24 research outputs found

    A Semidefinite Hierarchy for Containment of Spectrahedra

    Full text link
    A spectrahedron is the positivity region of a linear matrix pencil and thus the feasible set of a semidefinite program. We propose and study a hierarchy of sufficient semidefinite conditions to certify the containment of a spectrahedron in another one. This approach comes from applying a moment relaxation to a suitable polynomial optimization formulation. The hierarchical criterion is stronger than a solitary semidefinite criterion discussed earlier by Helton, Klep, and McCullough as well as by the authors. Moreover, several exactness results for the solitary criterion can be brought forward to the hierarchical approach. The hierarchy also applies to the (equivalent) question of checking whether a map between matrix (sub-)spaces is positive. In this context, the solitary criterion checks whether the map is completely positive, and thus our results provide a hierarchy between positivity and complete positivity.Comment: 24 pages, 2 figures; minor corrections; to appear in SIAM J. Opti

    Quantum Information Theory and Free Semialgebraic Geometry: One Wonderland Through Two Looking Glasses

    Full text link
    We illustrate how quantum information theory and free (i.e. noncommutative) semialgebraic geometry often study similar objects from different perspectives. We give examples in the context of positivity and separability, quantum magic squares, quantum correlations in non-local games, and positivity in tensor networks, and we show the benefits of combining the two perspectives. This paper is an invitation to consider the intersection of the two fields, and should be accessible for researchers from either field.Comment: This overview article will appear in 'Internationale Mathematische Nachrichten' (IMN), the Journal of the Austrian Mathematical Societ

    Deciding Robust Feasibility and Infeasibility Using a Set Containment Approach: An Application to Stationary Passive Gas Network Operations

    Full text link
    In this paper we study feasibility and infeasibility of nonlinear two-stage fully adjustable robust feasibility problems with an empty first stage. This is equivalent to deciding whether the uncertainty set is contained within the projection of the feasible region onto the uncertainty-space. Moreover, the considered sets are assumed to be described by polynomials. For answering this question, two very general approaches using methods from polynomial optimization are presented - one for showing feasibility and one for showing infeasibility. The developed methods are approximated through sum of squares polynomials and solved using semidefinite programs. Deciding robust feasibility and infeasibility is important for gas network operations, which is a nonconvex feasibility problem where the feasible set is described by a composition of polynomials with the absolute value function. Concerning the gas network problem, different topologies are considered. It is shown that a tree structured network can be decided exactly using linear programming. Furthermore, a method is presented to reduce a tree network with one additional arc to a single cycle network. In this case, the problem can be decided by eliminating the absolute value functions and solving the resulting linearly many polynomial optimization problems. Lastly, the effectivity of the methods is tested on a variety of small cyclic networks. It turns out that for instances where robust feasibility or infeasibility can be decided successfully, level 2 or level 3 of the Lasserre relaxation hierarchy typically is sufficient
    corecore