the receiver to the transmitter. In doing so, we identify a bound on the strong converse exponent, which determines the exponentially decaying rate at which the success probability tends to zero, for a sequence of codes with communication rate exceeding capacity. Proving a strong converse, along with an achievability theorem, shows that the classical capacity is a sharp boundary between reliable and unreliable communication regimes. One of the main tools in our proof is the sandwiched Renyi relative entropy. The same method of proof is used to derive an exponential bound on the success probability when communicating over an arbitrary quantum channel assisted by classical feedback, provided that the transmitter does not use entangled encoding schemes.Comment: 24 pages, 2 figures, v4: final version accepted for publication in Problems of Information Transmissio

    Trading quantum for classical resources in quantum data compression

    Get PDF
    We study the visible compression of a source E of pure quantum signal states, or, more formally, the minimal resources per signal required to represent arbitrarily long strings of signals with arbitrarily high fidelity, when the compressor is given the identity of the input state sequence as classical information. According to the quantum source coding theorem, the optimal quantum rate is the von Neumann entropy S(E) qubits per signal. We develop a refinement of this theorem in order to analyze the situation in which the states are coded into classical and quantum bits that are quantified separately. This leads to a trade--off curve Q(R), where Q(R) qubits per signal is the optimal quantum rate for a given classical rate of R bits per signal. Our main result is an explicit characterization of this trade--off function by a simple formula in terms of only single signal, perfect fidelity encodings of the source. We give a thorough discussion of many further mathematical properties of our formula, including an analysis of its behavior for group covariant sources and a generalization to sources with continuously parameterized states. We also show that our result leads to a number of corollaries characterizing the trade--off between information gain and state disturbance for quantum sources. In addition, we indicate how our techniques also provide a solution to the so--called remote state preparation problem. Finally, we develop a probability--free version of our main result which may be interpreted as an answer to the question: ``How many classical bits does a qubit cost?'' This theorem provides a type of dual to Holevo's theorem, insofar as the latter characterizes the cost of coding classical bits into qubits.Comment: 51 pages, 7 figure

    A classical interpretation of the Scrooge distribution

    Full text link
    The Scrooge distribution is a probability distribution over the set of pure states of a quantum system. Specifically, it is the distribution that, upon measurement, gives up the least information about the identity of the pure state, compared with all other distributions having the same density matrix. The Scrooge distribution has normally been regarded as a purely quantum mechanical concept, with no natural classical interpretation. In this paper we offer a classical interpretation of the Scrooge distribution viewed as a probability distribution over the probability simplex. We begin by considering a real-amplitude version of the Scrooge distribution, for which we find that there is a non-trivial but natural classical interpretation. The transition to the complex-amplitude case requires a step that is not particularly natural but that may shed light on the relation between quantum mechanics and classical probability theory.Comment: 17 pages; for a special issue of Entropy: Quantum Communication--Celebrating the Silver Jubilee of Teleportatio

    General formulas for capacity of classical-quantum channels

    Get PDF
    The capacity of a classical-quantum channel (or in other words the classical capacity of a quantum channel) is considered in the most general setting, where no structural assumptions such as the stationary memoryless property are made on a channel. A capacity formula as well as a characterization of the strong converse property is given just in parallel with the corresponding classical results of Verd\'{u}-Han which are based on the so-called information-spectrum method. The general results are applied to the stationary memoryless case with or without cost constraint on inputs, whereby a deep relation between the channel coding theory and the hypothesis testing for two quantum states is elucidated. no structural assumptions such as the stationary memoryless property are made on a channel. A capacity formula as well as a characterization of the strong converse property is given just in parallel with the corresponding classical results of Verdu-Han which are based on the so-called information-spectrum method. The general results are applied to the stationary memoryless case with or without cost constraint on inputs, whereby a deep relation between the channel coding theory and the hypothesis testing for two quantum states is elucidated
    corecore