28,190 research outputs found

    VISSIM Calibration for Urban Freeways, 2015

    Get PDF
    In urban areas, interchange spacing and the adequacy of design for weaving, merge, and diverge areas can significantly influence available capacity. Traffic microsimulation tools allow detailed analyses of these critical areas in complex locations that often yield results that differ from the generalized approach of the Highway Capacity Manual. In order to obtain valid results, various inputs should be calibrated to local conditions. This project investigated basic calibration factors for the simulation of traffic conditions within an urban freeway merge/diverge environment. By collecting and analyzing urban freeway traffic data from multiple sources, specific Iowa-based calibration factors for use in VISSIM were developed. In particular, a repeatable methodology for collecting standstill distance and headway/time gap data on urban freeways was applied to locations throughout the state of Iowa. This collection process relies on the manual processing of video for standstill distances and individual vehicle data from radar detectors to measure the headways/time gaps. By comparing the data collected from different locations, it was found that standstill distances vary by location and lead-follow vehicle types. Headways and time gaps were found to be consistent within the same driver population and across different driver populations when the conditions were similar. Both standstill distance and headway/time gap were found to follow fairly dispersed and skewed distributions. Therefore, it is recommended that microsimulation models be modified to include the option for standstill distance and headway/time gap to follow distributions as well as be set separately for different vehicle classes. In addition, for the driving behavior parameters that cannot be easily collected, a sensitivity analysis was conducted to examine the impact of these parameters on the capacity of the facility. The sensitivity analysis results can be used as a reference to manually adjust parameters to match the simulation results to the observed traffic conditions. A well-calibrated microsimulation model can enable a higher level of fidelity in modeling traffic behavior and serve to improve decision making in balancing need with investment

    VISSIM Calibration for Urban Freeways

    Get PDF
    In urban areas, interchange spacing and the adequacy of design for weaving, merge, and diverge areas can significantly influence available capacity. Traffic microsimulation tools allow detailed analyses of these critical areas in complex locations that often yield results that differ from the generalized approach of the Highway Capacity Manual. In order to obtain valid results, various inputs should be calibrated to local conditions. This project investigated basic calibration factors for the simulation of traffic conditions within an urban freeway merge/diverge environment. By collecting and analyzing urban freeway traffic data from multiple sources, specific Iowa-based calibration factors for use in VISSIM were developed. In particular, a repeatable methodology for collecting standstill distance and headway/time gap data on urban freeways was applied to locations throughout the state of Iowa. This collection process relies on the manual processing of video for standstill distances and individual vehicle data from radar detectors to measure the headways/time gaps. By comparing the data collected from different locations, it was found that standstill distances vary by location and lead-follow vehicle types. Headways and time gaps were found to be consistent within the same driver population and across different driver populations when the conditions were similar. Both standstill distance and headway/time gap were found to follow fairly dispersed and skewed distributions. Therefore, it is recommended that microsimulation models be modified to include the option for standstill distance and headway/time gap to follow distributions as well as be set separately for different vehicle classes. In addition, for the driving behavior parameters that cannot be easily collected, a sensitivity analysis was conducted to examine the impact of these parameters on the capacity of the facility. The sensitivity analysis results can be used as a reference to manually adjust parameters to match the simulation results to the observed traffic conditions. A well-calibrated microsimulation model can enable a higher level of fidelity in modeling traffic behavior and serve to improve decision making in balancing need with investment

    Issues and concerns of microscopic calibration process at different network levels : case study of Pacific Motorway

    Get PDF
    Calibration process in micro-simulation is an extremely complicated phenomenon. The difficulties are more prevalent if the process encompasses fitting aggregate and disaggregate parameters e.g. travel time and headway. The current practice in calibration is more at aggregate level, for example travel time comparison. Such practices are popular to assess network performance. Though these applications are significant there is another stream of micro-simulated calibration, at disaggregate level. This study will focus on such microcalibration exercise-key to better comprehend motorway traffic risk level, management of variable speed limit (VSL) and ramp metering (RM) techniques. Selected section of Pacific Motorway in Brisbane will be used as a case study. The discussion will primarily incorporate the critical issues encountered during parameter adjustment exercise (e.g. vehicular, driving behaviour) with reference to key traffic performance indicators like speed, lane distribution and headway; at specific motorway points. The endeavour is to highlight the utility and implications of such disaggregate level simulation for improved traffic prediction studies. The aspects of calibrating for points in comparison to that for whole of the network will also be briefly addressed to examine the critical issues such as the suitability of local calibration at global scale. The paper will be of interest to transport professionals in Australia/New Zealand where micro-simulation in particular at point level, is still comparatively a less explored territory in motorway management

    Modeling Safety Performance at Grade Crossing using Microscopic Simulation

    Get PDF
    The analysis of grade crossing safety has long focused on vehicle-train crashes using statistical models based on crash data. The potential crashes generated by vehicle-vehicle rear-end conflicts have often been ignored. The interaction of different traffic attributes on safety performance of a grade crossing is also not well-understood. The primary objective of this thesis is to model the causal relationship of vehicle-vehicle interactions by developing the operation logic of gate-equipped grade crossing using a commercially available microscopic simulation package that models human driver behaviors. The simulation-generated vehicle trajectory data allows detail safety performance analysis on vehicle-vehicle interaction over time as they approach the track. A dual-gate equipped crossing at Kitchener, Ontario is selected as the study area. Initially, logic modifications are made to the simulation package (VISSIM) in order to accurately model the grade crossing segment. A two-step calibration is used in this thesis. Firstly, model input parameters for a signalized intersection from literature are used to model typical car-following behavior along this type of roadway. Secondly, parameters used to model drivers’ decision and reaction when approaching crossing is fine tuned through data collection and calibration. After incorporating all the modifications to the simulation package, validation is undertaken by comparing model-generated speed profiles to on-site observed speed profile. The established model is tested for its safety performance sensitivity through varying three traffic attributes in the simulation: (i) percentage of bus, (ii) total traffic volume, (iii) percentage of cars in the center lane of a 2-lane approach. Four safety performance measures were selected. The overall results indicate that the established model is functional and reliable in modeling grade crossing vehicles interactions at gated crossings. In the absence of a train, vehicles’ reduction in speed in the vicinity of a crossing results in traffic flow turbulence that increases the opportunity for high risk rear-end vehicle interactions. The sensitivity test revealed that the spillback behavior of vehicles due to the stopping behaviors of buses increases risk in the upstream section. Also, overloading of vehicles into the network indeed improves safety as the effect of differential speed diminishes. Among the four selected safety performance measures, DRAC seems to reflect problems with rear-end vehicle interactions in the vicinity of a crossing as a function of the traffic attributes considered in this research

    From individual behaviour to an evaluation of the collective evolution of crowds along footbridges

    Full text link
    This paper proposes a crowd dynamic macroscopic model grounded on microscopic phenomenological observations which are upscaled by means of a formal mathematical procedure. The actual applicability of the model to real world problems is tested by considering the pedestrian traffic along footbridges, of interest for Structural and Transportation Engineering. The genuinely macroscopic quantitative description of the crowd flow directly matches the engineering need of bulk results. However, three issues beyond the sole modelling are of primary importance: the pedestrian inflow conditions, the numerical approximation of the equations for non trivial footbridge geometries, and the calibration of the free parameters of the model on the basis of in situ measurements currently available. These issues are discussed and a solution strategy is proposed.Comment: 23 pages, 10 figures in J. Engrg. Math., 201

    Agile Calibration Process of Full-Stack Simulation Frameworks for V2X Communications

    Get PDF
    Computer simulations and real-world car trials are essential to investigate the performance of Vehicle-to-Everything (V2X) networks. However, simulations are imperfect models of the physical reality and can be trusted only when they indicate agreement with the real-world. On the other hand, trials lack reproducibility and are subject to uncertainties and errors. In this paper, we will illustrate a case study where the interrelationship between trials, simulation, and the reality-of-interest is presented. Results are then compared in a holistic fashion. Our study will describe the procedure followed to macroscopically calibrate a full-stack network simulator to conduct high-fidelity full-stack computer simulations.Comment: To appear in IEEE VNC 2017, Torino, I

    Simulating the Impact of Traffic Calming Strategies

    Get PDF
    This study assessed the impact of traffic calming measures to the speed, travel times and capacity of residential roadways. The study focused on two types of speed tables, speed humps and a raised crosswalk. A moving test vehicle equipped with GPS receivers that allowed calculation of speeds and determination of speed profiles at 1s intervals were used. Multi-regime model was used to provide the best fit using steady state equations; hence the corresponding speed-flow relationships were established for different calming scenarios. It was found that capacities of residential roadway segments due to presence of calming features ranged from 640 to 730 vph. However, the capacity varied with the spacing of the calming features in which spacing speed tables at 1050 ft apart caused a 23% reduction in capacity while 350-ft spacing reduced capacity by 32%. Analysis showed a linear decrease of capacity of approximately 20 vphpl, 37 vphpl and 34 vphpl when 17 ft wide speed tables were spaced at 350 ft, 700 ft, and 1050 ft apart respectively. For speed hump calming features, spacing humps at 350 ft reduced capacity by about 33% while a 700 ft spacing reduced capacity by 30%. The study concludes that speed tables are slightly better than speed humps in terms of preserving the roadway capacity. Also, traffic calming measures significantly reduce the speeds of vehicles, and it is best to keep spacing of 630 ft or less to achieve desirable crossing speeds of less or equal to 15 mph especially in a street with schools nearby. A microscopic simulation model was developed to replicate the driving behavior of traffic on urban road diets roads to analyze the influence of bus stops on traffic flow and safety. The impacts of safety were assessed using surrogate measures of safety (SSAM). The study found that presence of a bus stops for 10, 20 and 30 s dwell times have almost 9.5%, 12%, and 20% effect on traffic speed reductions when 300 veh/hr flow is considered. A comparison of reduction in speed of traffic on an 11 ft wide road lane of a road diet due to curbside stops and bus bays for a mean of 30s with a standard deviation of 5s dwell time case was conducted. Results showed that a bus stop bay with the stated bus dwell time causes an approximate 8% speed reduction to traffic at a flow level of about 1400 vph. Analysis of the trajectories from bust stop locations showed that at 0, 25, 50, 75, 100, 125, 150, and 175 feet from the intersection the number of conflicts is affected by the presence and location of a curbside stop on a segment with a road diet
    • …
    corecore