8 research outputs found

    A semi-hidden Markov modeling of a low complexity FSK-OOK in-House PLC and VLC integration

    Get PDF
    Abstract: The integration of power line communication (PLC) and visible light communication (VLC) is increasingly receiving a lot of research interest with the advent of (IEEE 1901, ITUT G.9960/61) and IEEE 802.15.7 standards for PLC and VLC respectively. In particular, there is an underlying gain that could be achieved by leveraging the existing ubiquitous power line network infrastructure to render connectivity, while we also exploit the illumination system of power-saving Light Emitting Diodes (LEDs) for wireless data communication. The ubiquitous nature of these two systems makes us belief that VLC can offer a good complementary wireless data transmission technology to the existing In-House PLC in a similar manner broad-band Ethernet connections enjoys the support of Wi-Fi. This paper thus reports an implementation of a low complexity FSK-OOK In-House PLC and VLC Integration, as well as itā€™s Second-Order Semi-Markov Model. The resulting statistical models facilitates the design and evaluation of forward error correcting codes to mitigate burst error occurrences, as well as optimizing the performance of the overall system

    Inter-building PLC-VLC integration based on PSK and CSK techniques

    Get PDF
    Abstract: This paper presents the implementation of an integration technique used to combine power line commu- nications (PLC) and visible light communications (VLC) channels in inter-building scenarios. It considers the narrow band PLC (NBPLC). Phase-shift keying (PSK) is used to convey the information over the PLC link and colour shift keying (CSK) technique is used on the VLC link. The colour wheel method is exploited to map PSK symbols to colours.We define a parameter x, which represents different magnitudes of the PSK complex symbol observed over the PLC channel. x is adjusted to an optimal value to meet the requirement of the CSK design. The bit error rate (BER) is analysed and the performance of the system is presented for multiple values of the modulus of the detected PSK symbol. A practical implementation is performed to verify the PSK-CSK mapping method. The impact of the sunā€™s rays on the red-green-blue (RGB) symbols is analysed and the interference source is highlighted

    PSK to CSK mapping for hybrid systems involving the radio frequency and the visible spectrum

    Get PDF
    Abstract: This paper presents an efficient technique to map phase shift keying (PSK) signalling to colour shift keying (CSK) constellation, to establish a full link in hybrid systems involving the radio frequency (RF) and the visible spectrum. It fits in systems combining (first link) wireless communication technologies such as the wireless fidelity (WiFi) or wired communication technologies such as power line communications (PLC) to visible light communications (VLC) technology (second link). On the first link, PSK technique is used to convey the information, while, on the second link, a technique based on colour variation is deployed. WiFi standards targeted are those that employ PSK as sub-carrier modulation techniques (IEEE 802.11a/11g/11n). The PSK complex constellation observed at the output of the first link is converted into colours using the hue-saturationvalue/ intensity (HSV/I) colour models. The constant lighting required in VLC corresponds with the coordinate I of the HSI and the colour constraint is met by assigning adequate current intensities to the red-green-blue LEDs (RGB-LEDs) used. The design meets the requirements of CSK constellation design outlined in IEEE 802.15.7. The performance of the system is analysed through bit error rate curves obtained by simulations, for binary PSK (BPSK) and quadrature PSK (QPSK), 8PSK and 16PSK constellations. The results show that as the constellatio

    Classification and modeling of power line noise using machine learning techniques

    Get PDF
    A thesis submitted in ful lment of the requirements for the degree of Doctor of Philosophy in the School of Electrical and Information Engineering Faculty of Engineering and Built Environment June 2017The realization of robust, reliable and e cient data transmission have been the theme of recent research, most importantly in real channel such as the noisy, fading prone power line communication (PLC) channel. The focus is to exploit old techniques or create new techniques capable of improving the transmission reliability and also increasing the transmission capacity of the real communication channels. Multi-carrier modulation scheme such as Orthogonal Frequency Division Multiplexing (OFDM) utilizing conventional single-carrier modulation is developed to facilitate a robust data transmission, increasing transmission capacity (e cient bandwidth usage) and further reducing design complexity in PLC systems. On the contrary, the reliability of data transmission is subjected to several inhibiting factors as a result of the varying nature of the PLC channel. These inhibiting factors include noise, perturbation and disturbances. Contrary to the Additive White Gaussian noise (AWGN) model often assumed in several communication systems, this noise model fails to capture the attributes of noise encountered on the PLC channel. This is because periodic noise or random noise pulses injected by power electronic appliances on the network is a deviation from the AWGN. The nature of the noise is categorized as non-white non-Gaussian and unstable due to its impulsive attributes, thus, it is labeled as Non-additive White Gaussian Noise (NAWGN). These noise and disturbances results into long burst errors that corrupts signals being transmitted, thus, the PLC is labeled as a horrible or burst error channel. The e cient and optimal performance of a conventional linear receiver in the white Gaussian noise environment can therefore be made to drastically degrade in this NAWGN environment. Therefore, transmission reliability in such environment can be greatly enhanced if we know and exploit the knowledge of the channel's statistical attributes, thus, the need for developing statistical channel model based on empirical data. In this thesis, attention is focused on developing a recon gurable software de ned un-coded single-carrier and multicarrier PLC transceiver as a tool for realizing an optimized channel model for the narrowband PLC (NB-PLC) channel. First, a novel recon gurable software de ned un-coded single-carrier and multi-carrier PLC transceiver is developed for real-time NB-PLC transmission. The transceivers can be adapted to implement di erent waveforms for several real-time scenarios and performance evaluation. Due to the varying noise parameters obtained from country to country as a result of the dependence of noise impairment on mains voltages, topology of power line, place and time, the developed transceivers is capable of facilitating constant measurement campaigns to capture these varying noise parameters before statistical and mathematically inclined channel models are derived. Furthermore, the single-carrier (Binary Phase Shift Keying (BPSK), Di erential BPSK (DBPSK), Quadrature Phase Shift Keying (QPSK) and Di erential QPSK (DQPSK)) PLC transceiver system developed is used to facilitate a First-Order semi-hidden Fritchman Markov modeling (SHFMM) of the NB-PLC channel utilizing the e cient iterative Baum- Welch algorithm (BWA) for parameter estimation. The performance of each modulation scheme is evaluated in a mildly and heavily disturbed scenarios for both residential and laboratory site considered. The First-Order estimated error statistics of the realized First- Order SHFMM have been analytically validated in terms of performance metrics such as: log-likelihood ratio (LLR), error-free run distribution (EFRD), error probabilities, mean square error (MSE) and Chi-square ( 2) test. The reliability of the model results is also con rmed by an excellent match between the empirically obtained error sequence and the SHFMM regenerated error sequence as shown by the error-free run distribution plot. This thesis also reports a novel development of a low cost, low complexity Frequency-shift keying (FSK) - On-o keying (OOK) in-house hybrid PLC and VLC system. The functionality of this hybrid PLC-VLC transceiver system was ascertained at both residential and laboratory site at three di erent times of the day: morning, afternoon and evening. A First and Second-Order SHFMM of the hybrid system is realized. The error statistics of the realized First and Second-Order SHFMMs have been analytically validated in terms of LLR, EFRD, error probabilities, MSE and Chi-square ( 2). The Second-Order SHFMMs have also been analytically validated to be superior to the First-Order SHFMMs although at the expense of added computational complexity. The reliability of both First and Second-Order SHFMM results is con rmed by an excellent match between the empirical error sequences and SHFMM re-generated error sequences as shown by the EFRD plot. In addition, the multi-carrier (QPSK-OFDM, Di erential QPSK (DQPSK)-OFDM) and Di erential 8-PSK (D8PSK)-OFDM) PLC transceiver system developed is used to facilitate a First and Second-Order modeling of the NB-PLC system using the SHFMM and BWA for parameter estimation. The performance of each OFDM modulation scheme in evaluated and compared taking into consideration the mildly and heavily disturbed noise scenarios for the two measurement sites considered. The estimated error statistics of the realized SHFMMs have been analytically validated in terms of LLR, EFRD, error probabilities, MSE and Chi-square ( 2) test. The estimated Second-Order SHFMMs have been analytically validated to be outperform the First-Order SHFMMs although with added computational complexity. The reliability of the models is con rmed by an excellent match between the empirical data and SHFMM generated data as shown by the EFRD plot. The statistical models obtained using Baum-Welch to adjust the parameters of the adopted SHFMM are often locally maximized. To solve this problem, a novel Metropolis-Hastings algorithm, a Bayesian inference approach based on Markov Chain Monte Carlo (MCMC) is developed to optimize the parameters of the adopted SHFMM. The algorithm is used to optimize the model results obtained from the single-carrier and multi-carrier PLC systems as well as that of the hybrid PLC-VLC system. Consequently, as deduced from the results, the models obtained utilizing the novel Metropolis-Hastings algorithm are more precise, near optimal model with parameter sets that are closer to the global maxima. Generally, the model results obtained in this thesis are relevant in enhancing transmission reliability on the PLC channel through the use of the models to improve the adopted modulation schemes, create adaptive modulation techniques, develop and evaluate forward error correction (FEC) codes such as a concatenation of Reed-Solomon and Permutation codes and other robust codes suitable for exploiting and mitigating noise impairments encountered on the low voltage NB-PLC channel. Furthermore, the recon gurable software de ned NB-PLC transceiver test-bed developed can be utilized for future measurement campaign as well as adapted for multiple-input and multiple-output (MIMO) PLC applications.MT201

    Classification and modeling of power line noise using machine learning techniques

    Get PDF
    A thesis submitted in ful lment of the requirements for the degree of Doctor of Philosophy in the School of Electrical and Information Engineering Faculty of Engineering and Built Environment June 2017The realization of robust, reliable and e cient data transmission have been the theme of recent research, most importantly in real channel such as the noisy, fading prone power line communication (PLC) channel. The focus is to exploit old techniques or create new techniques capable of improving the transmission reliability and also increasing the transmission capacity of the real communication channels. Multi-carrier modulation scheme such as Orthogonal Frequency Division Multiplexing (OFDM) utilizing conventional single-carrier modulation is developed to facilitate a robust data transmission, increasing transmission capacity (e cient bandwidth usage) and further reducing design complexity in PLC systems. On the contrary, the reliability of data transmission is subjected to several inhibiting factors as a result of the varying nature of the PLC channel. These inhibiting factors include noise, perturbation and disturbances. Contrary to the Additive White Gaussian noise (AWGN) model often assumed in several communication systems, this noise model fails to capture the attributes of noise encountered on the PLC channel. This is because periodic noise or random noise pulses injected by power electronic appliances on the network is a deviation from the AWGN. The nature of the noise is categorized as non-white non-Gaussian and unstable due to its impulsive attributes, thus, it is labeled as Non-additive White Gaussian Noise (NAWGN). These noise and disturbances results into long burst errors that corrupts signals being transmitted, thus, the PLC is labeled as a horrible or burst error channel. The e cient and optimal performance of a conventional linear receiver in the white Gaussian noise environment can therefore be made to drastically degrade in this NAWGN environment. Therefore, transmission reliability in such environment can be greatly enhanced if we know and exploit the knowledge of the channel's statistical attributes, thus, the need for developing statistical channel model based on empirical data. In this thesis, attention is focused on developing a recon gurable software de ned un-coded single-carrier and multicarrier PLC transceiver as a tool for realizing an optimized channel model for the narrowband PLC (NB-PLC) channel. First, a novel recon gurable software de ned un-coded single-carrier and multi-carrier PLC transceiver is developed for real-time NB-PLC transmission. The transceivers can be adapted to implement di erent waveforms for several real-time scenarios and performance evaluation. Due to the varying noise parameters obtained from country to country as a result of the dependence of noise impairment on mains voltages, topology of power line, place and time, the developed transceivers is capable of facilitating constant measurement campaigns to capture these varying noise parameters before statistical and mathematically inclined channel models are derived. Furthermore, the single-carrier (Binary Phase Shift Keying (BPSK), Di erential BPSK (DBPSK), Quadrature Phase Shift Keying (QPSK) and Di erential QPSK (DQPSK)) PLC transceiver system developed is used to facilitate a First-Order semi-hidden Fritchman Markov modeling (SHFMM) of the NB-PLC channel utilizing the e cient iterative Baum- Welch algorithm (BWA) for parameter estimation. The performance of each modulation scheme is evaluated in a mildly and heavily disturbed scenarios for both residential and laboratory site considered. The First-Order estimated error statistics of the realized First- Order SHFMM have been analytically validated in terms of performance metrics such as: log-likelihood ratio (LLR), error-free run distribution (EFRD), error probabilities, mean square error (MSE) and Chi-square ( 2) test. The reliability of the model results is also con rmed by an excellent match between the empirically obtained error sequence and the SHFMM regenerated error sequence as shown by the error-free run distribution plot. This thesis also reports a novel development of a low cost, low complexity Frequency-shift keying (FSK) - On-o keying (OOK) in-house hybrid PLC and VLC system. The functionality of this hybrid PLC-VLC transceiver system was ascertained at both residential and laboratory site at three di erent times of the day: morning, afternoon and evening. A First and Second-Order SHFMM of the hybrid system is realized. The error statistics of the realized First and Second-Order SHFMMs have been analytically validated in terms of LLR, EFRD, error probabilities, MSE and Chi-square ( 2). The Second-Order SHFMMs have also been analytically validated to be superior to the First-Order SHFMMs although at the expense of added computational complexity. The reliability of both First and Second-Order SHFMM results is con rmed by an excellent match between the empirical error sequences and SHFMM re-generated error sequences as shown by the EFRD plot. In addition, the multi-carrier (QPSK-OFDM, Di erential QPSK (DQPSK)-OFDM) and Di erential 8-PSK (D8PSK)-OFDM) PLC transceiver system developed is used to facilitate a First and Second-Order modeling of the NB-PLC system using the SHFMM and BWA for parameter estimation. The performance of each OFDM modulation scheme in evaluated and compared taking into consideration the mildly and heavily disturbed noise scenarios for the two measurement sites considered. The estimated error statistics of the realized SHFMMs have been analytically validated in terms of LLR, EFRD, error probabilities, MSE and Chi-square ( 2) test. The estimated Second-Order SHFMMs have been analytically validated to be outperform the First-Order SHFMMs although with added computational complexity. The reliability of the models is con rmed by an excellent match between the empirical data and SHFMM generated data as shown by the EFRD plot. The statistical models obtained using Baum-Welch to adjust the parameters of the adopted SHFMM are often locally maximized. To solve this problem, a novel Metropolis-Hastings algorithm, a Bayesian inference approach based on Markov Chain Monte Carlo (MCMC) is developed to optimize the parameters of the adopted SHFMM. The algorithm is used to optimize the model results obtained from the single-carrier and multi-carrier PLC systems as well as that of the hybrid PLC-VLC system. Consequently, as deduced from the results, the models obtained utilizing the novel Metropolis-Hastings algorithm are more precise, near optimal model with parameter sets that are closer to the global maxima. Generally, the model results obtained in this thesis are relevant in enhancing transmission reliability on the PLC channel through the use of the models to improve the adopted modulation schemes, create adaptive modulation techniques, develop and evaluate forward error correction (FEC) codes such as a concatenation of Reed-Solomon and Permutation codes and other robust codes suitable for exploiting and mitigating noise impairments encountered on the low voltage NB-PLC channel. Furthermore, the recon gurable software de ned NB-PLC transceiver test-bed developed can be utilized for future measurement campaign as well as adapted for multiple-input and multiple-output (MIMO) PLC applications.MT201

    Semi-hidden markov models for visible light communication channels

    Get PDF
    A dissertation submitted to the Faculty of Engineering and the Built Environment, University of the Witwatersrand, Johannesburg, in fulfillment of the requirements for the degree of Master of Science in Engineering, Johannesburg 2018Visible Light Communication (VLC) is an emerging ļ¬eld in optical wireless communication that uses light emitting diodes (LEDs) for data transmission. LEDs are being widely adopted both indoors and outdoors due to their low cost, long lifespan and high eļ¬ƒciency. Furthermore, LEDs can be modulated to provide both illumination and wireless communication. There is also potential for VLC to be incorporated into future smart lighting systems. One of the current challenges in VLC is being able to deal with noise and interference; including interference from other dimmed, Pulse-Width Modulated (PWM) LEDs. Other noise includes natural light from the sun and artiļ¬cial light from other non-modulating light sources. Modelling these types of channels is one of the ļ¬rst steps in understanding the channel and eventually designing techniques for mitigating the eļ¬€ects of noise and interference. This dissertation presents a semi-hidden Markov model, known as the Fritchman model, that discretely models the eļ¬€ects of as well as errors introduced from noise and interference in on-oļ¬€ keying modulated VLC channels. Models have been developed for both the indoor and outdoor environments and can be used for VLC simulations and designing error mitigation techniques. Results show that certain channels are able to be better modelled than others. Experimental error distributions shows insights into the impact that PWM interference has on VLC channels. This can be used for assisting in the development of error control codes and interference avoidance techniques in standalone VLC systems, as well as systems where VLC and smart lighting coexist. The models developed can also be used for simulations of VLC channels under diļ¬€erent channel conditionsXL201

    Impact of modern lighting technology on the power line communications channel

    Get PDF
    Abstract: In this study, we look at the impact of modern lighting technology on Power Line Communications (PLC). Power Line Communications has become important due to the Smart Grid and Internet of Things (IoT) development. Modern lighting technology has been developed to make efficient use of electric energy. This technology uses power converters to enable the use of different lighting sources. A byproduct of this conversion process is electronic noise. This noise can interfere with the PLC channel. In this study, different lighting technologies are investigated from a noise standpoint and compared to PLC signal levels. Both narrowband and broadband PLC frequency ranges are investigated. This study shows that the influence of noise on the PLC channel depends predominantly on the conversion topology as well as whether filters have been used. The measurement results show that the influence on data communication system can vary in impact from low to severe. Results were obtained for low energy, high energy, indoor and outdoor lighting sources. A common front end topology encounted is the bridge rectifier and high frequency DC-DC converter combination. These topologies are investigated in details. The study presented here shows that lighting technology (causing interference) needs special consideration when designing PLC systems. Of particular importance is the use of filters which ensure compliance with interference standards and limit the noise effects on the PLC signal.D.Ing. (Electrical and Electronic Engineering Science
    corecore