

Protecting Sensitive Data using Differential Privacy and
Role-based Access Control

Mémoire

Hajaralsadat Torabian

Maîtrise en informatique

Maître ès sciences (M.Sc.)

Québec, Canada

© Hajaralsadat Torabian, 2016

Protecting Sensitive Data using Differential Privacy and
Role-based Access Control

Mémoire

Hajaralsadat Torabian

Sous la direction de :

Josée Desharnais

Nadia Tawbi

iii

Résumé

Dans le monde d'aujourd'hui où la plupart des aspects de la vie moderne sont traités par des

systèmes informatiques, la vie privée est de plus en plus une grande préoccupation. En

outre, les données ont été générées massivement et traitées en particulier dans les deux

dernières années, ce qui motive les personnes et les organisations à externaliser leurs

données massives à des environnements infonuagiques offerts par des fournisseurs de

services. Ces environnements peuvent accomplir les tâches pour le stockage et l'analyse de

données massives, car ils reposent principalement sur Hadoop MapReduce qui est conçu

pour traiter efficacement des données massives en parallèle. Bien que l'externalisation de

données massives dans le nuage facilite le traitement de données et réduit le coût de la

maintenance et du stockage de données locales, elle soulève de nouveaux problèmes

concernant la protection de la vie privée. Donc, comment on peut effectuer des calculs sur

de données massives et sensibles tout en préservant la vie privée. Par conséquent, la

construction de systèmes sécurisés pour la manipulation et le traitement de telles données

privées et massives est cruciale. Nous avons besoin de mécanismes pour protéger les

données privées, même lorsque le calcul en cours d'exécution est non sécurisé. Il y a eu

plusieurs recherches ont porté sur la recherche de solutions aux problèmes de

confidentialité et de sécurité lors de l'analyse de données dans les environnements

infonuagique. Dans cette thèse, nous étudions quelques travaux existants pour protéger la

vie privée de tout individu dans un ensemble de données, en particulier la notion de vie

privée connue comme confidentialité différentielle. Confidentialité différentielle a été

proposée afin de mieux protéger la vie privée du forage des données sensibles, assurant que

le résultat global publié ne révèle rien sur la présence ou l'absence d'un individu donné.

Enfin, nous proposons une idée de combiner confidentialité différentielle avec une autre

méthode de préservation de la vie privée disponible.

iv

Abstract

In nowadays world where most aspects of modern life are handled and managed by

computer systems, privacy has increasingly become a big concern. In addition, data has

been massively generated and processed especially over the last two years. The rate at

which data is generated on one hand, and the need to efficiently store and analyze it on the

other hand, lead people and organizations to outsource their massive amounts of data

(namely Big Data) to cloud environments supported by cloud service providers (CSPs).

Such environments can perfectly undertake the tasks for storing and analyzing big data

since they mainly rely on Hadoop MapReduce framework, which is designed to efficiently

handle big data in parallel. Although outsourcing big data into the cloud facilitates data

processing and reduces the maintenance cost of local data storage, it raises new problem

concerning privacy protection. The question is how one can perform computations on

sensitive and big data while still preserving privacy. Therefore, building secure systems for

handling and processing such private massive data is crucial. We need mechanisms to

protect private data even when the running computation is untrusted. There have been

several researches and work focused on finding solutions to the privacy and security issues

for data analytics on cloud environments. In this dissertation, we study some existing work

to protect the privacy of any individual in a data set, specifically a notion of privacy known

as differential privacy. Differential privacy has been proposed to better protect the privacy

of data mining over sensitive data, ensuring that the released aggregate result gives almost

nothing about whether or not any given individual has been contributed to the data set.

Finally, we propose an idea of combining differential privacy with another available

privacy preserving method.

viii

List of Tables

Table 4.1: Original patient’s medical records. ... 47

Table 4.2: 3-Anonymous version of Table 4.1 ... 47

Table 4.3: 3-diverse Version of Table 4.1 .. 48

ix

List of Figures

Figure 2.1: Linking to re-identify data [7] .. 7

Figure 2.2: An example of an object’s security label that consists of a classification and two
categories. ... 10

Figure 3.1: Taxonomy of Cloud Service Models ... 25

Figure 3.2: Deployment models of cloud computing ... 26

Figure 3.3: Hadoop master/worker nodes architecture ... 36

Figure 3.4: MapReduce process for Word Count ... 38

Figure 4.1: Architecture of the search over encrypted cloud data [52] 44

Figure 4.2: Preserving data privacy by data de-identification and noise addition 46

Figure 4.3: Composition properties: a) sequential composition and; b) parallel composition.
 .. 54

Figure 5.1: PINQ provides as a thin protective layer in front of raw input data [30]. 61

Figure 5.2: An overview of the Airavat architecture [3]. ... 63

Figure 5.3: An overview of range enforcers. Trusted parts are shaded [3]. 66

Figure 5.4: an example of the state attack [64]. .. 70

Figure 5.5: an overview of Fuzz system [64]. .. 71

Figure 6.1: An example of role hierarchies. ... 77

x

Acknowledgment

First of all, I would like to express my sincere gratitude to my supervisor Prof. Josée

Desharnais and my co-supervisor Prof. Nadia Tawbi for their continuous encouragement

and support throughout my master period, and also for guiding me and giving me many

precious advices during this project. I have learned a lot from them.

Besides, I want to thank Prof. François Laviolette for his kindness and helpful advices

during my earliest days in Canada.

I am thankful to my best friend Shima who is the most honest and trustful person I have

ever known. The birth of her sweet angel Hana brings to me a lot of energy and joy to write

this thesis. Thank you for your continued friendship, support, love, hugs, laughs and many

great things you gave me.

Also many thanks to Miad for all his love and support, and all my beloved friends here,

particularly Solmaz, Asra, Atefeh, Mona, Amir, Rezvan, and Parnian, for sharing their

moments and personal experiences of living in Canada with me.

Most important thanks to my mother, my sister Fatima, and my brother Hassan, who have

been a constant source of love and consolation. Despite of being thousand miles away from

me, they have truly supported me in all aspects of my life.

Huge love and appreciation go to Mona, the most supportive sister ever, who has always

believed in me. In spite of passing many happy and sad moments together in our

challenging life in Canada, she has always been there for me throughout my education and

beyond.

Finally, a personal thank to anyone reading this thesis.

xi

To my mother and in memory of my father, whose hopes exceed these pages.

2

shared storage and a capable analysis framework. The storage is provided by Hadoop

Distributed File System while analysis is provided by MapReduce. This software is widely

adopted in various investigations, such as clustering and classification algorithms,

recommender systems, machine learning, and so on.

While cloud computing has emerged as an economical and efficient solution to store,

manage, and process customers’ data, it raises new concerns related to the security and

privacy. Cloud users always worry about losing privacy of their stored data in the cloud

databases scattered around the Internet. Hence, there are security and privacy issues in

cloud computing that CSPs always face at every phase of design.

On one hand, a broad spectrum of organizations needs to analyze such vast amount of

stored data in the cloud for many valuable uses. On the other hand, any unauthorized or

improper access to such informative data (mostly sensitive) can compromise its privacy and

jeopardize future access to it. Moreover, some cloud customers may allow CSPs to publicly

release their statistical databases stored in the cloud for research purposes.

A statistical database [2] is a regular database that is mainly used to return only statistical

information to the queries (e.g., the average salary of employees). An adversarial user, for

example, may attempt to submit malicious queries to such released databases in order to

intentionally reveal confidential information about their individuals. Therefore, securing

such databases against these kinds of adversarial uses is crucial.

Cloud users can trust cloud computing and enjoy all its advantages, without worrying about

the privacy of their sensitive information, only when CSPs can properly address users’

privacy and security issues. A key challenge of preserving security and privacy in cloud

environment is how to design a secure and practical system, through which developers and

cloud clients spend as little mental labor and system resources on security and privacy as

possible [3]. In this regard, a wide variety of techniques have been proposed either offering

new ways or improving the previous ones. Our work gives an overview of these privacy

preserving methods used in cloud computing services, ranging from access control

mechanisms, to query auditing, to data perturbation techniques.

4

Chapter 3 provides a detailed definition of cloud computing as well as its main

characteristics, service models, deployment models, and its famous service providers. It

also presents pros and cons of using cloud environments, where the main challenges are

security and privacy concerns. We then study several methods that have been already

proposed by researches in order to deal with such concerns. Finally, we give an

introduction to big data and explain how Apache Hadoop and MapReduce handle such

massive amounts of data.

In Chapter 4, we study major privacy-preserving mechanisms over big data in cloud

systems. We specifically give a detailed overview of differential privacy and its formal

definition because we believe that among all presented mechanisms, differential privacy is

the “right” notion of privacy for cloud computing environments.

Chapter 5 provides the current and the most important implementations of differential

privacy. This chapter indicates that these implementations, however, are vulnerable against

side-channels, including timing channels, state channels, and privacy budget channels.

Finally, two proposed frameworks are described that are able to completely close these

channels.

In Chapter 6, motivated by mechanisms used in role-based access control and one of the

differentially private implementations (namely Airavat), we think about a combination of

differential privacy with role-based access control for MapReduce computations. However,

we do not evaluate it through running our algorithm on any real dataset to examine to what

extent it is practical.

Finally, we make conclusion and discuss possible avenues for further work in Chapter 7.

6

medical database containing its patients’ information for research purposes. If a querier is

allowed to submit whatever query he1 wants to such database and obtain accurate answer to

his query, then it definitely comes at a price of losing privacy of the patients. Conversely, a

querier may gain no meaningful utility as a way to preserve privacy. For example, the

hospital in the above example, can enforce a limitation on the number of queries that will

be executed on its database, and return perturbed and noisy answers to the querier. Clearly,

no one can expect to achieve simultaneously full privacy together with meaningful utility

guarantees for a dataset, that is, increasing privacy normally leads to decreasing utility and

vice versa.

Hence, we always need to consider and control the trade-off between utility and privacy in

order to preserve privacy while achieving optimal data utility. Furthermore, it must be

taken into account that publishing sensitive information, such as census, voter registration,

medical records, and salary information, can significantly compromise privacy of its

individuals. In this regard, there is a wide variety of privacy violations over the past few

years. A privacy violation involves unauthorized and improper access, use, or leak of

personal and sensitive information, either intentionally or unintentionally.

Some privacy fiascos:

One of the first published attacks on privacy dates back to 2002 by Sweeney [7], and is

known as the “Linking Attack”. After removing all “identifiable information” (i.e., names,

social security numbers, phone numbers, etc.), Group Insurance Company (GIC)2 released

a copy of the medical records of approximately 135,000 state employees and their families.

The dataset consists of ZIP codes, birth dates, genders, and diagnoses (leftmost circle in

Figure 2.1) and was supposed to be safe. Afterwards, Sweeney purchased a copy of the voter

registration list for Cambridge Massachusetts including the name, address, ZIP code, birth

1 Throughout this thesis, masculine pronouns are used to refer to a third person.
2 Group Insurance Company (GIC) is responsible for purchasing health insurance for all Massachusetts state
employees [7].

8

and so on) those were found in the search logs. In this case, there were only 14 citizens with

the last name Arnold and the attackers contacted all 14 persons with phonebook listings and

found Thelma Arnold.

AOL admitted it as a huge mistake, apologized for its release and eliminated the search data

from its website; however, the removal was too late and the data was distributed widely and

is still available on mirror sites [9].

Another example of linkage attacks was due to the public release of Netflix Prize dataset.

The Netflix Prize was an open competition for improving Netflix's algorithm by 10% to

predict users’ ratings for movies based on their previous ratings, with a 1 million dollar

prize4. To do so, Netflix anonymized movie ratings of 500,000 Netflix users by replacing

user names with random numeric identifiers. Narayanan et al. [10] carried out a linking

attack by cross-referencing this dataset with the public IMDb 5 dataset of information

related to the movies, television programs, and video games, containing users’ PII. That is,

they re-identified a user only by a handful of his rated movies in both Netflix and IMDb

without requiring that all movies rated by that user in IMDb be also rated in Netflix, or vice

versa.

In another attack, Homer et al. [11] showed that, given a sample of an individual’s DNA,

they could accurately detect whether this individual has participated in a Genome-wide

association study (GWAS). They developed a theoretical framework for determining the

presence of specific individuals within a GWAS. The significance of being a member of a

GWAS is that the members in the study have been diagnosed with a disease, that is, they

have the disease, not just a gene for the disease. Therefore, revealing such sensitive and

private information can completely compromise the privacy of its participants. For

preserving privacy of the participants within a GWAS, their identity have to be masked.

4 http://en.wikipedia.org/wiki/Netflix_Prize
5 IMDb. The Internet Movie Database. http://www.imdb.com/

http://en.wikipedia.org/wiki/Netflix_Prize

10

classification and confidentiality are very important. the operating system controls all

access to objects by assigning security labels to both objects and subjects and then

applying these labels to constrain the interaction between them [14].

This model is mainly based on assigning security labels to all subjects (i.e., users,

processes, or programs) and objects (system resources like files, folders, disk, memory,

etc.). Subjects have a hierarchical security level, known as clearance (secret, top secret,

confidential, and so on), which reflects the user’s trustworthiness. Objects have a security

label consisting of a classification (in the same way as clearance) and different categories

(indicating compartments of data within a system that do not follow a hierarchical

structure). The classification is defined based on the environment, in which it is applied.

For example in a military environment, the classification can be defined as top secret,

secret, confidential, and unclassified, while in another environment it may be quite

different. The categories enforce need-to-know rules [14].

Figure 2.2: An example of an object’s security label that consists of a classification and two
categories.

Under MAC enforcement [14], when a subject requests to access an object, the operating

system first check the subject's clearance with the security label of the object (both its

classification and categories). Then, the access will be granted only if:

 The clearance level of the subject is equivalent or higher than the classification level

of the object.

 And the subject has a sufficient access to all the object’s categories.

As illustrated in Figure 2.2, MAC allows access to the object only to the users who have the

secret (or higher) clearance and are authorized to access both chemical and financial

categories [14].

12

The concept of role-based access control pioneered in the 1970s [18] and started attracting

a lot of attention in the 1990s [14], mainly for commercial applications [12].

Permissions under RBAC are based on roles among a system [15], and a user is usually

defined as a human being who has some authority and responsibility within that system.

Roles are assigned to a job function or job title according to the Organization Chart and can

be applied to both users and groups. Users are then mapped to the roles based on their

responsibilities rather than directly to permissions [19].

This model of access control is the best choice for a corporation that has a high staff

turnover. That is, rather than frequently modifying the ACLs on the user’s objects (which is

the case in DAC), the system administrator only defines a role, maps permissions to this

role according to its security policies, and then assigns the new users to this particular role.

For example, if a user is assigned to the cashier role, any person who replaces this role after

he quits his job, can be simply assigned to this role [14]. However, it is not possible that

users go beyond permissions assigned for their role. For example, the cashier mentioned

above gains exactly the same permissions as all other cashiers, nothing more and nothing

less6.

There are three levels of RBAC as follows:

Core RBAC: This is the fundamental component of every RBAC implementation. It

includes users, roles, permissions, operations, and sessions, in which each session connects

one user to a subset of roles according to the security policy. Different groups can be

created with various access rights and many users can belong to multiple groups. If a user is

a member of different roles, when he logs on to the system (establishes a session), he then

automatically gains all of the access rights associated with these various groups at the same

time. RBAC not only uses the user ID and credential to make access decisions, but also

other information such as role’s location, time of day, weekday, and so on [14].

6 Security+ Essentials, an eBook by Neil Smyth.

13

Hierarchical RBAC: Role hierarchies let system administrators establish an inheritance

(hierarchical) relation among the roles, whereby roles can inherit from other roles. This

model is good enough for organizations, which have personnel hierarchical structures in

their specific environment. In this case, a user who is mapped to a role inherits all access

rights and permissions of other roles below his position within a pre-defined hierarchical

relation. Then, he would gain more rights other than those already assigned to his role.

However, a person in the senior role may not have the required skills for performing the

tasks of a lower-grade role in the system.

This level has two types of role hierarchies [14]:

 General Hierarchical RBAC: It supports arbitrary and multiple role inheritances,

that is, a user can inherit whatever role’s permissions below.

 Limited Hierarchical RBAC: It only supports one level of hierarchy to impose

limitations on the role hierarchy. for example, role A only inherits role B`s

permissions if B is his immediate descendant, nothing more from other roles.

Constrained RBAC: It adds Separation of duties (SoD) to the hierarchal RBAC. SoD

partitions authorities for a single task among more than one role in order to prevent fraud

and error. In doing so, a single user is prohibited from having much permissions, and hence

involvement of multiple users is required to commit a malfeasance. This model provides

different separations of duties [20]:

 Static SoD disallows combination of roles assigned to a user (i.e., the user is not

allowed to be a member of more than one role.). Static is easier to test.

 Dynamic SoD enforces constrains on the combination of privileges that can be

activated in any session. That is to say, a user is able to be a member of more than

one role but not at the same time. It means when a user logs in as a role, during this

session, his other roles’ permissions are not available to him. Dynamic is more

flexible.

18

privacy were presented that are relevant to our research subject. The next chapter will talk

about Cloud systems characteristics, big data, and introduce some key concepts to handle

big data and manage cloud systems such as MapReduce framework and Hadoop.

20

Subashini and Kavitha [32] define cloud computing as “Cloud computing is a way to

increase the capacity or add capabilities dynamically without investing in new

infrastructure, training new personnel, or licensing new software. It extends Information

Technology’s (IT) existing capabilities”. The idea is to lower the computing burden in

client side by transferring it to the shared infrastructure.

The NIST8 defines cloud computing as follows [33]: “Cloud computing is a model for

enabling ubiquitous, convenient, on-demand network access to a shared pool of

configurable computing resources (e.g., networks, servers, storage, applications, and

services) that can be rapidly provisioned and released with minimal management effort or

service provider interaction.”

The name “Cloud” originated from the fact that users have no idea where their data is

actually located (a virtual location) and what kind of processes are going to be done over it.

In fact, data is scattered and processed in multiple locations across the network in the

world. On one hand, a cloud user does not need to care or being aware of what technical

details are applied in the cloud environment while he benefits from the powerful

computations of the cloud. On the other hand, he loses full control over his sensitive data

and does not know who exactly performs what computations on his data [14].

To get an understanding on cloud computing, let us consider an example: suppose a

company needs to do complex computations on a large dataset like customers’ shopping

records or healthcare data. For doing these kinds of computations, this company would

need to have many strong servers and a team of experts to constantly maintain and update

all related software and hardware.

Even after providing all these requirements, data will be getting bigger and bigger over

time, and thus even an excellent server would be limited. Also, maintaining such resources

and servers costs a lot and the experts have to continuously enhance their ability and

8 National Institute of Standards and Technology

21

knowledge. It is the main reason why many users have turned to the cloud environments in

order to store their large datasets as well as analyzing them.

The term "moving to cloud" is used when an organization decides to leave behind the

constraints of traditional way (i.e., having its own data center and providing expensive

devices and storages) and outsources its sensitive information to a cloud environment9.

Cloud computing is a better way to run user’s business on shared data centers without any

need to train new staff, upgrade and license new software, and buy new infrastructures. To

use a cloud application, a user only needs to log in, customize his setting, and then start

working.

Cloud computing aims at establishing a user friendly environment, which is more flexible

and scalable than current services and applications. Cloud computing platforms let users

download easily whatever services they need from the internet (usually for free) without

installing basic hardware and software infrastructures. Users only need a high-speed

internet and then they can mainly focus on their business [5].

Cloud computing consists of some key features, three service models, and four deployment

models that we elaborate in the following sections.

3.1.1 Cloud characteristics

The essential features of cloud computing are as follows:

 Pay-per-use: Cloud users pay only for what services and resources they use (pay-

as-you-go model), i.e., based on this pay-as-you-go strategy, if a user wants to rent a

service or a server for one hour, then he only pay for one hour [34] [33] [35].

 Reduce cost: Cloud reduces costs and energy consumption because users don’t

need to buy and install expensive hardware and software systems as the cloud

9 http://en.wikipedia.org/wiki/Cloud_computing

http://en.wikipedia.org/wiki/Cloud_computing

22

providers buy all of them. Users are also free from spending so much time and

energy on hardware and software maintenance and manual update, they rather

outsource them to the cloud, where upgrades are automatically done [31] [36].

 On-demand capabilities and services: Cloud enables its users to access cloud

capabilities such as email, applications, servers, and services over the network and

let them change their preferences and services whenever they want. Payment terms

and conditions differ from each cloud provider where billing units can be monthly

subscription, pay per usage, and so on [31] [33] [36].

 Quickly scale up or scale down: Using a cloud platform, users can quickly and

easily upscale or downscale their resources in any quantity at any time. Suppose at

first a user rents two servers and after 20 minutes he decides to rent 100 servers

more, then a cloud system (like amazon) gives him this flexibility and do it for him

in a few clicks [31] [33] [36].

 Anytime, anywhere availability: Since data is located in the cloud, ubiquitous

access to data from smartphones, tablets, laptops, and so on is quite easy from

anywhere and at anytime via internet with no need to carry data everywhere [31]

[33] [36].

 Resource pooling: Using the cloud services, millions of users can be concurrently

supported through sharing resources (e.g., storage, memory, network bandwidth,

etc.) without any need to provide each user with a proprietary hardware. Since the

computations are virtualized and not physically tied to a data center, several

business offices and sales teams who are usually outside the office can be served

from any location, at any time. Costs will be significantly reduced as well [33] [36].

 Flexibility: Through the cloud, consumers can be more flexible to unlimitedly share

whatever documents and resources they want over the network [37] [34].

 Security: With the shift to the cloud, users can benefit from security team and

expertise of the cloud providers; however, cloud itself raises several concerns about

lack of security and control over sensitive data that we mention later [34] [38].

 Data replication: Since reliability is an important issue with distributed systems

like cloud, data is replicated on multiple (normally three) servers across several data

centers to achieve fault tolerance and reliability in real time computing and makes

23

cloud more accessible. By replicating users’ data, if data is accidentally lost or

denatured during the processing, then the cloud redirects to another server where it

holds a copy of data and continues processing without any interruption. While it

may seem difficult to hold multiple copies of a large dataset, the cloud systems

properly do it across multiple nodes in order to make a cluster resistant to the

inevitable failures of any single node [37] [35] [39].

 Multi-Tenancy: It allows multiple clients to access one single instance of a shared

application so that every user is able to customize it for his specific need [31]–[33],

[36].

Using cloud computing, users can easily use any resources and services they want even

without any knowledge on the details of cloud implementation and the number of its

hardware, CPU’s, and so on. Users only need to properly understand what a service offers

and how to work with it. Also, both the user side and the cloud provider’s side are able to

systematically back up and monitor data in order to provide transparency.

3.1.2 Cloud service models

As illustrated in Figure 3.1, there are three models with respect to the cloud services. They

are presented in the following [33] [36] [40]:

1. Infrastructure-as-a-service (IaaS) is an evolution of traditional IT that provides the

underlying infrastructure including networking, virtual machine, server, storage, and

virtualization technology as a service. The cloud users then deploy and manage their

own application, data, software, and probably operating system themselves just the

way they do in their own datacenter. This model is responsible for managing and

maintaining offered services, therefore users can benefit from significant cost

saving on managing the underlying infrastructure components. Amazon Elastic

Compute Cloud (EC2) and Secure Storage Service (S3) are examples of IaaS

offerings.

2. Platform-as-a-service (PaaS) builds and run on top of the IaaS model and is a

collection of middleware, web servers, databases, and development tools. In the

24

cloud diagrams, PaaS is mostly deployed between the SaaS layer above it and the

IaaS layer below. Using PaaS model, cloud users don’t need to manage and control

the underlying hardware and software layers such as servers, network, storages, and

operating systems as well as all the cost and complexity related to managing and

maintaining them. Sometimes PaaS providers have their own programming

languages (e.g., force.com from Salesforce.com) or only support a particular

language (e.g., developers using Google App Engine can only write in Python or

Java).

3. Software-as-a-service (SaaS) builds on top of the two previous services. This model

provides, controls, and manages all the underlying infrastructure and platforms that

run an application (e.g., email, CRM, virtual desktop, games, etc.) and then delivers

it as a service to serve multiple users over the web. Using this model, the customers

are free of the complexity of programming and developing the applications and they

may only need to do some simple and flexible modifications to the given

application configuration setting. Through SaaS, total cost of hardware and software

operations is significantly reduced because users only pay as they use without

buying anything else.

25

Figure 3.1: Taxonomy of Cloud Service Models10

3.1.3 Cloud Deployment models

Cloud can be classified as four deployment models (see Figure 3.2) [33] [36]:

1. Private Cloud: Similar to traditional IT, the cloud provides infrastructure and

services for a single organization or a group of clients, typically using the client's

software and hardware even within the client's data center and firewall. By this

model, the organization itself, or along with the cloud party, can control and manage

all the processing tasks.

2. Community Cloud: the cloud infrastructure is provisioned and shared between

multiple companies comprising community of clients that generally have common

purposes.

10 The figure is taken from https://peterhanselman.wordpress.com/2011/05/22/cloudnomics/

https://peterhanselman.wordpress.com/2011/05/22/cloudnomics/

27

enterprises and people turn to cloud and take advantage of its unique characteristics in order

to handle large-scale computations over their own big data [27].

Although cloud has many benefits for their customers such as saving users’ money, ability

to store more data compared to private servers, automatic updates, low cost, high

scalability, availability, flexibility, and other advantages and services we mentioned above;

there exist several challenges in using cloud systems, such as the need to constantly connect

to a high speed internet while using cloud applications. However, security and privacy

issues — especially when it comes to sensitive information that are processed in multiple

data centers — are the most important concerns in this system that people always face and

worry about. In fact, when a data owner decides to outsource his sensitive data to the cloud

and let an untrusted code run over it for commercial, advertisement, or medical purposes,

then how he can ensure that his sensitive information will not be in danger of leakage!

3.2.1 Security and privacy issues

Despite of the rise of cloud computing services and its widespread utility, preserving

security and privacy is the main challenge in this area [5]. By outsourcing data to the cloud,

users have no idea where their own data is exactly located and they no longer have physical

access and full control over it. Therefore, security and privacy issues need to be properly

addressed to establish a robust guarantee [31]. We now highlight key security and privacy

issues.

Security issues in cloud systems must be addressed to avoid potential problems that might

arise. All the security issues given below are gathered from: [5], [31], [36], [41], [38].

According to cloud providers, security issues are:

 How to provide confidentiality, integrity, and availability for any cloud user’s

sensitive data? And how to guarantee availability and data retrieval in the cloud

while users have no access to the physical data and they only possess the virtualized

data?

28

 According to the common issues in IT such as fraud, exploitation, and phishing,

how to protect confidential data against unauthorized and illegal access, hijacking,

and attacks by adversarial cloud users?

 How to avoid interpretability problems caused by using different identity tokens and

protocols by distinct users according to the multi-tenancy feature in cloud

computing?

 Suppose a user decides to change his cloud provider (e.g., move from Google cloud

to Microsoft cloud). How to provide compatibility for security requirements

between multiple cloud vendors services where different cloud providers have

different policies?

 On one hand, some countries have strict regulation concerning its citizen’s data

storage. For example, bank policies normally disallow customer’s financial data to

be stored outside the country. On the other hand, cloud data is stored or probably

transferred to another data center in another country. Therefore, how to support such

severe regulations in the cloud?

According to cloud users, security issues are:

 Due to the general lack of transparency and long term data storage in the cloud

systems, how is a cloud server entirely monitored and traced, aiming to prevent

wicked insider from access and misuse users’ private data?

 Due to the huge amount of data stored in the cloud, how can users audit all the

activities and processes done by CSPs on their data in order to have more secure

and trusty cloud?

 How to eliminate or lower the risk of data seizure by foreign government arising

from violating the law by CSPs?

 How to ensure that firm and proper laws are established in the cloud in order to

protect cloud users against their cloud providers in case of any malicious and illegal

data utilization by them?

 Who exactly provides and manages the encryption/decryption keys, which should

be logically done by the cloud users?

29

In the context of cloud computing, privacy issues vary based on multiple cloud providers’

policies, and these issues are as follows [5] [31] [36] [38]:

 How to assure users that they still have full control over their information during its

storage and processing in the cloud where data is virtualized as well as guaranteeing

their data against theft, malicious and unauthorized access by establishing strong

privacy protection mechanisms?

 How to guarantee that users’ data replication is properly done at multiple safe

locations and keep it secure from any leakage, loss, forgery and unauthorized

modification as well as deleting all these copies when they are no longer required?

 To what extent is it possible to correctly verify, check, and identify a subcontractor

(third party) who runs critical functions on users data?

 For more clarity and protection, users must be announced and kept up to date for

any change and improvement to the cloud services and application, and also they

need to know how it will be processed by other parties.

 One significant privacy concern is how to protect individuals’ data against

unauthorized secondary use such as junk advertisement?

There are some other issues related to the trust as well. Trust is a personal and measurable

belief in correctness of something that constructs relationship among people and entities

based on multi-dimensional factors such as experiences, perception, feeling,

communication, shared values, and so on. In fact, trust always depends on mutuality and is

a non-symmetric, context-based, and partially transitive concept. In this regard, trust issues

can be: (1) according to the unique architecture of the cloud computing, how to define and

assess trust, (2) How to create distinct security levels for cloud services based on trust

degree, (3) How to monitor, regulate and manage changes to the trust degree within time

and context as well as providing dynamical trust relationship [5].

To address the security and privacy issues listed above, several researchers have proposed

multiple methods. Wang [31] proposed four efficient mechanisms; however, they can only

handle one or two issues in each domain (i.e., privacy and security domains). Two methods

to deal with policy integration and access control problems and two methods as a solution

31

Big data is a term for any huge and complex collection of datasets that on-hand data

management tools (such as the RDBMS11) and traditional data processing applications have

difficulty managing and processing within a tolerable elapsed time12. No matter how big

and powerful a computer is, it would definitely have limitations when it comes to big data.

Note that what is deemed “big data” is relative, i.e., its definition can vary from one person

to another according to his power and capabilities for storing and processing his own data.

That is, "For some organizations, facing hundreds of gigabytes of data for the first time

may trigger a need to reconsider data management options. For others, it may take tens or

hundreds of terabytes before data size becomes a significant consideration [42]." Big data,

however, does not only imply the volume of data; it is also about how complex its

processing will be. Without data analytics, big data is only a bunch of data.

Big data is often described using five Vs as follows:

1. Volume: The name ‘big data’ itself implies a phrase related to a large size, and thus

volume is an obvious attribute of big data. In general, many factors result in an

excessive increase in data volume, such as text data constantly produced by social

media, customers' transactions, sensor data, and so on. The size of the data indicates

whether it can be considered as big data or not [34] [43].

2. Variety: It refers to the existence of different types of data from multiple sources,

used in all today’s data analysis and decision-making process. In the past,

organizations mostly dealt with structured data that properly fits into data tables or

relational databases. They could be simply processed by traditional tools like the

RDBMS. In contrast, today's data is of all types (structured, semi-structured and

unstructured), including all messages and comments on social networks, audio,

video, click streams, photos, sensor data, log files etc. Emerging big data

technology allows us to manage these various types of data [34] [43].

11 Relational Database Management System
12 https://en.wikipedia.org/wiki/Big_data

https://en.wikipedia.org/wiki/Big_data

32

3. Velocity: It indicates how quickly data is generated and how quickly it can be

accessed and processed to accomplish a task. It is about the time it takes to analyze

the data or even inform the sender that the data has been delivered from the moment

the data hits the wire. Responding fast enough to deal with velocity is an important

issue for most organizations (consider the rate at which credit card transactions are

checked for fraudulent activities). Using big data technology, we are able to process

the data while it is being generated, without the need to initially store it into

databases [34] [43].

4. Variability: It is about the inconsistency that the data can show over time. It brings

new challenges to the process of effectively managing and handling the data,

particularly when it comes to unstructured data [44].

5. Veracity: This term is used to indicate the quality or trustworthiness of the captured

data. The veracity of source data is an important feature in an accurate data analysis,

which needs to trust the integrity of the data for making important decisions. A big

data platform smooths the way for users to better manage the less reliable and

somehow uncontrollable data. As an example of such data, consider Twitter posts

with hash tags, typos, colloquial speech, and abbreviations [34] [43].

3.3.2 How to handle and analyze Big Data?

Traditional storage and analytic tools are capable of storing and analyzing only a small

portion of all the data in today's world. In the traditional approach, an enterprise gets a very

powerful server that works great until its data does not get larger. Even high-performance

and perfect servers are either too slow or too limited to store and process the data as its size

grows. The reason is that these servers are not scalable despite their power. Therefore, we

need to get help of distributed computing, through which the data is stored and processed in

different locations across the network, interacting with each other by passing messages.

Distributed computing divides a problem into multiple tasks, each of which is then assigned

to a worker that processes it and then outputs the result. As the last step, the results of all

workers will be combined to produce the final output. Although it would be beneficial to

34

Hadoop supports running of complex applications on big data using Hadoop multiple

components. Hadoop enables distributed computing of big data across clusters of low cost

computers, known as commodity computers, in an efficient, scalable, reliable, and cost-

effective fashion. Hadoop is efficient due to its ability to perform a task in parallel, which

increases the processing speed. Hadoop is highly scalable due to its ability to scale up from

a single computer to thousands of servers, each supporting local processing and storage.

That is to say, a Hadoop user, who has started with few computers, can easily increase the

number of computers if his requirements change. Hadoop is reliable, meaning that it

provides data replication to guarantee data availability, avoiding any interruption during

data processing even if a computer goes down. And finally, Hadoop is inexpensive because

it works on commodity computers using simple programming models, which makes it

available to almost any kind of user. In addition, Hadoop offers redundant and fault-tolerant

data storage, free and reliable computation framework, and job coordination.

Hadoop is based on Linux, so all the commodity computers have Linux as their operating

system. To process data in parallel, Hadoop splits up both the data and the computation into

smaller pieces and sends each piece of computation to each piece of data independently.

Once all the computations are done, all the results from previous step are combined and

sent back to the client as a final result.

Hadoop has a simple architecture, consisting of a set of tools like HBase, Hive, Pig,

ZooKeeper, Mahout, etc. Actually, it is not only one project that a user can download on his

computer and think it is done! Hadoop mainly consists of two components:

1. Hadoop Distributed File System (HDFS) is a distributed file system inspired by

GFS. Actually, HDFS does the locating and replicating of all the data on clusters of

computers.

2. MapReduce is the heart of Hadoop and provides a simple and effective way of

processing large datasets residing in HDFS.

The other Hadoop tools provide additional services, which are usually built and run on top

of these two main components in order to add higher-level abstractions.

35

In the rest of this chapter we explain the core components of Hadoop, i.e., HDFS and

MapReduce. Note that you can find precious and up-to-date information about Hadoop as

well as excellent Hadoop tutorials on the Apache Hadoop website [1].

3.4.2 Hadoop Distributed File System (HDFS)

The Hadoop Distributed File System is designed to store massive amounts of data

(terabytes or even petabytes), running on large clusters having thousands of nodes while

providing on-demand access to this data. When we say node, we are not talking about one

big powerful server; nodes are actually numerous inexpensive commodity hardware.

The input file is first divided into smaller chunks, which are stored in a sequence of blocks

of the same size (one block per file). Breaking the data into multiple chunks may increase

the chance of hardware failure. To avoid it, HDFS supports data replication, i.e., it creates

redundant replicas of the same block, scattering along different nodes. This ensures

redundancy, reliability, availability, and fault tolerance in case any node fails. The block

size and the number of copies of each file, namely the replication factor, can be specified

by the user’s application (normally three copies of each file with 16 MB to 64 MB block

size).

Normally, an HDFS cluster has a single master node (aka NameNode) and a number of

worker nodes (aka DataNodes). The NameNode regulates access to the data by users, so

that the data in not accessible without the authorization of NameNode. The DataNodes,

running on multiple nodes in the cluster, take care of storing and retrieving blocks,

following the instruction dictated by the NameNode or the client itself. The NameNode is

responsible to keep track of what data is residing on which DataNode. It periodically

receives a Heartbeat, indicating that all DataNodes are properly working; and a report,

containing a list of all blocks on each DataNode.

The master node has a JobTracker component and each worker has a TaskTracker

component. Actually, HDFS takes care of NameNode and DataNode while MapReduce

takes care of JobTracker and TaskTracker. The JobTracker component, running on the

master, is responsible for breaking a big task into smaller tasks, and assigning each small

37

MapReduce is also known as the “paradigm shift”. It is in contrast to RDBMS database

functions, by which data is passed to the function and the function does some computation

over the data and returns the results; in MapReduce, the computation moves to the data

rather than the data goes to the program. That is, the computation takes place where the

data is, resulting in network load reduction and faster and more scalable computation

(remember we are talking about petabytes of data). So, MapReduce codes written for

megabyte data can easily scale up to terabytes and beyond.

A MapReduce program reads an input file from HDFS where the file is split into multiple

chunks and passed to the different nodes. When a MapReduce computation runs, it consists

of two key functions: map function, and reduce function. Each chunk is processed by the

map function independently, which produces a set of intermediate (key, value) pairs. The

reduce function then merges all intermediate values belonging to the same key according to

the tasks the querier has specified for the reduce phase. This function finally releases the

final aggregate output (either zero or one value per reduce invocation). Note that the

mapper performs no aggregation, i.e., its job is mapping the data into (key, value) pairs for

the reducer to aggregate. The data can be of any type like text file, audio, video, etc., almost

all of which can be mapped into (key, value) pairs.

Actually, a MapReduce function can be a sequence of map and reduce tasks, fault-tolerant

execution of which is guaranteed through this framework while scheduling them in parallel

on any node. Normally, map and reduce functions are written by the querier.

To get a better understanding, we explain the MapReduce workflow through the common

Word Count example, which counts the number of distinct words in a set of text

documents. Using MapReduce, this computation can be done over a large collection of text

documents in a reasonable amount of time. Suppose we have an input text file, including a

couple of lines where each line is a record. As illustrated in Figure 3.4, the MapReduce

algorithm has six phases, as follows:

1. The input text file is first read from the DataNode where the file is located.

40

idea for handling big data, it raises new risk of leaking information; especially when it

comes to sensitive data. Actually, an attack on the cloud where big data resides is not only

possible, but likely. Therefore, strong privacy-preserving approaches are demanded in order

to protect data privacy. In the next chapter, we study some privacy preserving methods over

big and sensitive data. At the end of the next chapter, the reasons of choosing differential

privacy among all other methods as well as its formal definition and properties will be

discussed.

44

MapReduce) is a secure search scheme compatible with any cloud computing environment

utilizing Hadoop MapReduce. The idea behind PRISM is executing word search over

encrypted data in parallel (“Map” phase), after which results of map phase are aggregated

through the “Reduce” phase [50].

Similarly, Lin [51] implemented a system for preserving privacy of keyword search,

comprising three parts that communicate via network:

1. The data owner software, which first encrypts images and tags (image decryption)

owned by the data provider, and then emits search tickets as well as image

decryption keys.

2. The cloud software that performs the search and image retrieval on encrypted data.

3. The user software that lets the end user perform tasks including search and image

retrieval (and decryption) through a simple Graphical User Interface (GUI).

Suppose a data owner gives the search ticket to a user, who intends to issue a search query

to all encrypted tags for a specific keyword. After performing this request by cloud and

returning the encrypted result, the user needs to have the decryption key from the owner to

access and see the image (see Figure 4.1).

Figure 4.1: Architecture of the search over encrypted cloud data [52]

In both works, cloud is assumed to be “semi-trusted” but “curious”, i.e., it is supposed to

properly perform a given function, but may have intention to look at the individual data it

works on. Both approaches are based on data encryption before uploading to the cloud and

45

the cloud side is not allowed to access unencrypted data, and thus it is not able to exploit

any information from encrypted data it holds. Cloud only performs search queries on

encrypted data and gives back encrypted results to the end user [50] [51].

However, encrypting all data sets, especially intermediate data that is frequently generated

and recomputed during data processing, is very costly and time consuming. Because, most

of the time, it is impractical to frequently en/decrypt the data sets while performing any

computation over them. Instead of data encryption alone, Zhang et al. [53] proposed a

novel approach that incorporates data encryption with anonymization techniques to reach

cost-effective privacy preservation. This approach first identifies what intermediate data

sets need to be encrypted and only encrypts that part of data, after which it anonymizes the

rest of data to achieve privacy requirements. Compared to the approaches that encrypts all

datasets, this approach can significantly reduce the privacy-preserving cost of intermediate

data sets while the privacy requirements of data owners can still be achieved. This cost

reduction is quite favorable for the cloud users who normally use cloud services in a pay-

as-you-go fashion.

4.2.1.2 Input noise addition

As previously mentioned, data de-identification alone is not enough to preserve privacy of

individuals. Hence, after the de-identification of data, other mechanisms such as noise

addition must be employed to provide higher level of confidentiality for the remaining

sensitive attributes (see Figure 4.2). To this end, several approaches add random noise to the

inputs. Noise addition is captured by adding or multiplying a randomized value to private

numerical attributes. After removing identifiable information from data sets as well as

perturbing the remaining sensitive attributes through random noise, data usefulness is

shrunk most of the time. In fact, input noise addition methods usually fall short of

establishing a good balance between privacy and utility [54].

Original Data Set

Data De-identification

Noise Addition

Privacy Preserved
Data Set

Add

P

47

shown in Table 4.1, and Table 4.2 shows a 3-anonymous version of the table. In this

example, to achieve 3-anonymity, generalization and suppression techniques are applied on

the quasi-identifier attributes, which are Age, Zip Code, and Gender.

 Non-sensitive Sensitive
 Age Zip Code Gender Disease

1 50 47677 Male Flu
2 21 47602 Male Heart Disease
3 28 47605 Female Heart Disease
4 23 47606 Male Flu
5 49 47678 Female Heart Disease
6 30 47905 Female Cancer
7 47 47673 Female Flu
8 36 47909 Male Cancer
9 35 47907 Male Cancer

Table 4.1: Original patient’s medical records.

k-anonymity can be seen as a remedy to defeat linking attacks, however, it provides no

privacy guarantees against homogeneity attacks and also attacks using background

knowledge. The background knowledge attack is due to the attacker’s additional

information about a k-anonymized dataset. Actually, attackers often have background

knowledge about some of the individuals from somewhere outside the dataset such as

websites, other databases, public records, newspapers, and so on. Based on additional

knowledge, an attacker can conclude with near certainty whether an individual's

information is contained in the dataset. A homogeneity attack occurs when information

leakage is due to lack of diversity in an equivalence class [56]. For example, if an adversary

knows a 35-year old male patient who has a record in the Table 4.2 and lives in the zip code

47907, then he realizes that the record number belongs to this patient can only be 6, 8, or 9.

Since all of those records have the same disease (Cancer), the adversary learn with certainty

this patient has cancer.

Using this method, each record must be indistinguishable among k records, which usually

makes records too general to achieve accurate results [27]. Moreover, multiple publication

 Non-sensitive Sensitive
 Age Zip Code Gender Disease

1 > 40 476** * Flu
5 > 40 476** * Heart Disease
7 > 40 476** * Flu
2 2* 476** * Heart Disease
3 2* 476** * Heart Disease
4 2* 476** * Flu
6 3* 479** * Cancer
8 3* 479** * Cancer
9 3* 479** * Cancer

Table 4.2: 3-Anonymous version of Table 4.1

48

of the same dataset can completely violate the individuals’ privacy. Also, k-anonymity can

prevent identity disclosure16 but not attribute disclosure17.

Accordingly, a stronger definition of privacy has been proposed to consider diversity and

background knowledge, it is called ℓ-diversity.

4.2.1.4 ℓ-diversity

ℓ-diversity model [56] was proposed to prevent some defects arising in k-anonymity model.

With ℓ-diversity, privacy is preserved even if the data owner knows nothing about what

kind of information an adversary has.

To resist homogeneity attacks, ℓ-diversity makes sensitive attributes “diverse” among each

equivalence class, i.e., each equivalence class contains at least ℓ well-represented values for

each sensitive attribute. In the previous example, manipulation techniques (i.e.,

generalization and suppression) can be differently employed on the quasi-identifier

attributes to achieve 3-diversity (see Table 4.3).

 Non-sensitive Sensitive
 Age Zip Code Gender Disease
1 ≥ 35 47*** * Flu
5 ≥ 35 47*** * Heart Disease
9 ≥ 35 47*** * Cancer
2 ≤ 30 47*** * Heart Disease
6 ≤ 30 47*** * Cancer
4 ≤ 30 47*** * Flu
3 > 20 47*** * Heart Disease
8 > 20 47*** * Cancer
7 > 20 47*** * Flu

Table 4.3: 3-diverse Version of Table 4.1

16 Linking an individual to a specific record in a published dataset in order to re-identify it [57].
17 Disclosing new information about an individual using released data, i.e., the characteristics of an individual
in the released data can be derived more accurately than before releasing the data [57].

49

While ℓ-diversity is an important improvement to k-anonymity with respect to the

homogeneity and background knowledge attacks, it has multiple limitations that we discuss

below [57]:

 ℓ-diversity may be hard and unnecessary to achieve. Suppose we have a database of

1000 records, containing only one sensitive attribute that is the test result for HIV. It

takes two values: positive and negative where 99% of the records are negative and

only 1% are positive.

 ℓ-diversity is insufficient to protect data against attribute disclosure. This is because

while it provides “diversity” for sensitive attribute values in each equivalence class,

it does not consider semantic relationships among these values. From its point of

view, values are only different points without having other semantic meaning.

 ℓ-diversity does not consider overall distribution of sensitive attribute values, which

may affect privacy.

To prevent shortcomings arising in the two previous models, other approaches have been

proposed including t-closeness and m-invariance that we briefly mention in the sequel.

4.2.1.5 t-closeness

Due to the limitations of ℓ-diversity discussed above, Li et al. [57] proposed t-closeness,

which ensures that the distribution of each sensitive attribute in each equivalence is “close”

to the distribution of the attribute in the entire database. More precisely, the distance among

the two distributions must not be more than a threshold t, which is used to trade-off

between utility and privacy.

In fact, requiring the closeness of two distributions would restrict the amount of useful

information that can be learned by an adversary through published dataset. Because, it

lessens the correlation between quasi identifier attributes and sensitive attributes, seeking to

prevent attribute disclosure.

To apply t-closeness, a number of ways exist to measure the closeness (distance) between

two probability distributions. However, most of the distance measures would not take into

50

account the semantic closeness of attribute values (recall the ℓ-diversity limitation related to

the semantical closeness of sensitive values). To meet this requirement, the Earth Mover

Distance (EMD) measure [58] is used, which considers the semantic distance between

sensitive attribute values. EMD computes the distance among the two distributions. The

EMD is actually based on the minimal amount of work that must be done to transform one

probabilistic distribution to another, by transporting distribution mass between each other.

t-closeness protects against attribute disclosure by enforcing its requirement that limits an

observer to obtain information about the correlation between quasi identifier attributes and

sensitive attributes. Although this model addresses concerns found in ℓ-diversity and

vulnerabilities in k-anonymity (like homogeneity and background knowledge attacks), it is

not able to prevent identity disclosure.

4.2.1.6 m-invariance

With everyday and even every hour continuously increasing in datasets, we need

techniques that support re-publication of data after any insertion in (or deletion from) it.

Although the k-anonymity model and the related approaches developed novel solutions to

data privacy preservation, they are limited only to static release of data. In these

approaches, data is published only once and is not re-published after inserting into or

deleting from it. In case of deletion, re-publication of dataset is even more critical and

challenging than insertions of data. Anonymizing datasets statically may lead to poor data

quality where queriers are deprived of accessing continuously updated data.

To solve this problem, Byun et al. [59] proposed an approach that dynamically anonymizes

incremental datasets in a secure and efficient manner while considering data quality. They

analyzed how to prevent inference channels where an adversary tries to leak information

through comparing multiple re-publications of anonymized datasets. Then, they developed

an algorithm that can efficiently insert new records into an anonymized dataset while

satisfying the imposed privacy requirements. However, this approach supports only

insertions of data not deletions.

51

m-invariance [60] was developed as the first privacy-preserving technique that supports

anonymization of fully-dynamic databases in the presence of both insertions and deletions.

The key idea of m-invariance is that, if a record r has been published several times, then all

quasi-identifier groups including r must have the same set of sensitive values. This model

prevents potential attacks with respect to re-publication and can effectively restrict the risk

of privacy disclosure in data re-publication. Using this model, an adversary is prevented

from inferring sensitive information by using possible correlations between multiple

releases of a dataset.

With all above input perturbation methods, it is important to measure to what extent the real

data and the masked data are similar; the more similarity, the less privacy but more utility,

and vice versa. In addition, to what extent original data can be retrieved from distorted data.

It is sometimes easy to get the original data from modified and perturbed data. All the

anonymization-based techniques mentioned above intend to retain data utility while

satisfying individual privacy. However, such intention for maintaining utility can help an

adversary to drive patterns from anonymized data and use it to violate privacy of

individuals with high likelihood. This is called foreground knowledge attacks that is in

contrast to the background knowledge attack [61]. Furthermore, these approaches fail to

withstand some other attacks such as composition attacks18 [62].

Unfortunately, these anonymization-based methods do not support expressive privacy

guarantees as well. AOL search logs [8] and the movie-rating records of Netflix subscribers

[10] are two well-known fiascoes due to public releases of anonymized datasets.

Sometimes, even faithful and secure execution of a query leads to disclose sensitive

information about input [30]. Such failures motivate researchers to bring up a new approach

to better protect data privacy, which is called differential privacy [3]. In the rest of this

chapter, we discuss why differential privacy is a promising solution to provide stronger

privacy for sensitive data.

18 It occurs when multiple organizations independently publish anonymized data about overlapping
individuals [62].

52

4.2.2 Output perturbation

A promising alternative to protect data privacy is scrubbing the output of the computation

rather than input data. One of the well-known output perturbation methods is differential

privacy that has recently emerged as a remedy to provide greater privacy guarantees. These

guarantees hold independent of whatever auxiliary information an attacker has and also

resist almost all vulnerabilities exploited through input perturbation techniques (e.g.,

composition attacks and so on). This method specifically distorts the results by adding

random noise so that users submit queries to a dataset and get noisy answers.

4.2.2.1 Differential Privacy

Since input data may belong to multiple owners and come from various sources, access

control alone is not sufficient to provide end-to-end privacy guarantees for big data stored

in cloud environments. Furthermore, sensitive information about the inputs can be revealed

through the output of an analyst’s computation. Therefore, the result of an aggregate query

is returned only when it does not disclose significant information about any single input.

As previously explained in Section 2.6, an individual’s privacy can be violated even if that

individual’s record does not exist in the database. Thus, we need a notion of privacy that

limits the risk of disclosing input sensitive information through the released results. The

goal of differential privacy is to protect participants’ information from disclosure,

independent of any prior or posterior knowledge that an attacker may have. That is, an

attacker learns nothing from the result of the computation and not being able to tell whether

or not an individual has participated within the computation. In other word, any change to a

single input has an insignificant and minor impact on the distribution of the computation’s

output. Thus, the presence or absence of any participant does not significantly alter the

output of the computation. This is done by adding an appropriate amount of random noise

to the result of an aggregate query in order to hide the actual result. Then by looking at this

perturbed answer, an adversary is not able to derive any new knowledge about data [4].

53

Now we formally define differential privacy [4], [22]: Let 𝐷 denotes a dataset whose

individuals’ privacy must be preserved. Two datasets 𝐷 and 𝐷′ are called neighboring

datasets if they only differ in at most one item (or record), which exists in 𝐷 but not in 𝐷′.

Definition 1 (𝜖-differential privacy [4], [22]). A randomized algorithm or a function ℱ is 𝜖-

differentially private if for all neighbor datasets 𝐷 and 𝐷′ , and all possible outputs

S ⊆ Range(ℱ),

𝑃𝑟[ℱ(𝐷) ∈ 𝑆] ≤ 𝑒𝜖 × 𝑃𝑟[ℱ(𝐷′) ∈ 𝑆] (1)

The function ℱ must be randomized (probability in the above definition is taken over the

randomness of the function ℱ), and Range(ℱ) denotes the output range of ℱ. If the input

dataset is changed in one record, then the probability of any set of outputs S has only a very

small multiplicative difference (𝑒𝜖). This formal definition considers any set of possible

outputs and bounds the ratio of the probability that one of these outputs occurs when an

individual is in dataset versus when it is not. It asserts that the results of the same query run

on both 𝐷 and 𝐷′ should approximately be identical. Satisfying this definition addresses all

concerns about any disclosure of personal information, regardless of presence or absence of

any participant within the dataset, any auxiliary information that an adversary may have,

and also the semantics of the records itself [4].

The parameter 𝜖 is a privacy parameter that is public and specified by the data owner

(normally 0 < 𝜖 < 1) to manage the level of privacy. Sometimes, 𝜖 is interpreted as

leakage, and hence its size is critical. Typically, a smaller value of 𝜖 provides greater

privacy guarantees while with bigger values of 𝜖 we have less privacy but more utility. If ϵ

is very small, then 𝑒𝜖 ≈ 1 + 𝜖 holds [24].

Composability: As we noted in Section 4.2.1.6, several anonymization-based methods

such as k-anonymity and its variants, fail to provide privacy guarantees against composition

attacks (recall that it leaks sensitive data through intersecting independent anonymized

datasets). One of the most important features of differential privacy is that it is robust under

composition, which means a composition of two differentially private queries is also

54

differentially private, i.e., a querier can submit query after query, without compromising

privacy. Theorem 1 and Theorem 2 indicate sequential and parallel composition,

respectively [30].

Theorem 1. Let each randomized query 𝑄𝑖 preserves 𝜖𝑖 -differential privacy, then the

sequence of 𝑄𝑖(𝐷) over the dataset 𝐷 preserves (∑ 𝜖𝑖𝑖)-differential privacy.

Moreover, if a sequence of queries is issued on disjoint subsets of input, then the final

privacy guarantee is acquired through the worst of privacy guarantees, instead of sum (see

Figure 4.3).

Theorem 2. The sequence of queries 𝑄𝑖(𝐷𝑖) over a set of disjoint datasets Di, each

preserving 𝜖𝑖-differential privacy, preserves (max
𝑖

𝜖𝑖)-differential privacy.

Figure 4.3: Composition properties: a) sequential composition and; b) parallel composition.

Group privacy: to achieve full privacy protection through differential privacy guarantees,

we need to consider situations where input datasets differ not only in a single item, but in a

group of items. Suppose an individual is part of a group of records that are collectively

present or absent within a dataset, or the case where multiple records in the dataset contain

Database

a)
b)

55

information of a single user. That is, in Definition 1, what if two datasets (here 𝐷 and 𝐷′)

differ in more than one single item. The definition of differential privacy can extend to

support group privacy using the composability properties. Therefore, to achieve 𝜖 -

differential privacy for datasets 𝐷 and 𝐷′ differing in 𝑐 elements [4]:

𝑃𝑟[ℱ(𝐷) ∈ 𝑆] ≤ 𝑒𝜖𝑐 × 𝑃𝑟[ℱ(𝐷′) ∈ 𝑆] (2)

Note that we have stronger privacy guarantees for small 𝑐, and also when each participant

has few records in the dataset [4].

To achieve 𝜖-differential privacy, a properly chosen random noise must be added to the

output 𝑎 = 𝑓(𝐷), where 𝑓 is a function (e.g., the average height of population in the dataset

satisfying a given predicate) and 𝐷 is the dataset. The question here is how much noise

should be added to the result 𝑎? The magnitude of the noise directly depends on the

sensitivity of the function 𝑓, which measures the maximum change of the function’s result

when any single item opts into, or opts out of, the dataset (i.e., maximum effect any single

input can have on the output). The goal is to hide this effect to protect privacy [4], [24].

4.2.2.2 Function sensitivity

Dwork et al. [4] [24] define function sensitivity as follows:

Definition 2 (sensitivity). The sensitivity of a function 𝑓 ∶ 𝐷 → ℝ𝑑 under ℓ1-norm is

Δ𝑓 = max
𝐷,𝐷′

∥ 𝑓(𝐷) − 𝑓(𝐷′) ∥1 (3)

where the maximum is taken over adjacent datasets 𝐷 and 𝐷′, and d is the number of

outputs.

56

The number of outputs is typically 1, i.e., 𝑑 = 1 (computations that generate a single

output). Normally, in calculating sensitivity, ℓ1-norm19 is used where ∥ 𝑥 ∥1∶= ∑ 𝑥𝑖
𝑛
𝑖=1 . By

this definition, the sensitivity of a concatenation of n queries can be at most the sum up of

the sensitivities of their individual.

Note that the sensitivity does not depend on the dataset and is actually a feature of the

function, so it may be assumed that the sensitivity is known to the querier.

Many common functions have low sensitivity while some others have very high sensitivity.

For example, counting the number of rows in a dataset has sensitivity 1 (i.e., ∆𝑓 = 1),

because removing any single row from the dataset can change the output by at most 1. By

contrast, calculating the maximum height of the people in a database has high sensitivity,

because single person’s height can affect the final output by too much. Differential privacy

works best (add the least noise) for small ∆𝑓, i.e., when the largest influence any single

input can have on the output is low [4].

According to the probabilistic nature of differential privacy, its mechanism is necessarily

randomness, i.e., it is a randomized method. Hence, to satisfy differential privacy, some

mechanisms that rely on adding random noise are applied, such as Laplace mechanism.

Dwork et al. [24] proposed Laplace mechanism, which takes a dataset 𝐷, a function 𝑓, and

a parameter 𝜆, based on which the amount of noise is specified. To mask the effect of a

single input, this mechanism first calculates the actual answer 𝑓(𝐷). Then the actual answer

is perturbed through adding noise according to a Laplace distribution, 𝐿𝑎𝑝(𝜆). That is to

say, 𝑛𝑜𝑖𝑠𝑦 𝑜𝑢𝑡𝑝𝑢𝑡 𝑓′(𝐷) = 𝑓(𝐷) + 𝐿𝑎𝑝(𝜆) . In doing so, the magnitude of noise is

computed according to the sensitivity of the function as well as the value of epsilon.

Theorem 3. Given a function 𝑓 ∶ 𝐷 → ℝ𝑑 , the sensitivity of the function (∆𝑓), and the

privacy parameter 𝜖, Laplace mechanism adds random noise with distribution 𝐿𝑎𝑝(Δ𝑓/𝜖)

to each of the 𝑑 outputs, satisfying 𝜖-differential privacy [24]:

19 https://en.wikipedia.org/wiki/Norm_(mathematics)

https://en.wikipedia.org/wiki/Norm_(mathematics)

57

𝑓′(𝐷) = 𝑓(𝐷) + (𝐿𝑎𝑝(Δ𝑓/𝜖))
𝑑 (4)

As an example, we want to compute noisy 𝑆𝑈𝑀. In general, the sensitivity of the function

𝑆𝑈𝑀 is computed by the largest value in input dataset. Indeed, consider the case where all

the inputs are either 0 or 1, then the sensitivity of the 𝑆𝑈𝑀 is equal to 1 because the largest

value within this input dataset is 1. Hence, to achieve differential privacy, we need to add a

small amount of noise (i.e., 𝐿𝑎𝑝(1/𝜖)) to the output of the 𝑆𝑈𝑀.

As a result, more sensitive queries lead to more data leakage about the presence or absence

of an individual, resulting in adding more random noise to the output. Obviously, the

outputs of such queries are most likely inaccurate. In general, as we have seen before, there

is always a trade-off between minimizing privacy loss and maximizing utility in all

differentially private computations.

4.2.2.3 Privacy budget

Different execution of the same differentially private query returns different answers. That

is, if one asks the same query over and over again, then the average answers to the repeated

query will finally converge to the true answer with high probability despite the noise. That

is, the guarantee provided by differential privacy is degraded gradually under repeated

queries. One possible solution might be giving the same answer to the same query, but it is

not always easy to detect repeated queries. This is because with a sufficiently rich query

language, the same query can be asked in many different ways, and consequently it is

computationally undecidable whether two queries are identical [25].

Accordingly, we cannot issue any number of queries over a sensitive dataset and expect to

have an absolute privacy guarantees as well. For that reason, the number of queries should

be restricted in order to prevent an adversary from obtaining too much information about

given dataset [3]. Moreover, differential privacy is composable, which allows the sequence

of queries to be run on the dataset. This leads to gradually lessen guarantees of differential

privacy [63]. To solve this problem, data owners impose a limit on how many queries can

be answered on their database, ensuring that multiple queries do not degrade privacy.

58

The need to limit the number of computations coupled with the composability feature of

differential privacy yield a notion of privacy, called “privacy budget”. Privacy budget

actually limits the amount of information that a sequence of queries can obtain about any

individual’s information within a dataset.

The value of the privacy budget is normally fixed and set by the data owner up front to

dictate his privacy requirements. Its value is then consumed gradually as queries are

answered [3], [24]. Every time a new query is issued, the system first checks the remaining

balance on the privacy budget and if it is adequately high, then allows the query to run on

data. The budget is then deducted depending on how “private” each query is. Once the

budget is exhausted, answering any more queries is refused and the querier can no longer

get the results [64].

Having done so, an adversarial query “Has Peter been diagnosed with HIV?” could not

acquire any accurate answer because its cost would exceed any reasonable privacy budget.

For instance, if 𝜖 is a privacy budget, then a sequence of queries 𝑄𝑖(𝐷) where each query

satisfies ϵi-differential privacy, can be securely and independently answered as long as

∑ 𝜖𝑖𝑖 ≤ 𝜖, without any privacy violation due to the aggregation of these queries. In this

example, after submitting a 𝜖𝑖-differentially private query, the system subtracts 𝜖𝑖 from the

privacy budget (here 𝜖), and then returns answer only if 𝜖 ≠ 0 holds [64].

Intuitively, to have a stronger privacy, a lower privacy budget should be specified, which in

turn can impact several limitations on the data utility. However, almost all the robust and

practical privacy mechanisms come at a price of loosing utility. Further, the way to

properly set a privacy budget, as well as efficiently distributing this limited budget between

multiple queries, is another issue [63] [65]. In fact, an inappropriate allocation of the

privacy budget would cause incorrect data analysis and decrease the number of queries that

can be securely answered on the database. In this regard, Mohan et al. [65] proposed a new

model that efficiently distributes the limited privacy budget across various queries, so that

more queries can be answered on the dataset.

61

This platform provides a thin layer in front of raw input data to not allow the querier to

directly access the original data. The querier is rather remote and only able to submit

queries to the system over a network (see Figure 5.1). However, McSherry [30] admitted

this indirect access as the main limitation of his approach.

Compared to the previous methods, PINQ has two main advantages [30]:

1. PINQ enables the querier to run his computation against unmasked and unaltered

data that gives high fidelity outputs. This is in contrast to anonymization-based

methods, where the querier is not allowed to touch raw data.

2. PINQ runs the analyst’s computation without any need to audit it. This is in contrast

to interactive analysis where the querier must convince the data provider that his

query is safe and the auditor decides which queries are OK.

The queries are thus constrained to differentially private implementations of current

transformations and aggregations written in LINQ that return aggregate results to the

querier. The queriers pose whatever queries through allowed transformations, and set the

accuracy for aggregations. The data provider based on his privacy policies implements a

PINQAgent that has an Alert method, where the PINQAgent ensures that the privacy budget

is not exceeded. Each PINQAgent is supposed to return a boolean value that determines

whether the request will be accepted or rejected. After forwarding each request, the budget

is decremented [30].

Figure 5.1: PINQ provides as a thin protective layer in front of raw input data [30].

Through this platform, the queries do not need to use a set of fixed aggregations which

limit further usage; instead, they benefit from a programming language that enables them to

63

is the first platform that incorporates mandatory access control with differential privacy and

enables wide range of MapReduce computations on sensitive data (both trusted and

untrusted). It provides strong privacy guarantees for any individuals’ record within

statistical databases particularly against untrusted code. It aims at maximizing the accuracy

of answers to queries, while minimizing the probability of detecting any particular record.

As illustrated in Figure 5.2, Airavat has three main entities [3]:

1. Data provider: it is considered as the trusted party. Data provider sets several

privacy parameters (e.g., epsilon, privacy budget, etc.) as well as different access

control labels for their own data. This is done before uploading the data to Airavat

without any need to audit all the submitted MapReduce codes.

2. Computation provider: this can be seen as an insurance company, a university

researcher, or a drugstore person who is mostly considered as an untrusted party.

This entity might attempt to access input values, intermediate values, or even the

final output through malicious data mining algorithms written in a familiar

MapReduce framework.

3. Airavat framework: it is a trusted cloud-based environment that comprises modified

MapReduce, distributed file system, Java Virtual Machine (JVM), and SELinux as

the underlying operating system.

Figure 5.2: An overview of the Airavat architecture [3].

64

Data providers first specify privacy policies for their sensitive information through setting

appropriate values of multiple privacy parameters. Then, Airavat enforces those pre-defined

policies to confine computations performed by computation providers and ensures

comprehensive protection for data against any leaks beyond those policies. Once the

privacy budget has been exhausted, the mandatory access control will be triggered so that

the output is no longer public and MAC is the only privacy protection mechanism. To

demonstrate the practically of Airavat and its flexibility, the authors evaluated this system

by performing several case studies including AOL search queries, a recommender system

using Netflix data, and clustering and classification algorithms.

This work aims at addressing the main following questions:

1. What is the programming model?

2. How to enforce robust privacy guarantees to sensitive data?

3. What computations can be supported in Airavat?

Programming model

The programming model of Airavat is similar to standard Mapreduce framework, thus all

developers and programmers, who are already familiar with this interface and programming

language, can easily work with Airavat.

Airavat modified MapReduce framework through splitting it into "untrusted mapper" and

"trusted reducer". Rather than writing the reducers by computation providers, Airavat

provides them a few reducers and they are supposed to use those allowed reducers to write

their MapReduce programs. The core goal behind Airavat is to confine the untrusted code

and run it over un-modified dataset instead of auditing the code. Therefore, the only

challenge here is how to confine the untrusted mapper codes, which can be any piece of

Java code.

Privacy enforcement mechanisms

Untrusted mappers might exploit system resources to disclose information like copy data

and send it over the network. To prevent any disclosure through system resources (e.g.,

65

files, network connections, names of running programs, etc.), Airavat runs on SeLinux [67]

as the underlying operating system and modifies MapReduce framework in order to enforce

SELinux’s mandatory access control and support labels. The output of the computation

itself might be an information channel as well. Suppose a query outputs 1 million if Alex

bought some kind of drug; otherwise, outputs zero. In these cases, access control alone is

not sufficient to prevent leaks through the computation’s output. Hence, Airavat enforces

differential privacy to ensure that the result of an aggregate computation will not reveal any

information about any single input.

Both mentioned mechanisms (MAC and Differential privacy) have their own importance

and Airavat needs to have them together to give an end to end privacy and security

guarantee. To enforce them, the authors modified Java Virtual Machine (500 lines of code),

MapReduce framework (2,000 lines of code), HDFS (3,000 lines of code), and SELinux

policy (450 lines of code). In this system, differential privacy and MAC work interactively,

it means that: “if a MapReduce computation is differentially private, the security level of its

result can be safely reduced.” Using Airavat, neither the data provider nor the computation

provider requires to understand the complexity of implementation and enforcement of

differential privacy [3].

As the computations computed by untrusted mappers and their corresponding sensitivity

are unknown, Airavat requires computation providers to declare the range of their mapper

outputs in advance. Airavat then uses it to estimate sensitivity. To that end, as illustrated in

Figure 5.3, each mapper is equipped with a range enforcer. It ensures that if an output is

produced outside the declared range by a malicious mapper, it will be replaced by a value

inside the range while the computation provider is never notified of this change, because

the notification itself would be a channel of information leak [3].

66

Figure 5.3: An overview of range enforcers. Trusted parts are shaded [3].

The range enforcer prioritizes privacy over accuracy in order to preserve privacy; however,

the results may no longer be accurate or even meaningful. To enforce differential privacy,

Airavat reducers add random noise to the output of MapReduce computations based on

both the estimated sensitivity (exact sensitivity in case of trusted mappers) and the

parameter ϵ (set by data provider) [3].

Supported computations in Airavat

Airavat supports some trusted reducers including SUM, COUNT, and THRESHOLD that

can run directly on the mappers’ output and are responsible for enforcing differential

privacy through adding an appropriate amount of random noise to the output. One may

consider this set of reducers very restricted but the authors declared that they would be

sufficient to perform almost any data mining algorithms, process the search logs, and even

write recommendation systems like Netflix [3]. In this regard, Tran and Sato [68] improved

the utility of Airavat by extending it through allowing users to also write reducers by

themselves, rather than using a fixed set of reducers provided by Airavat.

In general, both trusted and untrusted mappers are supported in Airavat. Many queries can

be answered using untrusted mappers, e.g., the query "How many iPhone 6s were sold

today?" can be answered with an untrusted mapper because the key (“iPhone 6s” in this

case) is declared as part of the query prior to release the answer. By contrast, the query that

directly outputs keys as part of its output must be produced only by trusted mappers.

67

Because outputting a particular key can leak information about an individual input. In this

case, Airavat returns (noisy) answers associated with a key or list of keys only if the

computation provider declares these keys as part of his computation. For example, the

query “List the top K items and their quantities sold in a store” requires trusted mapper.

The reason is that the query, in this example, prints item names in which keys are text

strings that can open a storage channel for malicious mappers to leak information. Thus,

Airavat does not return non-numeric values when the query outputs keys as the essential

part of the result. With trusted mappers, more general queries are possible using exact

sensitivity instead of range based estimates [3].

Systems like PINQ and Airavat provide robust privacy guarantees that allow any

programmer to submit a batch of queries in a differentially private way without needing to

know how to do Laplace or exponential mechanism. Among these two, Airavat seems to be

more powerful than PINQ. The reason is that, PINQ provides a restricted programing

language, through which the computation provider must rewrite his computation using

trusted PINQ primitives. In contrast, Airavat takes untrusted user’s computation, confine it,

and then run it without modifying it. However, Airavat requires the querier to write his

query in a MapReduce programming paradigm. Furthermore, Airavat offers end-to-end

guarantees, while the guarantees of PINQ are mostly language level [3].

However, both systems are vulnerable to several covert channels by adversarial queries.

Covert channels can break differentially private systems, because leaking even one bit of

sensitive data can be enough to violate guarantees provided by these systems. As an

example, a malicious query can easily send a bit to the adversary through sleeping the

query for a long time when a specific record is found in the sensitive database [64].

Thus, differential privacy needs a defense against covert channels. Even restricting

information leakage by refusing computations that leak more than a threshold number of

bits does not provide full privacy protection. As we said, even one bit is too much.

Furthermore, the refusal itself can leak one bit to disclose the presence of a given individual

in the input data, resulting in an unacceptable loss in privacy [66].

69

information. That is, a malicious query might run some sub-queries that consume a lot of

(or even exhaust all the remaining) privacy budget when a given condition is satisfied.

Once the answer is returned, the adversary simply detects the change in the budget by

checking how many more queries he can submit [64].

Timing attacks

This kind of attack uses computation time as a side-channel to leak information. A query

can simply send a bit to an attacker through pausing for a specific time or invoking an

infinite loop when a certain predicate is satisfied [64]. Suppose a query that always returns

noisy sum as its output but takes 5 minutes if Bob has cancer and 1 micro second

otherwise; then based on the considerably change in the query completion time, the

adversary can infer that Bob has cancer. In the context of differentially private systems

such as Airavat and PINQ, this assumed query is considered safe and differentially private.

However, the adversary can learn private data with certainty by only looking at the

execution time not the result itself (he actually might not care about the result of his

query!). Infinite loops (non-termination) results in timing channel attacks as well.

Mapping operations are considered as microqueries, which computes over a single database

row at a time. Macroqueries are some reducing operations that merge the outputs of

running microqueries on each row of the database, and finally perturb the total output

through random noise. In simple words, microqueries and macroqueries can be seen as

mappers and reducers respectively. In both PINQ and Airavat, each query may comprises a

sequence of chained microqueries along with macroqueries. Possible solutions such as

simple microquery timeout or reducing the bandwidth of the covert timing channels by

making all clocks noisy [69] are not completely effective. Moreover, billing information

provided to the cloud users containing execution time can be viewed as a timing channel to

leak private data, which cannot be completely closed through quantizing billing units (e.g.,

billing in multiples of $20) or grouping billing over a period of time (e.g., monthly) [3]

[64].

72

Defending against timing attacks: to avoid leaking information via query completion time,

there are two scenarios [64]:

1. Time can be viewed as an additional output of the query so that a query would have

two outputs: the output value, and the time taken by the query to complete.

Therefore, the same mechanisms, i.e., sensitivity estimation and appropriate

perturbation with noise already used for data outputs, would be taken into account

for query time as well. It seems to be a promising and interesting approach,

however, this is not an easy task to clearly calculate the sensitivity of a query in

time domain.

2. An alternative is to ensure that a given computation takes the same amount of time

that the result arrives for all possible datasets of a given size. To do so, the time has

to depend only on the size of the dataset, which is supposed to be public. This can

be achieved through making the completion time of the query predictable using the

predictable query processor component in Fuzz, which enforces a fixed amount of

time for each microquery. Making the query completion time depend only on the

size of the database, and not its contents, avoids a potentially adversarial query from

learning private information by looking at the execution time.

For each microquery m, in this scenario, the querier specifies a timeout T, then each time m

processes a row r in the database [64]:

 If it is completed earlier than T, then Fuzz waits until time T elapses and produces

the output of m afterward.

 If it is not completed within T, then Fuzz aborts the microquery and proceeds to the

next row in order to deallocate any resources associated with that microquery before

terminating T. However, such aborting itself can leak information to an adversary.

In this case, the authors decide to return a default value d instead, i.e., Fuzz returns

the answer to the query if the query completes within T, or d otherwise.

Accordingly, one may have two questions in mind [64]:

1. Do default values impact on utility?

73

2. Do default values violate privacy?

To address first question, in case of non-adversarial queries, default values are never

returned if the querier choose timeouts properly. Therefore, default values impact on no

queries, but adversarial queries. According to the second question, it may seem that default

values open a data channel through changing the query's answer, but this is not the case:

remember that Fuzz and therefore d must not depend on the contents of the dataset.

Besides, timeouts are enforced on the microqueries not the whole query and default values

should be chosen from the expected output range that a microquery terminates without a

timeout. At the end, the final answer is noised (based on the sensitivity) before it is returned

[64].

Defending against privacy budget attacks: since vulnerable systems to this kind of attack

dynamically determine the privacy ‘cost’ of a query, the system’s decision whether or not

to execute a query can be influenced by an adversarial query. The reason is that an

adversary can associate this decision with the contents of the private dataset and not with

the queries. To close budget-based channels, queries are first type-checked through Fuzz

that statically checks the cost of each query (rather than dynamically) before running it

using the type system from [72]. Having done so, the deduction from the privacy budget

does not rely on the contents of the database at all [64].

Defending against state attacks: to avoid microqueries from communicating through

global variables, a microquery should be prevented from updating a static variable. To do

so, language design of Fuzz does not support global variables, i.e., Fuzz disallow the

querier to use global variable in his query. Thus, global variables can be neither accessed

nor modified by any microquery [64].

Haeberlen et al. [64] pointed out that the implementation of Fuzz is practical and expressive

enough to handle realistic queries and prevent all discussed covert-channel attacks at the

same time. However, defensive mechanisms used in Fuzz come at the price of a greater

query completion time, which is negligible compared to the defenses it provides.

74

In addition to Fuzz, Mohan et al. [65] designed GUPT, a platform for differentially private

data mining, which is safe to all previously mentioned side-channel attacks. In the rest of

this chapter, we mention some of the main specifications of GUPT very shortly. Note that

for more details about this system and how its defence mechanisms exactly work, we

recommend that you read the full version of the GUPT paper.

GUPT enhances the accuracy of data analysis while not shrinking data privacy, using a new

model for data sensitivity called aging of sensitivity. The aging model of data sensitivity

makes private data less sensitive over time through considering weaker privacy

requirements for older records. GUPT uses this aged data to appropriately distributes the

given privacy budget 𝜖 across multiple queries with respect to the querier's desired

accuracy of the final output. This provides more accurate answer without shrinking the

privacy guarantees. Less sensitive data can then be used to set optimal privacy parameters

for executing queries on the newer data [65].

Contrast to PINQ, GUPT supports a wider range of unmodified computations with no need

to rewrite them to be differentially private. Unlike Airavat, in which only mappers are any

piece of codes written by the querier while reducers must be trusted and provided by the

system; GUPT assumes the entire computation as a black box that can be completely

untrusted or even malicious.

In addition, it eliminates many defects that exist in mentioned differential privacy systems,

i.e., PINQ and Airavat, without sacrificing neither accuracy nor privacy. GUPT guarantees

high performance and fast runtime through parallelizing the program across a cluster,

ensuring a fine level of scalability for concurrent programs [65].

To defend against state attacks, GUPT computes the entire computation in an isolated

execution environment in a manner that lets the querier observe only the final output and

not any intermediate output or static variables. In case of privacy budget attacks, managing

the privacy budget is handled by GUPT itself, rather than untrusted program. Defensive

mechanisms in GUPT to handle timing attacks are the same as in Fuzz. Evaluation of

GUPT demonstrates that GUPT boost the accuracy of data analysis and properly manages

78

deserves. Some restrictions must be enforced on submitted users’ queries in terms of

different levels of access for different users’ roles.

Therefore, to achieve differential privacy together with RBAC, the data owner needs to

define different roles depending on what type of data he possesses, and then specify the

following parameters:

 Different values of 𝜖 to control the level of privacy. As previously mentioned,

smaller 𝜖 results in more privacy but less accuracy. For example, for computing the

average of the scholarships and education grants on a university dataset, data

provider set bigger ϵ for more trusted roles (e.g., director of department) leading to

add less amount of noise to the output, and thus providing more accurate result.

 Different values of the privacy budget to ensure fairness. Same privacy budget can

be set for all roles where system only subtracts different values of 𝜖 according to

different roles from this budget after submitting a query. A better way to preserve

privacy might be considering different values of budget based on roles is.

When a querier sends a request to access data, the system first checks his role(s) to review

his access levels to decide how to accomplish his request. for example, an external querier

may have a fixed and limited budget to submit his queries; while an internal querier not

only have more access to all product and data, he also can run more queries (in the form of

more privacy budget) while receiving more accurate answers (in the form of greater value

of epsilon).

We use the same paradigm as Airavat, where users can write their queries in a familiar

MapReduce framework.

Since a user can belong to different roles, the system enforces one of the following

situations after he logs in [14] [20]:

1. He will obtain all of the permissions associated with his multiple roles at the same

time (core RBAC).

80

example, 𝑠𝑎𝑙𝑎𝑟𝑦 attribute is assumed to be more private than 𝐴𝑔𝑒 attribute within the

database 𝐷. So, we apply either additive or multiplicative noise addition methods to the

values of the 𝑠𝑎𝑙𝑎𝑟𝑦 attribute.

The data owner first defines multiple roles for his own database 𝐷 , which contains

employees’ information. The Querier provides Map and Reduce codes to compute the

average salary, which is computed by calculating SUM and dividing it by COUNT. ConfAtts

is the set of confidential attributes (here 𝑠𝑎𝑙𝑎𝑟𝑦).

After logging the querier to the database, his role is first checked and then permissions for

his role are updated by inheriting from low-grade roles in case of using role hierarchies

feature. According to the role, 𝜖 and privacy budget 𝑃𝐵 is set, and also confidential

attributes values will be transformed by adding or multiplying a randomized number.

The Map phase first checks if the amount of 𝑃𝐵 is enough to proceed and then subtracts 𝜖

from this budget. Afterwards, each record 𝑟 is passed to a map task that maps 𝑟 into a list

of key/value pairs where key is 𝑔𝑒𝑛𝑑𝑒𝑟 and value is the perturbed salary amount satisfying

the given condition, i.e., when 𝑎𝑔𝑒 ≥ 30.

In the Reduce phase, the reducer accepts the intermediate key (i.e., gender emitted from the

Map phase) and a set of values for that key. It then sums up these values together. Then the

true sum as well as the true count should be perturbed through adding Laplace noise in

order to achieve differential privacy. And finally, noisy average will be calculated and

returned to the querier.

81

Algorithm 6.1: an example of combining differential privacy and RBAC to calculate NoisyAvg.
Input:

- The Data Owner: 𝑫, 𝑹𝒐𝒍𝒆𝒔
- The Querier: Map, Reduce
- ConfAtts

Output:
- 𝐍𝐨𝐢𝐬𝐲𝐀𝐯𝐠

Process:
 Check Role and Update permissions;
 Set 𝜖 and PB based on the Role;
 Apply random noise to ConfAtts;
 Map phase

 Map (Integer key, String values) {
 //key : record number
 //values : record contents

 if (𝑃𝐵 < 𝜖) {
 TERMINATE
 }
 𝑃𝐵 = 𝑃𝐵 − 𝜖;
 foreach record 𝑟 in 𝐷 do {

 While 𝑟. 𝑔𝑒𝑛𝑑𝑒𝑟 is 𝑚𝑎𝑙𝑒 and 𝑟. 𝑎𝑔𝑒 is more than 30 do {
 Emit (𝑘𝑒𝑦: 𝑔𝑒𝑛𝑑𝑒𝑟, 𝑣𝑎𝑙𝑢𝑒: 𝑠𝑎𝑙𝑎𝑟𝑦)
 }
 end While
}
end foreach

 }
Reduce phase

 Reduce (String key, Iterator values) {
 //key: 𝑔𝑒𝑛𝑑𝑒𝑟
 //values: list of 𝑠𝑎𝑙𝑎𝑟𝑦 values 𝑣𝑎𝑙
 Set COUNT and SUM to 𝑧𝑒𝑟𝑜

 foreach 𝑣𝑎𝑙 in values do {
 SUM+= 𝑣𝑎𝑙;
 COUNT++;

 }
 end foreach
 NoisySUM = SUM + 𝐿𝑎𝑝(Δ𝑓/𝜖);
 NoisyCOUNT = COUNT + 𝐿𝑎𝑝(1.0/𝜖); // COUNT has sensitivity 1
 NoisyAvg = (NoisySUM / NoisyCOUNT);
 Emit (NoisyAvg);
 }

Also, some other situations can be considered in this algorithm such as:

83

and more accurate result for some key and trusted roles while denaturing the results

according to the significance of other roles within the system. Section 6.3 described that

using non-private and public data can improve accuracy yet achieve differentially private

outputs. The next chapter is dedicated to the conclusion of this dissertation as well as the

suggestions for possible future research directions.

85

need to audit untrusted code while providing different levels of accuracy according to the

users’ roles. Compared to other differentially private systems like Airavat, we expect to

have better usability for our proposed algorithm, because we considered raw input dataset

as well as more accurate results for trusted roles. Moreover, non-private records in a dataset

and even public dataset about the same individuals can be used to further improve the

accuracy of the output.

However, this dissertation has not demonstrated to what extent our algorithm is practical

since we have not evaluated it on any data mining computations. We leave this part to the

future work and we hope that this idea leads to a different and new approach to privacy-

preserving researches.

Also, it may be worthwhile to study what else can be done to optimize the usability of

differential privacy. While this technique is an important step beyond anonymizing-based

techniques, it has a number of issues that need to be addressed.

For example, unique values within a dataset (values that appear one time) can create an

exploitable channel to leak information about a specific item in the dataset. For example, an

adversary may attempt to encode to a unique value. To address this problem, one may think

that potentially malicious unique values can be replaced by a random number within a pre-

defined range, or simply removed. However, there would be a possibility that the dataset

has a lot of unique values. So, in such case, the result will be no longer correct. This is a

disadvantage of unique value replacement way. Hence, we believe some scope of

improvements still remain over differential privacy.

Another promising direction for future work can be developing more efficient privacy

preservation techniques through combining two or more already existing techniques. The

emphasis can be placed on providing an optimum level of data perturbation in order to

maintain a perfect balance between data privacy and utility.

86

Bibliography

[1] “Welcome to ApacheTM Hadoop®!” Available: http://hadoop.apache.org/.

[2] F. Y. Chin and G. Ozsoyoglu, “Auditing and Inference Control in Statistical
Databases,” IEEE Trans. Softw. Eng., vol. SE-8, no. 6, pp. 574–582, 1982.

[3] I. Roy, S. T. V Setty, A. Kilzer, V. Shmatikov, and E. Witchel, “Airavat : Security
and Privacy for MapReduce,” Proc. 7th USENIX Conf. Networked Syst. Des.
Implement., vol. 19, no. 13, p. 20, 2010.

[4] C. Dwork, “Differential privacy,” Proc. 33rd Int. Colloq. Autom. Lang. Program.,
pp. 1–12, 2006.

[5] D. Sun, G. Chang, L. Sun, and X. Wang, “Surveying and analyzing security, privacy
and trust issues in cloud computing environments,” Procedia Eng., vol. 15, pp.
2852–2856, 2011.

[6] C. Dwork, “The promise of differential privacy: A tutorial on algorithmic
techniques,” Proc. - Annu. IEEE Symp. Found. Comput. Sci. FOCS, pp. 1–2, 2011.

[7] L. Sweeny, “k-anonymity: A model for protecting privacy,” Int. J. Uncertainty,
Puzziness Knowledge-Based Syst., vol. 10, no. 5, pp. 557–570, 2002.

[8] M. Barbaro and T. Zeller, “A face is exposed for AOL searcher No. 4417749,” New
York Times, pp. 1–3, 2006.

[9] D. Kawamoto and E. Mills, “AOL apologizes for release of user search data,” CNET,
August, vol. 7, 2006.

[10] A. Narayanan and V. Shmatikov, “Robust de-anonymization of large sparse
datasets,” Proc. - IEEE Symp. Secur. Priv., pp. 111–125, 2008.

[11] N. Homer, S. Szelinger, M. Redman, D. Duggan, W. Tembe, J. Muehling, J. V
Pearson, D. A. Stephan, S. F. Nelson, and D. W. Craig, “Resolving individuals
contributing trace amounts of DNA to highly complex mixtures using high-density
SNP genotyping microarrays,” PLoS Genet., vol. 4, no. 8, p. e1000167, 2008.

[12] P. Samarati and S. De Capitani, “Access Control : Policies , Models , and
Mechanisms,” Found. Secur. Anal. Des., vol. 2171, pp. 137–196, 2001.

[13] R. S. Sandhu and P. Samarati, “Access control: principle and practice.” pp. 40–48,
1994.

[14] S. Harris, All in One CISSP. 2008.

87

[15] S. Osborn, R. Sandhu, and Q. Munawer, “Configuring role-based access control to
enforce mandatory and discretionary access control policies,” ACM Trans. Inf. Syst.
Secur., vol. 3, no. 2, pp. 85–106, 2000.

[16] M. Nyanchama and S. Osborn, “Modeling Mandatory Access Control in Role-Based
Security Systems,” Database Secur. VIII Status Prospect., pp. 129–144, 1995.

[17] R. Sandhu and R. Sandhu, “Role Hierarchies and Constraints for Lattice-Based
Access Controls,” Proc. Forth Eur. Symp. Res. Comput. Secur., pp. 65–79, 1996.

[18] R. Sandhu and Q. Munawer, “How to do discretionary access control using roles,”
Proc. third ACM Work. Role-based access Control - RBAC ’98, pp. 47–54, 1998.

[19] Q. Ni, E. Bertino, J. Lobo, C. Brodie, C.-M. Karat, J. Karat, and A. Trombeta,
“Privacy-aware role-based access control,” ACM Trans. Inf. Syst. Secur., vol. 13, no.
3, pp. 1–31, 2010.

[20] R. S. Sandhu, D. Ferraiolo, and R. Kuhn, “The NIST Model for Role-Based Access
Control: Towards A Unified Standard,” 5th ACM Workshop on Role Based Access
Control. pp. 47–63, 2012.

[21] C. Dwork, “Ask a better question, get a better answer a new approach to private data
analysis,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect.
Notes Bioinformatics), vol. 4353 LNCS, pp. 18–27, 2006.

[22] C. Dwork, “Differential privacy: A survey of results,” Theory Appl. Model. Comput.,
vol. 4978, pp. 1–19, 2008.

[23] C. Dwork, “An Ad Omnia Approach to Defining and Achieving Private Data
Analysis,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect.
Notes Bioinformatics), vol. 4890 LNCS, pp. 1–13, 2008.

[24] C. Dwork, F. McSherry, K. Nissim, and A. Smith, “Calibrating noise to sensitivity in
private data analysis,” Proc. 3rd Theory Cryptogr. Conf., pp. 265–284, 2006.

[25] C. Dwork, “I’m in the Database, but Nobody Knows | Berkman Center,” 2010.
Available: https://cyber.law.harvard.edu/interactive/events/luncheon/2010/09/dwork.

[26] F. McSherry and K. Talwar, “Mechanism Design via Differential Privacy,” 48th
Annu. IEEE Symp. Found. Comput. Sci., pp. 94–103, 2007.

[27] X. Han, M. Wang, X. Zhang, and X. Meng, “Differentially Private Top-k Query over
Map-Reduce,” Proc. fourth Int. Work. Cloud data Manag., pp. 25–32, 2012.

[28] G. Jagannathan, C. Monteleoni, and K. Pillaipakkamnatt, “A Semi-Supervised
Learning Approach to Differential Privacy,” 2013 IEEE 13th Int. Conf. Data Min.
Work., pp. 841–848, 2013.

88

[29] O. Chapelle, B. Schölkopf, and A. Zien, Semi-Supervised Learning. Cambridge,
MA, USA: MIT Press, 2006.

[30] F. McSherry, “Privacy integrated queries: an extensible platform for privacy-
preserving data analysis,” Proc. 2009 ACM SIGMOD Int. Conf. Manag. data, pp.
19–30, 2009.

[31] Z. Wang, “Security and Privacy Issues within the Cloud Computing,” Int. Conf.
Comput. Inf. Sci. (ICCIS), 2011, pp. 175–178, 2011.

[32] S. Subashini and V. Kavitha, “A survey on security issues in service delivery models
of cloud computing,” J. Netw. Comput. Appl., vol. 34, no. 1, pp. 1–11, 2011.

[33] M. Hogan, F. Liu, A. Sokol, and J. Tong, “NIST Cloud Computing Standards
Roadmap,” NIST Spec. Publ., p. 35, 2011.

[34] S. Nepal and M. Pathan, “Security, Privacy and Trust in Cloud Systems,” Springer
Berlin Heidelb., 2014.

[35] A. F. Barsoum and M. A. Hasan, “On Verifying Dynamic Multiple Data Copies over
Cloud Servers,” Eprint Arch., pp. 1–30, 2011.

[36] S. Kaur and A. Singh, “The Concept of Cloud Computing and Issues Regarding its
Privacy and Security,” Int. J. Eng. Res. Technol., vol. 1, no. 3, pp. 1–5, 2012.

[37] T. Altameem, “A Replication-Based and Fault Tolerant Allocation Algorithm for
Cloud Computing,” vol. 4, no. 12, pp. 395–399, 2014.

[38] K. Popovic and Z. Hocenski, “Cloud computing security issues and challenges,”
MIPRO, 2010 Proc. 33rd Int. Conv., pp. 344–349, 2010.

[39] A. Jacobs, “The Pathologies of Big Data,” Commun. ACM, vol. 52, no. 8, pp. 36–44,
2009.

[40] S. Bhardwaj, L. Jain, and S. Jain, “Cloud computing: A study of infrastructure as a
service (IAAS),” Int. J. Eng. Inf. Technol., vol. 2, no. 1, pp. 60–63, 2010.

[41] P. K. Tiwari and B. Mishra, “Cloud Computing Security Issues , Challenges and
Solution,” Int. J. Emerg. Technol. Adv. Eng., vol. 2, no. 8, pp. 306–310, 2012.

[42] R. Magoulas and B. Lorica, “Introduction to big data. Release 2.0.,” O’Reilly Media,
Inc., no. 11, 2009.

[43] P. Zikopoulos, D. DeRoos, C. Bienko, R. Buglio, and M. Andrews, “Big Data
Beyond the Hype” A Guide to Conversations for Today’s Data Center, vol. 33. 2014.

[44] Z. Majkić, Big Data Integration Theory: Theory and Methods of Database
Mappings, Programming Languages, and Semantics. Springer Science & Business
Media, 2014.

89

[45] “Apache Hadoop.” Available: https://en.wikipedia.org/wiki/Apache_Hadoop.

[46] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing on Large
Clusters,” Commun. ACM, vol. 51, no. 1, pp. 107–113, 2008.

[47] I. Dinur and K. Nissim, “Revealing information while preserving privacy,” Proc.
twenty-second ACM SIGMOD-SIGACT-SIGART Symp. Princ. database Syst., pp.
202–210, 2003.

[48] J. Kleinberg, C. Papadimitriou, and P. Raghavan, “Auditing Boolean attributes,” J.
Comput. Syst. Sci., vol. 66, no. 1, pp. 244–253, 2003.

[49] K. Kenthapadi, N. Mishra, and K. Nissim, “Simulatable auditing,” Proc. Twenty-
Fourth ACM SIGMOD-SIGACT-SIGART Symp. Princ. Database Syst., pp. 118–127,
2005.

[50] E. O. Blass, R. Di Pietro, R. Molva, and M. Önen, “PRISM - Privacy-preserving
search in MapReduce,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif.
Intell. Lect. Notes Bioinformatics), vol. 7384 LNCS, pp. 180–200, 2012.

[51] E. Lin, “Towards Privacy-Preserving Keyword Search via MapReduce Report on
Project Completion,” pp. 1–4, 2012.

[52] N. Cao, C. Wang, M. Li, K. Ren, and W. Lou, “Privacy-preserving multi-keyword
ranked search over encrypted cloud data,” Proc. - IEEE INFOCOM, vol. 25, no. 1,
pp. 829–837, 2011.

[53] X. Zhang, C. Liu, S. Nepal, S. Pandey, and J. Chen, “A privacy leakage upper bound
constraint-based approach for cost-effective privacy preserving of intermediate data
sets in cloud,” IEEE Trans. Parallel Distrib. Syst., vol. 24, no. 6, pp. 1192–1202,
2013.

[54] K. Mivule, “Utilizing Noise Addition for Data Privacy , an Overview,” Proc. Int.
Conf. Inf. Knowl. Eng. (IKE 2012), pp. 65–71, 2012.

[55] P. Samarati and L. Sweeney, “Protecting Privacy when Disclosing Information: k-
Anonymity and its Enforcement Through Generalization and Suppresion.,” Proc
IEEE Symp. Res. Secur. Priv., pp. 384–393, 1998.

[56] A. Machanavajjhala, D. Kifer, J. Gehrke, and M. Venkitasubramaniam, “l-diversity:
Privacy beyond k-anonymity,” ACM Trans. Knowl. Discov. Data, vol. 1, no. 1, p. 3–
es, 2007.

[57] N. Li, T. Li, and S. Venkatasubramanian, “t-Closeness : Privacy Beyond k-
Anonymity and ℓ-Diversity,” Data Eng. 2007. ICDE 2007. IEEE 23rd Int. Conf. on.
IEEE, no. 3, pp. 106–115, 2007.

[58] Y. Rubner, C. Tomasi, and L. J. Guibas, “The earth mover’s distance as a metric for

90

image retrieval,” Int. J. Comput. Vis., vol. 40, no. 2, pp. 99–121, 2000.

[59] J.-W. Byun, Y. Sohn, E. Bertino, and N. Li, “Secure anonymization for incremental
datasets,” in Secure Data Management, Springer, 2006, pp. 48–63.

[60] X. Xiao and Y. Tao, “M-invariance: towards privacy preserving re-publication of
dynamic datasets,” SIGMOD Conf., pp. 689–700, 2007.

[61] R. C.-W. Wong, A. W.-C. Fu, K. Wang, Y. Xu, and P. S. Yu, “Can the Utility of
Anonymized Data be used for Privacy Breaches?,” ACM Trans. Knowl. Discov. from
Data, vol. 5, no. 3, p. 11, 2009.

[62] S. R. Ganta, S. P. Kasiviswanathan, and A. Smith, “Composition Attacks and
Auxiliary Information in Data Privacy,” Proc. 14th ACM SIGKDD Int. Conf. Knowl.
Discov. data mining. ACM, pp. 265–273, 2008.

[63] C. Clifton and T. Tassa, “On syntactic anonymity and differential privacy,” Trans.
Data Priv., vol. 6, no. 2, pp. 161–183, 2013.

[64] A. Haeberlen, B. C. Pierce, and A. Narayan, “Differential privacy under fire,”
USENIX Secur. Symp., p. 33, 2011.

[65] P. Mohan, A. Thakurta, E. Shi, D. Song, and D. E. Culler, “GUPT: Privacy
preserving data analysis made easy,” Proc. 2012 ACM SIGMOD Int. Conf. Manag.
Data, pp. 349–360, 2012.

[66] F. McSherry and R. Mahajan, “Differentially-private network trace analysis,” ACM
SIGCOMM Comput. Commun. Rev., vol. 40, no. 4, pp. 123–134, 2010.

[67] B. McCarty, SELinux: NSA’s Open Source Security Enhanced Linux. O’Reilly,
2005.

[68] Q. Tran and H. Sato, “A Solution for Privacy Protection in MapReduce,” Comput.
Softw. Appl. Conf. (COMPSAC), 2012 IEEE 36th Annu., pp. 515–520, 2012.

[69] W.-M. Hu, “Reducing timing channels with fuzzy time,” Proceedings. 1991 IEEE
Comput. Soc. Symp. Res. Secur. Priv., 1991.

[70] “Caml Light website.” Available: http://caml.inria.fr/caml-light/.

[71] X. Leroy, “The ZINC experiment: an economical implementation of the ML
language,” no. 1, p. 100, 1990.

[72] J. Reed and B. C. Pierce, “Distance makes the types grow stronger,” ACM SIGPLAN
Not., vol. 45, no. 9, p. 157, 2010.

[73] N. Damianou, A. K. Bandara, M. Sloman, and E. C. Lupu, “A survey of policy
specification approaches,” Dep. Comput. Imp. Coll. Sci. Technol. Med. London, vol.
4, no. April, pp. 1–37, 2002.

91

[74] Z. Ji, S. Diego, S. Wang, and L. Ohno-machado, “Differentially private distributed
logistic regression using private and public data,” Kdd’13, vol. 7, no. Suppl 1, p.
S14, 2013.

[75] I. Foster, “What is the Grid ? A Three Point Checklist,” GRID today, vol. 1, pp. 32–
36, 2002.

	Chapter 1
	1.1 Motivation
	1.2 Objective of Research
	1.3 Thesis Structure

	Chapter 2
	2.1 Privacy
	2.2 Mandatory Access Control (MAC)
	2.3 Discretionary Access Control (DAC)
	2.4 Role-based Access Control (RBAC)
	2.5 Rule-based access control
	2.6 Differential Privacy overview
	2.7 Related work in Differential Privacy
	2.8 Summary

	Chapter 3
	3.1 What is Cloud Computing
	3.1.1 Cloud characteristics
	3.1.2 Cloud service models
	3.1.3 Cloud Deployment models
	3.1.4 Cloud services providers

	3.2 Advantages and challenges in cloud systems
	3.2.1 Security and privacy issues

	3.3 About Big Data
	3.3.1 What is Big Data?
	3.3.2 How to handle and analyze Big Data?

	3.4 Hadoop
	3.4.1 Overview
	3.4.2 Hadoop Distributed File System (HDFS)
	3.4.3 MapReduce

	3.5 Summary

	Chapter 4
	4.1 Query auditing
	4.2 Data perturbation techniques
	4.2.1 Input perturbation
	4.2.1.1 Keyword search on encrypted data
	4.2.1.2 Input noise addition
	4.2.1.3 k-anonymity
	4.2.1.4 ℓ-diversity
	4.2.1.5 t-closeness
	4.2.1.6 m-invariance

	4.2.2 Output perturbation
	4.2.2.1 Differential Privacy
	4.2.2.2 Function sensitivity
	4.2.2.3 Privacy budget

	4.3 Summary

	Chapter 5
	5.1 Privacy Integrated Queries (PINQ)
	5.2 Airavat
	5.3 Attacks on PINQ and Airavat
	5.4 Defence mechanisms against attacks
	5.5 Summary

	Chapter 6
	6.1 Who has access to what type of data?
	6.2 Noise addition method
	6.3 Using both private data and non-private data
	6.4 Summary

	Chapter 7

