5 research outputs found

    Statistical Active Learning Algorithms for Noise Tolerance and Differential Privacy

    Full text link
    We describe a framework for designing efficient active learning algorithms that are tolerant to random classification noise and are differentially-private. The framework is based on active learning algorithms that are statistical in the sense that they rely on estimates of expectations of functions of filtered random examples. It builds on the powerful statistical query framework of Kearns (1993). We show that any efficient active statistical learning algorithm can be automatically converted to an efficient active learning algorithm which is tolerant to random classification noise as well as other forms of "uncorrelated" noise. The complexity of the resulting algorithms has information-theoretically optimal quadratic dependence on 1/(12η)1/(1-2\eta), where η\eta is the noise rate. We show that commonly studied concept classes including thresholds, rectangles, and linear separators can be efficiently actively learned in our framework. These results combined with our generic conversion lead to the first computationally-efficient algorithms for actively learning some of these concept classes in the presence of random classification noise that provide exponential improvement in the dependence on the error ϵ\epsilon over their passive counterparts. In addition, we show that our algorithms can be automatically converted to efficient active differentially-private algorithms. This leads to the first differentially-private active learning algorithms with exponential label savings over the passive case.Comment: Extended abstract appears in NIPS 201

    Protecting sensitive data using differential privacy and role-based access control

    Get PDF
    Dans le monde d'aujourd'hui où la plupart des aspects de la vie moderne sont traités par des systèmes informatiques, la vie privée est de plus en plus une grande préoccupation. En outre, les données ont été générées massivement et traitées en particulier dans les deux dernières années, ce qui motive les personnes et les organisations à externaliser leurs données massives à des environnements infonuagiques offerts par des fournisseurs de services. Ces environnements peuvent accomplir les tâches pour le stockage et l'analyse de données massives, car ils reposent principalement sur Hadoop MapReduce qui est conçu pour traiter efficacement des données massives en parallèle. Bien que l'externalisation de données massives dans le nuage facilite le traitement de données et réduit le coût de la maintenance et du stockage de données locales, elle soulève de nouveaux problèmes concernant la protection de la vie privée. Donc, comment on peut effectuer des calculs sur de données massives et sensibles tout en préservant la vie privée. Par conséquent, la construction de systèmes sécurisés pour la manipulation et le traitement de telles données privées et massives est cruciale. Nous avons besoin de mécanismes pour protéger les données privées, même lorsque le calcul en cours d'exécution est non sécurisé. Il y a eu plusieurs recherches ont porté sur la recherche de solutions aux problèmes de confidentialité et de sécurité lors de l'analyse de données dans les environnements infonuagique. Dans cette thèse, nous étudions quelques travaux existants pour protéger la vie privée de tout individu dans un ensemble de données, en particulier la notion de vie privée connue comme confidentialité différentielle. Confidentialité différentielle a été proposée afin de mieux protéger la vie privée du forage des données sensibles, assurant que le résultat global publié ne révèle rien sur la présence ou l'absence d'un individu donné. Enfin, nous proposons une idée de combiner confidentialité différentielle avec une autre méthode de préservation de la vie privée disponible.In nowadays world where most aspects of modern life are handled and managed by computer systems, privacy has increasingly become a big concern. In addition, data has been massively generated and processed especially over the last two years. The rate at which data is generated on one hand, and the need to efficiently store and analyze it on the other hand, lead people and organizations to outsource their massive amounts of data (namely Big Data) to cloud environments supported by cloud service providers (CSPs). Such environments can perfectly undertake the tasks for storing and analyzing big data since they mainly rely on Hadoop MapReduce framework, which is designed to efficiently handle big data in parallel. Although outsourcing big data into the cloud facilitates data processing and reduces the maintenance cost of local data storage, it raises new problem concerning privacy protection. The question is how one can perform computations on sensitive and big data while still preserving privacy. Therefore, building secure systems for handling and processing such private massive data is crucial. We need mechanisms to protect private data even when the running computation is untrusted. There have been several researches and work focused on finding solutions to the privacy and security issues for data analytics on cloud environments. In this dissertation, we study some existing work to protect the privacy of any individual in a data set, specifically a notion of privacy known as differential privacy. Differential privacy has been proposed to better protect the privacy of data mining over sensitive data, ensuring that the released aggregate result gives almost nothing about whether or not any given individual has been contributed to the data set. Finally, we propose an idea of combining differential privacy with another available privacy preserving method

    Decision trees and forests: a probabilistic perspective

    Get PDF
    Decision trees and ensembles of decision trees are very popular in machine learning and often achieve state-of-the-art performance on black-box prediction tasks. However, popular variants such as C4.5, CART, boosted trees and random forests lack a probabilistic interpretation since they usually just specify an algorithm for training a model. We take a probabilistic approach where we cast the decision tree structures and the parameters associated with the nodes of a decision tree as a probabilistic model; given labeled examples, we can train the probabilistic model using a variety of approaches (Bayesian learning, maximum likelihood, etc). The probabilistic approach allows us to encode prior assumptions about tree structures and share statistical strength between node parameters; furthermore, it offers a principled mechanism to obtain probabilistic predictions which is crucial for applications where uncertainty quantification is important. Existing work on Bayesian decision trees relies on Markov chain Monte Carlo which can be computationally slow and suffer from poor mixing. We propose a novel sequential Monte Carlo algorithm that computes a particle approximation to the posterior over trees in a top-down fashion. We also propose a novel sampler for Bayesian additive regression trees by combining the above top-down particle filtering algorithm with the Particle Gibbs (Andrieu et al., 2010) framework. Finally, we propose Mondrian forests (MFs), a computationally efficient hybrid solution that is competitive with non-probabilistic counterparts in terms of speed and accuracy, but additionally produces well-calibrated uncertainty estimates. MFs use the Mondrian process (Roy and Teh, 2009) as the randomization mechanism and hierarchically smooth the node parameters within each tree (using a hierarchical probabilistic model and approximate Bayesian updates), but combine the trees in a non-Bayesian fashion. MFs can be grown in an incremental/online fashion and remarkably, the distribution of online MFs is the same as that of batch MFs

    Noise reduction in differentially private learning

    Get PDF
    Privacy protection is a rising concern that gained increasing attention over the past decade due to the widespread of machine learning applications. Differential privacy (DP) is an emerging notion of privacy that provides a rigorous information-theoretic privacy guarantee. While DP is a very useful privacy guarantee many practitioners aim to achieve, DP algorithms typically require more data samples to perform well. Moreover, the magnitude of the injected noise from DP can scale with the dimensionality, hence further increasing the difficulty of private learning in high dimensions. In addition, high-dimensional learning also incurs problem it-self known as `the curse of dimensionality'. The notion of compressed learning that aims to achieve a low-dimensional representation of the high-dimensional data samples has shined some light on this problem. However, although the notion of random projection has pre-existed for a long time, little is known about randomly compressed models in the DP framework. In this thesis, we develop theories that quantify the effect of random projections on the learning performance, and the excess error that privacy incurred. The theory developed in this thesis demonstrates the interplay between generalisation performance, random projection and differential privacy. We quantify the effect of random projection and the effect of DP implementation on the generalisation performance of learning algorithms. We show that random projection can reduce the magnitude of the required noise injection in DP algorithms while also exploiting structure, which results in a reduced dimensionality dependence on generalisation guarantees. Finally, we also introduce a novel machine ensemble with known in-built structure-exploiting capability, which utilises the privacy budget efficiently and is able to use the assistance of unlabelled data samples to boost accuracy performance without the compression of data samples
    corecore