5 research outputs found

    A Semantics-Based Approach to Design of Query Languages for Partial Information

    Get PDF
    Most of work on partial information in databases asks which operations of standard languages, like relational algebra, can still be performed correctly in the presence of nulls. In this paper a different point of view is advocated. We believe that the semantics of partiality must be clearly understood and it should give us new design principles for languages for databases with partial information. There are different sources of partial information, such as missing information and conflicts that occur when different databases are merged. In this paper, we develop a common semantic framework for them which can be applied in a context more general than the flat relational model. This ordered semantics, which is based on ideas used in the semantics of programming languages, cleanly intergrates all kinds of partial information and serves as a tool to establish connections between them. Analyzing properties of semantic domains of types suitable for representing partial information, we come up with operations that are naturally associated with those types, and we organize programming syntax around these operations. We show how the languages that we obtain can be used to ask typical queries about incomplete information in relational databases, and how they can express some previously proposed languages. Finally, we discuss a few related topics such as mixing traditional constraints with partial information and extending semantics and languages to accommodate bags and recursive types

    Computing Possible and Certain Answers over Order-Incomplete Data

    Full text link
    This paper studies the complexity of query evaluation for databases whose relations are partially ordered; the problem commonly arises when combining or transforming ordered data from multiple sources. We focus on queries in a useful fragment of SQL, namely positive relational algebra with aggregates, whose bag semantics we extend to the partially ordered setting. Our semantics leads to the study of two main computational problems: the possibility and certainty of query answers. We show that these problems are respectively NP-complete and coNP-complete, but identify tractable cases depending on the query operators or input partial orders. We further introduce a duplicate elimination operator and study its effect on the complexity results.Comment: 55 pages, 56 references. Extended journal version of arXiv:1707.07222. Up to the stylesheet, page/environment numbering, and possible minor publisher-induced changes, this is the exact content of the journal paper that will appear in Theoretical Computer Scienc

    Certain Answers as Objects and Knowledge

    Get PDF

    When is naive evaluation possible?

    Get PDF
    HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci-entific research documents, whether they are pub-lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et a ̀ la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés

    Naive Evaluation of Queries over Incomplete Databases

    Get PDF
    International audienceThe term naive evaluation refers to evaluating queries over incomplete databases as if nulls were usual data values, i.e., to using the standard database query evaluation engine. Since the semantics of query answering over incomplete databases is that of certain answers, we would like to know when naive evaluation computes them: i.e., when certain answers can be found without inventing new specialized algorithms. For relational databases it is well known that unions of conjunctive queries possess this desirable property, and results on preservation of formulae under homomorphisms tell us that within relational calculus, this class cannot be extended under the open-world assumption. Our goal here is twofold. First, we develop a general framework that allows us to determine, for a given semantics of incompleteness, classes of queries for which naive evaluation computes certain answers. Second, we apply this approach to a variety of semantics, showing that for many classes of queries beyond unions of conjunctive queries, naive evaluation makes perfect sense under assumptions different from open-world. Our key observations are: (1) naive evaluation is equivalent to monotonicity of queries with respect to a semantics-induced ordering, and (2) for most reasonable semantics of incompleteness, such monotonicity is captured by preservation under various types of homomorphisms. Using these results we find classes of queries for which naive evaluation works, e.g., positive first-order formulae for the closed-world semantics. Even more, we introduce a general relation-based framework for defining semantics of incompleteness, show how it can be used to capture many known semantics and to introduce new ones, and describe classes of first-order queries for which naive evaluation works under such semantics
    corecore