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A

When is Naı̈ve Evaluation Possible?

AMÉLIE GHEERBRANT, University of Paris 7 and University of Edinburgh

LEONID LIBKIN, University of Edinburgh

CRISTINA SIRANGELO, LSV at ENS-Cachan, INRIA & CNRS

The term näıve evaluation refers to evaluating queries over incomplete databases as if nulls were usual data
values, i.e., to using the standard database query evaluation engine. Since the semantics of query answering
over incomplete databases is that of certain answers, we would like to know when näıve evaluation computes
them: i.e., when certain answers can be found without inventing new specialized algorithms. For relational
databases it is well known that unions of conjunctive queries possess this desirable property, and results on
preservation of formulae under homomorphisms tell us that within relational calculus, this class cannot be
extended under the open-world assumption.

Our goal here is twofold. First, we develop a general framework that allows us to determine, for a given

semantics of incompleteness, classes of queries for which näıve evaluation computes certain answers. Second,
we apply this approach to a variety of semantics, showing that for many classes of queries beyond unions
of conjunctive queries, näıve evaluation makes perfect sense under assumptions different from open-world.
Our key observations are: (1) näıve evaluation is equivalent to monotonicity of queries with respect to
a semantics-induced ordering, and (2) for most reasonable semantics, such monotonicity is captured by
preservation under various types of homomorphisms. Using these results we find classes of queries for which
näıve evaluation works, e.g., positive first-order formulae for the closed-world semantics. Even more, we
introduce a general relation-based framework for defining semantics of incompleteness, show how it can be
used to capture many known semantics and to introduce new ones, and describe classes of first-order queries
for which näıve evaluation works under such semantics.

Categories and Subject Descriptors: H.2.1 [Database Management]: Logical Design—Data Models; H.2.1
[Database Management]: Languages—Query Languages; H.2.4 [Database Management]: Systems—
Query Processing

General Terms: Theory, Languages, Algorithms

Additional Key Words and Phrases: Incompleteness, naive tables/evaluation, certain answers, orderings,
homomorphisms

1. INTRODUCTION

Database applications need to handle incomplete data; this is especially true these
days due to the proliferation of data obtained as the result of integrating or exchanging
data sets, or data found on the Web. At the same time, there is a huge gap between our
theoretical knowledge and the handling of incompleteness in practice:
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— In SQL, the design of null-related features is one of the most criticized aspects of
the language [Date and Darwin 1996], due to the oversimplification of the model.
This even leads to paradoxical behavior: it is consistent with SQL’s semantics that
|X | ą |Y | and X ´ Y “ H, if the set Y contains nulls. Indeed, this is what happens
with queries like select R.A from R where R.A not in (select S.A from S) due
to the 3-valued semantics of SQL.

— In theory, we understand that the proper way of evaluating queries on incomplete
databases is to find certain answers to them [Imielinski and Lipski 1984]. Unfortu-
nately, for many classes of queries, even within first-order logic, this is an intractable
problem [Abiteboul et al. 1991], and even when it is tractable, there is no guarantee
the algorithms can be easily implementable on top of commercial DBMSs [Gheer-
brant et al. 2012].

Despite this seemingly enormous gap, there is one instance when theoretical ap-
proaches and functionalities of practical systems converge nicely. For some types of
queries, evaluating them on the incomplete database itself (i.e. as if nulls were the
usual data values) does produce certain answers. This is usually referred to as naı̈ve
evaluation [Abiteboul et al. 1995; Imielinski and Lipski 1984]. To give an example,
consider databases with naı̈ve nulls (also called marked nulls), that appear most com-
monly in integration and exchange scenarios, and that can very easily be supported by
commercial RDBMSs. Two such relations are shown below, with nulls indicated by the
symbol K with subscripts:

R:
A B

1 K1

K2 K3

S:
B C

K1 4

K3 5

Suppose we have a conjunctive query πACpR ’ Sq or, equivalently, ϕpx, yq “
Dz

`

Rpx, zq ^ Spz, yq
˘

. Naı̈ve evaluation says: evaluate the query directly on R and S,
proceed as if nulls were usual values; they are equal only if they are syntactically the
same (for instance K1 “ K1 but K1 ‰ K2). Then evaluating the above query results in
two tuples: p1, 4q, and pK2, 5q. Tuples with nulls cannot be certain answers, so we only
keep the tuple p1, 4q.

One does not need any new functionalities of the DBMS to find the result of naı̈ve
evaluation (in fact most implementations of marked nulls are such that equality tests
for them are really the syntactic equality). This is good, but in general, naı̈ve eval-
uation need not compute certain answers. Recall that these are answers which hold
true in all possible complete databases represented by the incomplete one, under some
semantics of incompleteness.

For the query above, the tuple p1, 4q is however the certain answer, under the com-
mon open-world semantics (to be properly defined later). This is true because [Imielin-
ski and Lipski 1984] showed that if Q is a union of conjunctive queries, then naı̈ve
evaluation works for it (i.e., computes certain answers). This result is not so easy to
extend: for instance, [Libkin 2011] showed that under the open-world semantics, if
naı̈ve evaluation works for a Boolean first-order (FO) query Q, then Q must be equiv-
alent to a union of conjunctive queries. That result crucially relied on a preservation
theorem from mathematical logic [Chang and Keisler 1990], and in particular on its
version over finite structures [Rossman 2008].

This observation suggests that the limits of naı̈ve evaluation depend on the seman-
tics of incompleteness, and that syntactic restrictions on queries admitting such evalu-
ation might be obtained from preservation theorems in logic. This is the starting point
of our investigation. In general we would like to understand how, for a given semantics
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of incompleteness, we can find the class of queries for which certain answers will be
found naı̈vely.

In slightly more detail, we would like to answer the following three questions:

(1) What are the most general conditions underlying naı̈ve evaluation, under different
semantics?

(2) When can naı̈ve evaluation be characterized by preservation results?
(3) How can we find relevant classes of queries that admit naı̈ve evaluation?

We answer these three questions, by clarifying the relationship between semantics,
naı̈ve evaluation, preservation, and syntactic classes. Roughly, our results can be seen
as establishing the following equivalences:

Naı̈ve evaluation works for a query Q
}

Q is monotone with respect to the semantic ordering
}

Q is preserved under a class of homomorphisms

We now explain the key ideas behind the main equivalences and the terminology we
use.

Naı̈ve evaluation and monotonicity. For the first group of results, we deal with a
very abstract setting that can be applied to many data models (relational, XML, etc)
under different semantics. We assume that incomplete database objects x come with a
notion of semantics rrxss, which is the set of complete objects they describe. We define
the semantic ordering in the standard way: x ĺ y ô rryss Ď rrxss (that is, x is less infor-
mative if it describes more objects, i.e., has more incompleteness in it). In this setting
we define queries, naı̈ve evaluation, and certain answers and prove that under very
mild conditions, naı̈ve evaluation works for a query iff it is monotone with respect to
the semantic ordering. In fact, under even milder conditions, naı̈ve evaluation corre-
sponds to a weak notion of monotonicity, that only considers going from an object x to
a more informative object y P rrxss.

Monotonicity and preservation. We next connect monotonicity with preservation. To
start, we analyze multiple semantics of incompleteness, and come up with a uniform
scheme for generating them. The key observation is that each semantics is obtained in
two steps. In step one, common to all interpretations, we substitute constant values for
nulls. Step two, that essentially defines the semantics, is given by a relation R showing
how the result of the substitution can be modified. For instance, under the open-world
semantics, tuples can be added; under the strictest form of the closed-world semantics,
nothing can be changed at all.

Having done that, we prove that under some very mild condition, monotonicity of a
query Q corresponds to preservation under homomorphisms that respect relation R:
that is, ifQ is true inD (say, for a BooleanQ), and we have a homomorphism respecting
R from D to D1, then Q is true in D1. Instances of such homomorphisms are the usual
homomorphisms, under the open-world semantics, or onto homomorphisms, under (a
version of) the closed-world semantics.

Preservation and syntactic classes. We have so far established that naı̈ve evaluation
is captured by preservation under a class of homomorphisms. Such preservation re-
sults are classical in mathematical logic [Chang and Keisler 1990], and thus we would
like to use them to find syntactic classes of queries for which naı̈ve evaluation works.
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One immediate difficulty is that classical logic results are proved for infinite struc-
tures, and they tend to fail in the finite [Ajtai and Gurevich 1987; Stolboushkin 1995],
or are notoriously hard to establish (a well-known example is Rossman’s theorem
[Rossman 2008], which answered a question opened for many years). Thus, we are
in general happy with good sufficient conditions for preservation, especially if they
are given by nice syntactic classes corresponding to meaningful classes of database
queries. The key ideas behind the classes we use are restrictions to positive formulae
(admitting @ but disallowing  ) or existential positive formulae (i.e., unions of con-
junctive queries), and extending some of them with universally quantified guarded
formulae.

This gives us a good understanding of what is required to make naı̈ve evaluation
work. In Sections 3–5 we carry out the program outlined above and obtain classes
of FO queries for which naı̈ve evaluation works under standard relational semantics.
Also, to keep notations simple initially, in these early sections we deal with Boolean
queries (all results extend to arbitrary queries easily, as we show in Section 8).

In Sections 6 and 7, we offer a more detailed study of other relational semantics of
incompleteness. We take a closer look at semantic orderings, explain their justification
via updates that incrementally improve informativeness of a database, and compare
them with known orderings on Codd databases, that model SQL’s null features. We
show that capturing one of such well known orderings on Codd databases leads to a
new class of powerset semantics, and we provide preservation results for that class,
using the general methodology established earlier.

The key property of the semantics considered up to that point is what we call the
saturation property: for each incomplete object, there is an isomorphic complete one in
its semantics. For most standard semantics, this is trivially so, simply by substituting
distinct constants for nulls. However, there is a class of semantics, that originated in AI
and found applications in data exchange (see [Minker 1982; Hernich 2011]) for which
this property fails.

To deal with them, we present a general tool for handling such non-saturated se-
mantics in Section 9. It shows that the previous results apply as long as we have a
subdomain that possesses the saturation property, and for queries that can be posed
over objects from that domain. Then, in Section 10, we look at concrete examples of
non-saturated semantics. These are minimal semantics that find their justification in
the study of various forms of the closed world assumption. For them, the saturated
subdomain is the set of relational cores (see [Hell and Nes̆etr̆il 1992]); in particular,
previous results do apply, but only over cores. We conclude the paper by showing how
to adjust the lifting tool to obtain results for non-Boolean queries under non-saturated
semantics.

New material. This paragraph is inserted here to help the reviewers see where the
additional material is. Perhaps this paragraph will be easier to follow once the paper
has been read as it (due to its very nature) contains forward references.

In addition to including all the proofs (the conference version had none), we added
the following concepts and results. The conference version dealt with one semantics
based on minimal homomorphisms, and showed that, while the saturation property
fails for it, results can be recovered for cores.

Here we show that this is an instance of a much more general phenomenon. Basi-
cally, for an arbitrary non-saturated semantics, we need the existence of a saturated
subdomain to recover results relative to that subdomain; it just happens to be the set
of cores for the minimal semantics. We present this general notion which also leads to
a principled way of lifting results to non-Boolean queries.
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Furthermore, we study a non-powerset based minimal semantics, and carry out the
same program for it as for other semantics, thereby showing that there are other rea-
sonable non-saturated semantics.

Specifically, the following results are completely new here:

— Proposition 7.2.
— The entire Section 9, including Theorem 9.1 and Corollary 9.3.

— The notion of the rr ssmin

CWA
semantics.

— Theorem 10.2.
— Corollary 10.6, Proposition 10.7, and Corollaries 10.11 and 10.12: items referring to

the rr ss
min

CWA
semantics.

— Proposition 10.13.
— Section 11, including Lemma 11.1 and Theorem 11.5 for minimal semantics.

Organization. In Section 2, we give the main definitions. In Section 3, we explain
the connection between naı̈ve evaluation and monotonicity, and in Section 4 we re-
late monotonicity to preservation. In Section 5 we deal with Boolean FO queries and
provide sufficient conditions for naı̈ve evaluation. In Section 6, we study semantic or-
derings on incomplete databases, and in Section 7 we study naı̈ve evaluation for the
resulting new class of semantics. Section 8 shows how to lift all the results for Boolean
queries to queries with free variables. Section 9 deals with non-saturated semantics
in general, and two concrete cases of such, the minimal semantics, are handled in
Section 10. Finally, Section 11 shows how to lift results to non-Boolean queries in non-
saturated semantics.

2. PRELIMINARIES

2.1. Incomplete databases

We begin with some standard definitions. In incomplete databases there are two types
of values: constants and nulls. The set of constants is denoted by Const and the set of
nulls by Null. These are countably infinite sets. Nulls will normally be denoted by K,
sometimes with sub- or superscripts.

A relational schema (vocabulary) is a set of relation names with associated arities.
An incomplete relational instance D assigns to each k-ary relation symbol S from the
vocabulary a k-ary relation over ConstYNull, i.e., a finite subset of pConstYNullqk. Such
incomplete relational instances are referred to as naı̈ve databases [Abiteboul et al.
1995; Imielinski and Lipski 1984]; note that a null K P Null can appear multiple times
in such an instance. If each null K P Null appears at most once, we speak of Codd
databases [Abiteboul et al. 1995; Imielinski and Lipski 1984]. If we talk about single
relations, it is common to refer to them as naı̈ve tables and Codd tables.

We write ConstpDq and NullpDq for the sets of constants and nulls that occur in a
database D. The active domain of D is adompDq “ ConstpDq Y NullpDq. A complete
database D has no nulls, i.e., adompDq Ď Const.

2.2. Homomorphisms

Homomorphisms are crucial for us in two contexts: to define the semantics of incom-
plete databases, and to define the notion of preservation of logical formulae as a condi-
tion for naı̈ve evaluation to work.

Given two relational structures D and D1, a homomorphism h : D Ñ D1 is a map
from the active domain of D to the active domain ofD1 so that for every relation symbol
S, if a tuple ū is in relation S in D, then the tuple hpūq is in the relation S in D1.

In database literature, it is common to require that homomorphisms preserve ele-
ments of Const, i.e., the map h is also required to satisfy hpcq “ c for every c P Const. Of
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course this can easily be cast as a special instance of the general notion, simply by ex-
tending the vocabulary with a constant symbol for each c P Const. To make clear what
our assumptions are, whenever there is any ambiguity, we shall talk about database
homomorphisms if they are the identity on Const.

Given a homomorphism h and a database D, by hpDq we mean the image of D, i.e.,
the set of all tuples Sphpūqq where Spūq is in D. If h : D Ñ D1 is a homomorphism, then
hpDq is a subinstance of D1.

2.3. Semantics and valuations

We shall see many possible semantics for incomplete information, but first we review
two common ones: open-world and closed-world semantics. We need the notion of a
valuation, which assigns a constant to each null. That is, a valuation is a database
homomorphism whose image contains only values in Const.

In general, the semantics rrDss of an incomplete database is a set of complete
databases D1, i.e., databases D1 with adompD1q Ď Const. The semantics under the
closed-world assumption (or CWA semantics) is defined as

rrDss
CWA

“ thpDq | h is a valuationu.

The semantics under the open-world assumption (or OWA semantics) is defined as

rrDss
OWA

“ tD1 | D1 is complete and there is a valuation h : D Ñ D1u.

Alternatively, D1 P rrDss
OWA

iff D1 is complete and contains a database D2 P rrDss
CWA

as
a subinstance.

As an example, consider D0 “ tpK,K1q, pK1,Kqu. Then rrD0ssCWA
consists of all in-

stances tpc, c1q, pc1, cqu with c, c1 P Const (and possibly c “ c1), and rrD0ssOWA
has all

complete instances containing tpc, c1q, pc1, cqu, for c, c1 P Const.

2.4. Certain answers and naı̈ve evaluation

Given an incomplete database D, a semantics of incompleteness rr ss, and a query Q,
one normally computes certain answers under the rr ss semantics:

certainpQ,Dq “
č

tQpRq | R P rrDssu,

i.e., answers that are true regardless of the interpretation of nulls under the given
semantics. When rr ss is rr ss

OWA
or rr ss

CWA
, we write certainOWApQ,Dq or certainCWApQ,Dq.

Even for first-order queries, the standard semantics are problematic in general: finding
certain answers under the OWA semantics may be undecidable, and finding them under
the CWA semantics may be CONP-hard [Abiteboul et al. 1991].

Naı̈ve evaluation of a query Q refers to a two-step procedure: first, evaluate Q on the
incomplete database itself, as if nulls were values (i.e., equal iff they are syntactically
the same: e.g., K1 “ K1, K1 ‰ K2, K1 ‰ c for every c P Const), and then eliminate
tuples with nulls from the result. Note that if Q is a Boolean query, the second step is
unnecessary.

We say that naı̈ve evaluation works for Q (under semantics rr ss) if its result is exactly
the certain answers under rr ss, for every D.

FACT 1. (see [Imielinski and Lipski 1984; Libkin 2011]) LetQ be a union of conjunc-
tive queries. Then naı̈ve evaluation works for Q under both OWA and CWA. Moreover,
if Q is a Boolean FO query and naı̈ve evaluation works for Q under OWA, then Q is
equivalent to a union of conjunctive queries.

The last equivalence result only works under the OWA semantics. Consider again
the instance D0 and a query Dx, y pDpx, yq ^Dpy, xqq. The certain answer to this query
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is true under both OWA and CWA, and indeed it evaluates to true naı̈vely over D0. On
the other hand, a query Q given by @xDy Dpx, yq (not equivalent to a union of conjunc-
tive queries) evaluated naı̈vely, returns true on D0, but under OWA its certain answer
is false. However, under CWA, its certain answer is true. This is not an isolated phe-
nomenon: we will later see that Q belongs to a class, extending unions of conjunctive
queries, for which naı̈ve evaluation works under CWA on all databases.

Note that in this paper we assume the active domain semantics for relational first-
order queries.

3. NAÏVE EVALUATION AND MONOTONICITY

The goal of this section is twofold. First we present a very general setting for talking
about incompleteness and its semantics, as well as orderings representing the notion of
“having more information”. We formulate the notion of naı̈ve evaluation in this setting,
and show that it guarantees to compute certain answers for monotone queries.

3.1. Database domains, semantics, and ordering

We now define a simple abstract setting for handling incompleteness. We operate with
just four basic concepts: the set of instances, the set of complete instances, their iso-
morphism, and their semantics.

A database domain is a structure D “ xD, C, rr ss,«y, where D is a set, C is a subset of
D, the function rr ss is from D to nonempty subsets of C, and« is an equivalence relation
on D. The interpretation is as follows:

—D is a set of database objects (e.g., incomplete relational databases over the same
schema),

— C is the set of complete objects (e.g., databases without nulls);
— rrxss Ď C is the semantics of an incomplete database x, i.e., the set of all complete

databases that x can represent; and
—« is the structural equivalence relation, that we need to describe the notion of generic

queries; for instance, for relational databases, D « D1 means that they are isomor-
phic as objects, i.e., πpDq “ D1 for some 1-1 mapping on data values in D.

The semantic function of a database domain lets us describe the degree of incom-
pleteness via an ordering defined as x ĺ y iff rryss Ď rrxss. Indeed, the less we know
about an object, the more other objects it can potentially describe. This setting is rem-
iniscent of the ideas in programming semantics, where partial functions are similarly
ordered [Gunter 1992], and such orderings have been used to provide semantics of in-
completeness in the past [Buneman et al. 1991; Libkin 1995; 2011; Ohori 1990; Rounds
1991]. Note that ĺ is a preorder.

Queries and certain answers. For now we look at Boolean queries in the most ab-
stract setting (we will generalize them later). For a database domain D “ xD, C, rr ss,«y,
a query is a mapping Q : D Ñ t0, 1u. We use 0 to represent false and 1 to represent
true, as usual. A query is generic if Qpxq “ Qpyq whenever x « y.

For each x P D, the certain answer (under rr ss) is

certainpQ, xq “
ľ

tQpcq | c P rrxssu

We say that naı̈ve evaluation works for Q if Qpxq “ certainpQ, xq for every x.

Saturation property. We now impose an additional property on database domains
saying, essentially, that there are enough complete objects. A database domain D “
xD, C, rr ss,«y is saturated if every object has a complete object in its semantics that is
isomorphic to it: that is, for each x P D there is y P rrxss such that x « y.
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In the case of the usual semantics of incompleteness, this property trivially holds:
if we have an instance D with nulls K1, . . . ,Kn, we simply replace them with distinct
constants c1, . . . , cn that do not occur elsewhere in D, to obtain a complete database
isomorphic to D. Nonetheless, there are other semantics, primarily motivated by AI
considerations, that are not saturated; we shall deal with them in Section 9.

3.2. Naı̈ve evaluation and monotonicity

We say that a query Q is weakly monotone if

y P rrxss ñ Qpxq ď Qpyq.

That is, if y is a complete object representing x, and Q is already true on x, thenQmust
be true on y. This property characterizes naı̈ve evaluation over saturated database
domains.

THEOREM 3.1. Let D be a database domain with the saturation property, and Q a
generic Boolean query. Then naı̈ve evaluation works for Q iff Q is weakly monotone.

PROOF. The statement follows immediately from the more general Theorem 9.1
which will be proved in Section 9. However we provide a direct simple proof here for
completeness.

Let Q be a Boolean generic query. Assume that naı̈ve evaluation works for Q; then
weak monotonicity of Q immediately follows.

Conversely assume that Q is weakly monotone, and let x P D. By weak monotonicity
we have Qpxq ď certainpQ, xq. To prove the converse, assume certainpQ, xq “ 1. By the
saturation property there exists c P rrxss such that c « x. We know Qpcq “ 1; then by
genericity Qpxq “ 1. Hence certainpQ, xq “ Qpxq for all x P D, i.e. naı̈ve evaluation
works for Q.

Of course one can also look at the natural definition of monotonicity: a query Q is
monotone if x ĺ y implies Qpxq ď Qpyq. Recall that x ĺ y means that rryss Ď rrxss. This
condition turns out to be equivalent to weak monotonicity in database domains that
satisfy one additional property. To state it, note that there is a natural duality between
preorders and semantics: each semantics rr ss gives rise to the ordering x ĺ y ô rryss Ď
rrxss, and conversely any preorder ď on D gives a semantics rrxss

ď
“ ty P C | x ď yu. We

say that a database domain is fair if rr ss and its ordering ĺ agree: that is, the semantics
that the ordering ĺ gives rise to is rr ss itself. Fair domains can be easily characterized:

PROPOSITION 3.2. A database domain D is fair iff the following conditions hold:

(1) c P rrcss for each c P C;
(2) if c P rrxss, then rrcss Ď rrxss.

PROOF. Let D “ xD, C, rr ss,«y be a database domain and let ĺ be the preorder ob-
tained from it.

First assume that (1) and (2) hold of D. Recall that by definition for all x, y P D, x ĺ y
iff rryss Ď rrxss and so rrxss

ĺ
“ tc P C | rrcss Ď rrxssu. We want to show that D is fair, i.e.,

for all x P D, rrxss “ rrxss
ĺ

. So let x P D and c P C such that c P rrxss. By condition 2,
rrcss Ď rrxss. But then c P rrxss

ĺ
and so for all x, rrxss Ď rrxss

ĺ
. Now let x P D, c P C such

that c P rrxss
ĺ

. So rrcss ĺ rrxss. By condition 1, c P rrcss, which yields c P rrxss and so for all
x, we have rrxss

ĺ
Ď rrxss.

Conversely assume D is fair, i.e., for all x P D, rrxss “ rrxss
ĺ
“ tc P C | rrcss Ď rrxssu. So in

particular for all c P C, rrcss “ tc1 P C | rrc1ss Ď rrcssu. As rrcss Ď rrcss, it follows that c P rrcss,
that is, condition (1) holds. Condition (2) follows immediately from rrxss “ tc P C | rrcss Ď
rrxssu.
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The standard semantics – including all those seen in the previous section – satisfy
these conditions. The first condition says that the semantics of a complete object should
contain at least that object. The second says that by removing incompleteness from an
object, we cannot get one that denotes more objects. Note also that in a fair domain,
y P rrxss implies x ĺ y, so weak monotonicity is indeed weaker than monotonicity.

In fair database domains, we can extend Theorem 3.1:

PROPOSITION 3.3. Let D be a fair database domain with the saturation property,
and Q a generic Boolean query. Then the following are equivalent:

(1) Naı̈ve evaluation works for Q;
(2) Q is monotone;
(3) Q is weakly monotone.

PROOF. We need to prove that in a fair database domain naive evaluation works
for Q iff Q is monotone. Assume that naı̈ve evaluation works for Q, and consider
objects x, y P D such that x ĺ y and Qpxq “ 1. We prove Qpyq “ 1. We have
Qpxq “ certainpQ, xq “ 1 and rryss Ď rrxss, therefore certainpQ, yq “ Qpyq “ 1.

Conversely assume that Q is monotone. Let x be in D, we prove that Qpxq “
certainpQ, xq. Let c P rrxss. Since the database domain is fair, x ĺ c. Then the mono-
tonicity of Q implies Qpxq ď Qpcq, and therefore Qpxq ď certainpQ, xq. For the converse
implication assume certainpQ, xq “ 1. By the saturation property there exists c1 P rrxss
such that c1 « x. We know Qpc1q “ 1, then by genericity, Qpxq “ 1.

This shows Qpxq “ certainpQ, xq – i. e. naı̈ve evaluation works for Q – and concludes
the proof of the proposition.

Theorem 3.1 and Proposition 3.3 establish the promised connection between mono-
tonicity and naı̈ve evaluation. Extension to non-Boolean queries is given in Section
8.

4. SEMANTICS, RELATIONS, AND HOMOMORPHISMS

We have seen that getting naı̈ve evaluation to work (at least for Boolean queries), is
equivalent to their (weak) monotonicity. To apply this to concrete semantics, we need to
understand how different semantics can be defined. We explain that most of them are
obtained by composing two types of relations: one corresponds to applying valuations
to nulls, and the other to specific semantic assumptions such as open or closed-world.
After that, we show a connection between naı̈ve evaluation and preservation under a
class of homomorphisms.

4.1. Semantics via relations

We have already seen two concrete relational semantics: the OWA semantics rrDss
OWA

and the CWA semantics rrDss
CWA

. What is common to them is that they are all defined
in two steps. First, valuations are applied to nulls (i.e., nulls are replaced by values).
Second, the resulting database may be modified in some way (left as it was for CWA, or
expanded arbitrarily for OWA). Our idea is then to capture this via two relations. We
now define them in the setting of database domains and then show how they behave
in concrete cases.

Given a database domain D “ xD, C, rr ss,«y, we consider a pair R “ pRval,Rsemq of
relations:

— The valuation relation Rval Ď D ˆ C between arbitrary databases and complete
databases. Intuitively, a pair px, cq is in Rval if c is obtained from x by replacing nulls
by constants. The restriction of Rval to C is the identity: RvalXpCˆ Cq “ tpc, cq | c P Cu
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(if there are no nulls, there is no substitution). And since for every object there is
some way to replace nulls by constants, Rval is total.

— The semantic relation Rsem is a reflexive binary relation on C (i.e., Rsem Ď C ˆ C).
Intuitively, this corresponds to the modification step such as extending complete re-
lations by new tuples. Since, at the very least, one can do nothing with the result of
the substitution of nulls by constants, such a relation must be reflexive.

We say that rr ss is given by R if R satisfies the above conditions, and y P rrxss iff
px, yq P Rval ˝Rsem.

PROPOSITION 4.1. Let D be a database domain whose semantics rr ss is given by a
pair R “ pRval,Rsemq. Then D is fair iff Rsem is transitive.

PROOF. Assume first that Rsem is transitive, and take arbitrary x P D and c P C. We
have

(1) c P rrcss.
Indeed we know pc, cq P Rval and pc, cq P Rsem, then c P rrcss.

(2) c P rrxss implies rrcss Ď rrxss.
Indeed if c P rrxss then there exists y P C such that px, yq P Rval and py, cq P Rsem.
Moreover if c1 P rrcss then pc, c1q P Rsem (because Rval is the identity when restricted
to C). By transitivity of Rsem we then have py, c1q P Rsem. This implies px, c1q P Rval ˝
Rsem, and therefore c1 P rrxss.

By Proposition 3.2, D is fair.
Conversely assume that D is fair, and assume there exist pc, dq and pd, eq in Rsem.

Now recall that pc, cq and pd, dq are in Rval, thus pc, dq and pd, eq are in Rval ˝Rsem, i.e.,
d P rrcss and e P rrdss. By item (2) of Proposition 3.2, e P rrcss. Then pc, eq P Rsem. This
proves that Rsem is transitive.

Relational databases. When we deal with relational databases, the most natural
valuation relation is Rrdb

val
defined as follows:

pD,D1q P Rrdb

val ô D1 “ vpDq for some valuation v.

So we assume, for now, that in relational semantics of incompleteness, the valuation
relation is Rrdb

val
, and thus such semantics are defined by relation Rsem. For OWA and

CWA, these are particularly easy:

— For CWA, Rsem is the identity (i.e., “);
— For OWA, Rsem is the subset relation (i.e., Ď).

The special form of relation Rrdb

val
implies the saturation property. Indeed, it does

allow us to replace nulls by distinct constants that do not occur elsewhere in the in-
stance. Therefore, by Theorem 3.1 we have:

PROPOSITION 4.2. For an arbitrary relational semantics given by relation Rsem,
and an arbitrary generic Boolean query Q, naı̈ve evaluation works for Q iff Q is weakly
monotone.

4.2. Naı̈ve evaluation via homomorphism preservation

We shall now relate weak monotonicity and preservation under homomorphisms (at
least for relational semantics).

Consider relational databases over constants. Given two such databases D and D1,
a mapping h defined on the active domain adompDq of D is an Rsem-homomorphism
from D to D1 if phpDq, D1q P Rsem.
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A query Q is preserved under Rsem-homomorphisms if for every database D and
every Rsem-homomorphism h from D to D1, if Q is true in D, then Q is true in D1.

PROPOSITION 4.3. If a relational semantics is given by a relation Rsem and Q is
a generic Boolean query, then Q is weakly monotone iff it is preserved under Rsem-
homomorphisms.

PROOF. We prove a slightly more general result holding for arbitrary relational
semantics given by a pair pRval,Rsemq. We first need to introduce some definitions and
notations. If D “ xD, C, rr ss,«y is a database domain, Q : D Ñ t0, 1u is a query, and
R Ď D ˆD, we say that Q is preserved under R if Qpxq “ 1 implies Qpyq “ 1 whenever
px, yq P R. If R and R1 are subsets of D ˆ C, we say that R1 is «-equivalent to R if the
following two conditions are satisfied:

(1) if px, cq P R then there exists x1 P D such that x1 « x and px1, cq P R1;
(2) if px, cq P R1 then there exists x1 P D such that x1 « x and px1, cq P R.

We say that R1 is strongly «-equivalent to R if moreover x1 in the definition of «-
equivalence only depends on x (an not on c).

LEMMA 4.4. Let D “ xD, C, rr ss,«y be an arbitrary database domain and let R1 Ď
DˆC be «-equivalent to the graph of rr ss. Then a generic Boolean query over D is weakly
monotone iff it is preserved under R1.

PROOF. Assume that Q is a generic Boolean query over D, and Q is weakly mono-
tone. Consider a pair px, cq P R1 and assume that Qpxq “ 1. By the fact that R1 is
«-equivalent to the graph of rr ss, there exists y P D, such that y « x and c P rryss. Since
Q is generic Qpyq “ 1, and since Q is weakly monotone Qpcq “ 1. This proves that Q is
preserved under R1. The converse is proved symmetrically.

When the semantics is given by a pair pRval,Rsemq, we have:

LEMMA 4.5. Let D “ xD, C, rr ss,«y be a database domain whose semantics rr ss is
given by a pair pRval,Rsemq and let R1 Ď D ˆ C be «-equivalent to Rval, then R1 ˝Rsem

is «-equivalent to the graph of rr ss (i.e. to Rval ˝Rsem). In particular a generic Boolean
query over D is weakly monotone iff it is preserved under R1 ˝Rsem

PROOF. Assume that px, cq P Rval ˝ Rsem. Then there exists e P C such that px, eq P
Rval and pe, cq P Rsem. We know that there exists x1 P D such that x1 « x and px1, eq P R1.
Then px1, cq P R1 ˝ Rsem. Symmetrically we prove that for all px1, cq P R1 ˝ Rsem there
exists x P D such that x1 « x and such that px, cq P Rval ˝Rsem. We conclude by Lemma
4.4.

We are now ready to move to the relational setting and finish the proof of the proposi-
tion. In what follows, we say that D is a relational database domain if D “ xD, C, rr ss,«y,
where D is the set of (possibly incomplete) relational instances, C is the set of complete
relational instances and « is the isomorphism relation between instances (i.e. D « D1

iff there exists an injective mapping π on adompDq such that πpDq “ D1).
If M is a function associating to each complete relational instance D a class of map-

pings adompDq Ñ Const, we say that M is a mapping type. If M is a mapping type, we
denote by RM the set of pairs tpD,hpDqq | D is a complete relational instance and h P
MpDqu. Given two complete relational instancesD andD1, an M-Rsem-homomorphism
from D to D1 is an Rsem-homomorphism h from D to D1 such that h PMpDq.

The following claim follows directly from definitions:

CLAIM 1. If M is a mapping type then pD,D1q P RM ˝ Rsem iff there exists an
M-Rsem-homomorphism from D to D1.
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By combining the above claim with Lemma 4.5 we have:

COROLLARY 4.6. Let D “ xD, C, rr ss,«y be a relational database domain whose se-
mantics rr ss is given by a pair pRval,Rsemq and let M be a mapping type. Assume that
RM is «-equivalent to Rval. Then a generic Boolean query over D is weakly monotone
iff it is preserved under M-Rsem-homomorphisms.

Proposition 4.3 will be obtained as a special case of Corollary 4.6. To prove it, we
consider the mapping type M “ all, associating with each complete relational instance
D the set of all mappings adompDq Ñ Const, and we prove the following lemma:

LEMMA 4.7. If M “ all and « is relational isomorphism, then RM is strongly «-
equivalent to Rrdb

val
.

PROOF. Let D be a (possibly incomplete) relational instance. We prove that there
exists a complete relational instance E such that 1) D « E and 2) pD,D1q P Rrdb

val

implies pE,D1q P RM.
The instance E is obtained from D by replacing nulls of D with new distinct con-

stants not occurring in ConstpDq. Clearly there exists an isomorphism i : E Ñ D, thus
E « D. Now let pD,D1q P Rrdb

val
. Then D1 “ vpDq for some valuation v. Let h “ v ˝ i;

then hpEq “ vpDq “ D1 and hence pE,D1q P RM (because M “ all). This prove 1) and
2) above.

Conversely let E be a complete relational instance. We prove that there exists a
relational instance D such that 1) D « E and 2) pE,D1q P RM implies pD,D1q P Rrdb

val
.

The instance D is obtained from E by replacing each element of adompEq with a
new distinct null. Clearly this replacement defines an isomorphism i : D Ñ E and
therefore E « D. Now let pE,D1q P RM. We know that D1 “ hpEq where h is an
arbitrary mapping adompEq Ñ Const. Let v “ h˝ i. Then v is a valuation on D (because
adompDq contains no constants, and D1 is complete) and hence pD,D1q P Rrdb

val
.

Now remark that with M “ all, M-Rsem-homomorphisms coincide with Rsem-
homomorphisms. Then Proposition 4.3 follows immediately from Corollary 4.6 with
M “ all. l

Putting together Proposition 4.2 and Proposition 4.3, we have our first key result for
naı̈ve evaluation over incomplete databases.

THEOREM 4.8. For a relational incompleteness semantics given by a semantic re-
lation Rsem, and a generic Boolean query Q, naı̈ve evaluation works for Q iff Q is pre-
served under Rsem-homomorphisms.

4.3. Homomorphisms for relational semantics

Theorem 4.8 connects naı̈ve evaluation with homomorphism preservation. We now in-
vestigate what these Rsem-homomorphisms are.

— CWA semantics. In this case Rsem is the identity, and the definition states that h
is an Rsem-homomorphism from D to D1 if D1 “ hpDq. That is, under CWA, Rsem-
homomorphisms are the strong onto homomorphisms, i.e., homomorphisms from D
to hpDq.

— OWA semantics. In this case Rsem is Ď, and the definition states that h is an Rsem-
homomorphism fromD toD1 if hpDq Ď D1. That is, under OWA, Rsem-homomorphisms
are just the usual homomorphisms.

Another well known notion of homomorphisms is that of onto homomorphisms.
When used in the database context, an onto homomorphism h from D to D1 is a ho-
momorphism between D and D1 so that hpadompDqq “ adompD1q. For instance, if
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D “ tp1, 2qu, and hp1q “ 3, hp2q “ 4, then h is a strong onto homomorphism from D
to D1 “ tp3, 4qu, and an onto homomorphism to D2 “ tp3, 4q, p4, 3qu. Note that while D2

contains more than hpDq, all the tuples in D2 only use elements that occur in hpDq.
A semantics of incompleteness that corresponds to this notion, that we refer to as

weak CWA, or WCWA semantics, was actually previously studied [Reiter 1977] (in a
slightly different, deductive-database context). We define it as follows:

rrDss
WCWA

“

"

D1

ˇ

ˇ

ˇ

ˇ

D1 is complete and there is a valuation h : D Ñ D1

so that adompD1q “ adomphpDqq

*

.

In other words, it is not completely closed world: a database can be extended, but still
in a rather limited fashion, only with the tuples that use values already stored in the
database.

For this semantics, Rsem contains all pairs pD,D1q so that D Ď D1 and adompDq “
adompD1q. That is, D can be expanded only within its active domain. Thus, Rsem-
homomorphisms are exactly onto homomorphisms.

For this relation Rsem, the notion of preservation under Rsem-homomorphisms is
exactly the notion of preservation under onto homomorphisms. Thus, the WCWA se-
mantics, defined long time ago, also corresponds to a very natural logical notion of
preservation.

Note that rrDss
CWA

Ď rrDss
WCWA

Ď rrDss
OWA

, and in general inclusions can be strict. For
instance, if D “ tpK,K1qu, then tp1, 2qu is in rrDss

CWA
, while tp1, 2q, p2, 1qu is not in rrDss

CWA

but is in rrDss
WCWA

, since it added a tuple p2, 1q that uses elements already present in
t1, 2u.

Naı̈ve evaluation and relational semantics. We can finally state the equivalence of
naı̈ve evaluation and homomorphism preservation for three concrete semantics of in-
complete relational databases:

COROLLARY 4.9. Let Q be a Boolean generic query. Then:

— Under OWA, naı̈ve evaluation works for Q iff Q is preserved under homomorphisms.
— Under CWA, naı̈ve evaluation works for Q iff Q is preserved under strong onto homo-

morphisms.
— Under WCWA, naı̈ve evaluation works for Q iff Q is preserved under onto homomor-

phisms.

5. NAÏVE EVALUATION AND PRESERVATION FOR FO QUERIES

Corollary 4.9 reduces the problem of checking whether naı̈ve evaluation works to
preservation under homomorphisms. Thus, for FO queries, we deal with a very well
known notion in logic [Chang and Keisler 1990]. However, what we need is preserva-
tion on finite structures, and those notions are well known to behave differently from
their infinite counterpart. In fact, it was only proved recently by Rossman that for FO
sentences, preservation under arbitrary homomorphisms in the finite is equivalent
to being an existential positive formula [Rossman 2008]. In database language, this
means being a union of conjunctive queries, which led to an observation [Libkin 2011]
that naı̈ve evaluation works for a Boolean FO query Q iff Q is equivalent to a union of
conjunctive queries.

The difficulty in establishing preservation results in the finite is due to losing access
to classical logical tools such as compactness. Rossman’s theorem, for instance, was
a major open problem for many years. To make matters worse, even some existing
infinite preservation results [Keisler 1965b] have holes in their proofs.

Thus, it is unrealistic for a single paper to settle several very hard problems con-
cerning preservation results in the finite (sometimes even without infinite analogs!).
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What we shall do instead is settle for classes of queries that imply preservation, and
at the same time are easy to describe syntactically.

Positive and existential positive formulae. Recall that positive formulae use all the
FO connectives except negation (i.e., ^,_,@, D). Formally, the class Pos of positive for-
mulae is defined inductively as follows:

— true and false are in Pos;
— every positive atomic formula (i.e., Rpx̄q or x “ y) is in Pos;
— if ϕ, ψ P Pos, then ϕ_ ψ and ϕ^ ψ are in Pos;
— if ϕ is in Pos, then Dxϕ and @xϕ are in Pos.

If only Dxϕ remains in the class, we obtain the class DPos of existential positive formu-
lae. Formulae from DPos are also known as unions of conjunctive queries.

Rossman’s theorem [Rossman 2008] says that an FO sentence ϕ is preserved un-
der homomorphisms over finite structures iff ϕ is equivalent to a sentence from DPos.
Lyndon’s theorem [Chang and Keisler 1990] says that an FO sentence ϕ is preserved
under onto homomorphisms (over arbitrary structures) iff ϕ is equivalent to a sentence
from Pos. Lyndon’s theorem fails in the finite [Ajtai and Gurevich 1987; Stolboushkin
1995] but the implication from being positive to preservation is still valid.

A characterization of preservation under strong onto homomorphisms was stated
in [Keisler 1965a; 1965b], but the syntactic class had a rather messy definition and
was limited to a single binary relation. Even worse, we discovered a gap in one of the
key lemmas in [Keisler 1965b]. So instead we propose a simple extension of positive
formulae that gives preservation under strong onto homomorphisms.

Extensions with universal guards. The fragment Pos ` @G, whose definition is in-
spired by [Compton 1983], extends Pos with universal guards. It is defined as follows:

— true and false are in Pos ` @G;
— every positive atomic formula (i.e., Rpx̄q or x “ y) is in Pos ` @G;
— if ϕ, ψ P Pos` @G, then ϕ_ ψ and ϕ^ ψ are in Pos` @G;
— if ϕ is in Pos, then Dxϕ and @xϕ are in Pos ` @G.
— if ϕpx̄, ȳq is in Pos ` @G, and R is an n-ary relation symbol, then the formula
@x1, . . . , xn

`

Rpx1, . . . , xnq Ñ ϕpx1, . . . , xn, ȳq
˘

is in Pos` @G if x1, . . . , xn are pairwise
distinct variables;

— if ϕpx, z, ȳq is in Pos ` @G, and x, z are distinct variables, then the formula
@x, z

`

x “ z Ñ ϕpx, z, ȳq
˘

is in Pos` @G.

Note that the first four rules are the same as for Pos, so we have DPos Ĺ Pos Ĺ
Pos` @G.

PROPOSITION 5.1. Sentences in Pos ` @G are preserved under strong onto homo-
morphisms.

PROOF. We prove preservation for arbitrary formulas with free variables in the
fragment. To this end we need first to define what it means for a formula with free
variables to be preserved under (strong onto) homomorphisms.

If Q is a k-ary relational query over complete instances (i.e. a mapping associating
to each complete relational instance D a k-ary relation over adompDq), we say that
Q is preserved under (strong onto) homomorphisms if whenever h is a (strong onto)
homomorphism from an instance D to an instance D1, and ā P QpDq then hpāq P QpD1q.

Now we show that Pos ` @G formulae (and thus sentences) are preserved under
strong onto homomorphisms. We proceed by structural induction on the formula ϕ. If
ϕ “false or ϕ “true, it is clearly preserved under strong onto homomorphisms.
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Assume now that ϕpx̄q is a positive atom Rpȳq (including the case of an equality
atom), where variables occurring in ȳ are precisely x̄. It follows from the definition of
homomorphism that if an instance D |ù ϕpāq then hpDq |ù ϕphpāqq, for every homomor-
phism h.

It is also easy to verify that if ϕ1 and ϕ2 are preserved under strong onto homomor-
phisms, so are ϕ1 ^ ϕ2 and ϕ1 _ ϕ2.

Now assume ϕpx̄q “ Dyϕ1py, x̄q, where ϕ1 is preserved under strong onto homomor-
phisms. Assume that an instance D |ù ϕpāq, and that h is a strong onto homomorphism
from D to D1 “ hpDq. Then D |ù ϕ1pb, āq for some value b P adompDq. Since ϕ1 is pre-
served under strong onto homomorphisms,D1 |ù ϕ1phpbq, hpāqq. ThusD1 |ù Dyϕ1py, hpāqq,
i.e. D1 |ù ϕphpāqq.

Assume now that ϕpx̄q “ @yϕ1py, x̄q. Assume that an instance D |ù ϕpāq and D has
a strong onto homomorphism h to D1. We prove D1 |ù ϕphpāqq. Let b P adompD1q, we
have to prove D1 |ù ϕ1pb, hpāqq. Since D1 “ hpDq, there exists a P adompDq such that
hpaq “ b; moreover D |ù ϕ1pa, āq. Now, by the induction hypothesis ϕ1py, x̄q is preserved
under strong onto homomorphism, therefore D1 |ù ϕ1phpaq, hpāqq “ ϕ1pb, hpāqq.

We next assume that ϕpx̄, ȳq P Pos ` @G is preserved under strong onto homomor-
phisms and show that @x̄ pRpx̄q Ñ ϕq is, where x̄ “ px1, . . . , xnq is a tuple of pairwise
distinct variables. Let D |ù @x̄pRpx1, . . . , xnq Ñ ϕpx̄, āqq and let D1 “ hpDq where h is a
homomorphism. We must show D1 |ù @x̄pRpx1, . . . , xnq Ñ ϕpx̄, hpāqq. Let b̄ “ pb1, . . . , bnq
be a tuple such that D1 |ù Rpb̄q. As D1 “ hpDq, there are c1, . . . , cn in adompDq such
that b̄ “ hpc̄q (i.e., bi “ hpciq for each i P t1, . . . , nu) and D |ù Rpc1, . . . , cnq. Since the
xis are pairwise distinct, this means that D |ù Rpx1, . . . , xnq under any valuation send-
ing xi to ci for each i ď n. By D |ù @x̄pRpx1, . . . , xnq Ñ ϕpx̄, āqq, we conclude that
D |ù ϕpc̄, āq and so, by the inductive hypothesis, D1 |ù ϕphpc̄q, hpāqq, which implies
D1 |ù @x̄pRpx1, . . . , xnq Ñ ϕpx̄, hpāqq.

The case of the equality atom in the guarded formula is exactly the same as the
above case of the relational atom. This concludes the proof of Proposition 5.1.

We remark that the condition that the variables xis be pairwise distinct is essential.
Consider, for example, a formula ϕ “ @x pRpx, xq Ñ Spxqq, and databases D and D1 so
that R is interpreted as tp1, 2qu in D, as tp3, 3qu in D1, and S is empty in both. Then
D |ù ϕ, while D1 |ù  ϕ, even though D1 “ hpDq under the homomorphism h that sends
both 1 and 2 to 3.

We now combine all the previous implications (preservationÑmonotonicityÑ naı̈ve
evaluation) to show that naı̈ve evaluation can work beyond unions of conjunctive
queries under realistic semantic assumptions.

THEOREM 5.2. Let Q be a Boolean FO query. Then:

— If Q is in DPos, then naı̈ve evaluation works for Q under OWA.
— If Q is in Pos, then naı̈ve evaluation works for Q under WCWA.
— If Q is in Pos` @G, then naı̈ve evaluation works for Q under CWA.

Contrast this with the result of [Libkin 2011] saying that under OWA, the first state-
ment is ‘if and only if ’, i.e., one cannot go beyond DPos. Now we see that, under other
semantics, one can indeed go well beyond that class, essentially limiting only unre-
stricted negation, and still use naı̈ve evaluation.

One immediate question is what happens with non-Boolean queries. There is a sim-
ple answer: all results extend to non-Boolean queries. We explain how this is done in
Section 8, once we have looked at other semantics to which such lifting results will
apply as well.
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6. SEMANTIC ORDERINGS

In this section we study semantic orderings arising from the usual relational semantics
of incompleteness. We recall known results about the study of such orderings in the
context of Codd databases [Buneman et al. 1991; Libkin 1995; Ohori 1990; Rounds
1991]. Such results are of two kinds: they connect orderings based on incompleteness
with well-known orderings from the field of programming semantics, and they describe
those via elementary updates that increase the information content of an instance.

Codd databases. SQL uses a single value null for missing information. As compar-
isons of a null with other values in SQL do not evaluate to true (technically, they
evaluate to unknown, as SQL uses three-valued logic), this is properly modeled by a
special kind of naı̈ve databases, called Codd databases, in which nulls do not repeat.

For tuples t “ pa1, . . . , anq and t1 “ pa1
1, . . . , a

1
nq over ConstYNull in which nulls do not

repeat, we write t Ď t1 if ai P Const implies a1
i “ ai. The meaning is that t1 is at least as

informative as t. There are two standard ways of lifting Ď to sets:

D ĎH D1 ô @t P D Dt1 P D1 : t Ď t1

D ĎP D1 ô @t1 P D1 Dt P D : t Ď t1 and D ĎH D1

Superscripts H and P stand for Hoare and Plotkin, who first studied these orderings
in the context of the semantics of concurrent processes, cf. [Gunter 1992].

These had been previously accepted as the correct orderings to represent the OWA

and the CWA semantics over Codd databases [Buneman et al. 1991; Libkin 1995; Ohori
1990; Rounds 1991]. This can be justified by considering updates that affect informa-
tiveness of incomplete databases. Consider, for example, two tuples p1, 2q and p2, 2q,
and assume that we somehow lose the value of the first attribute. SQL has a unique
null value, so both tuples become pnull, 2q, which thus must represent the instance
tp1, 2q, p2, 2qu even under CWA, since no tuples were lost, only individual values. Al-
ternatively, one can view this as an allowed update, under CWA, from pnull, 2q, that
produces a more informative instance tp1, 2q, p2, 2qu by replacing the null twice. In the
case of OWA, one can have updates that add arbitrary new tuples.

Let D be a database, R a relation in it, t a tuple, and i a position in that tuple that
contains a null K. Then by Drv{Rpt.iqs we mean D in which that occurrence of K is
replaced by v P ConstYNull, and by D`rv{Rpt.iqs we mean D to which a tuple obtained
from t by replacing the occurrence of K in the ith position with v is added (i.e., the
original t is retained). Now we consider updates D ֌

codd D1 of two kinds:

— Codd CWA updates: D ֌
codd
CWA Drv{Rpt.iqs and and D ֌

codd
CWA D`rv{Rpt.iqs;

— OWA update: D ֌
codd
OWA D YRptq that adds a tuple to a relation in a database.

It is known [Libkin 1995] that the reflexive-transitive closure

— of ֌codd
CWA Y֌

codd
OWA is exactly ĎH; and

— of ֌codd
CWA is exactly ĎP,

over Codd databases. Our next goal is to describe orderings corresponding to OWA and
CWA for naı̈ve databases, and to give an update semantics for them.

Naı̈ve databases. Firstly we describe the semantic orderings ĺ˚ given by the se-
mantics rr ss˚, where ˚ is OWA, CWA, or WCWA. They are characterized via database
homomorphisms as follows (the first item was already shown in [Libkin 2011]).

PROPOSITION 6.1. D ĺOWA D
1 (respectively D ĺCWA D1 or D ĺWCWA D1) iff there is

a database homomorphism (respectively, strong onto, or onto database homomorphism)
from D to D1.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:17

PROOF. Let Rsem belong to one of the following semantic relations

— OWA: tpD,D1q | D is a complete relational instance and D Ď D1u;
— CWA: tpD,Dq | D is a complete relational instanceu;
— WCWA: tpD,D1q | D is a complete relational instance, D Ď D1 and adompDq “

adompD1qu.

Let rr ss be the semantics given by the pair pRrdb

val
,Rsemq (this semantics is OWA, CWA

and WCWA, respectively), and let ĺrr ss be the ordering arising from rr ss.
Assume D and D1 are two relational instances and D ĺrr ss D

1. Let E P rrD1ss be an
instance having a bijection i : adompEq Ñ adompD1q which is the identity on ConstpDq
and such that ipEq “ D1. We know E P rrDss therefore pE,Dq P Rrdb

val
˝Rsem, or in other

words there exists a valuation h : adompDq Ñ Const such that phpDq, Eq P Rsem. Let
h1 “ i ˝ h. We prove that h1pDq and D1 are in the same relationship as hpDq and E, i.e.,

— Under OWA: hpDq Ď E, therefore h1pDq “ iphpDqq Ď ipEq “ D1;
— Under CWA: hpDq “ E, therefore h1pDq “ iphpDqq “ ipEq “ D1;
— Under WCWA: hpDq Ď E and adomphpDqq “ adompEq, therefore h1pDq “ iphpDqq Ď
ipEq “ D1 and adomph1pDqq “ ipadomphpDqqq “ ipadompEqq “ adompD1q.

Moreover h1 is the identity on ConstpDq, because both h and i are, and h1pDq and D1 are
related according to Rsem.

This implies that:

— Under OWA, h1 is a database homomorphism D Ñ D1;
— Under CWA, h1 is a database strong onto homomorphism D Ñ D1;
— Under WCWA, h1 is a database onto homomorphism D Ñ D1.

Conversely assume that there exists a database ˚-homomorphismD Ñ D1 where ˚ is
“arbitrary”, if rr ss “ OWA; “strong onto” rr ss “ CWA; and “onto” if rr ss “ WCWA. Note that
the existence of a database ˚-homomorphism is a transitive relation, i.e. if there exists
a database ˚-homomorphism fromD to D1 and a database ˚-homomorphism fromD1 to
D2, then there exists a database ˚-homomorphism from D to D2. Note also that rrD1ss
is precisely the set of complete relational instance E such that there exists a database
˚-homomorphism from D1 to E.

Then, by transitivity, there exists a database ˚-homomorphism from D to each E P
rrD1ss. Hence E P rrDss for all E P rrD1ss. In other words, rrD1ss Ď rrDss, and therefore
D ĺrr ss D

1.

Next, we provide update justification for these orderings. OWA updates just add tu-
ples as before; we denote them by ֌OWA . CWA updates are different, to account for
repetition of nulls. In particular, once a null is replaced by some value v, all its occur-
rences must be replaced. Formally, if K is a null that occurs in D, then Drv{Ks is D
in which v P Const Y Null replaces K everywhere. The CWA update is now an update
D ֌CWA Drv{Ks.

THEOREM 6.2. The transitive-reflexive closure of ֌CWA is ĺCWA; and the transitive-
reflexive closure of ֌CWA Y֌OWA is ĺOWA .

In other words, D is less informative than D1 iff D1 is obtained from D by a sequence
of CWA updates, under CWA, and both CWA and OWA updates, under OWA.

These results will be shown inside the proof of Theorem 7.1 in the next Section.

What are the orderings ĺOWA and ĺCWA when we restrict them to Codd databases?
One would expect them to be ĎH and ĎP, corresponding to OWA and CWA for the Codd
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semantics, but this is only partly true. In fact, [Libkin 2011] proved that over Codd
databases,

— ĺOWA and ĎH coincide;
—D ĺCWA D

1 iff D ĎP D1 and relation Ď has a perfect matching from D1 to D.

So this leads to a question: is there a “natural” semantic ordering over naı̈ve
databases that, when restricted to Codd databases, coincides precisely with ĎP? In
the next section, we present such an ordering, and show that it gives rise to a whole
new family of semantics of incompleteness.

7. POWERSET SEMANTICS

Our search for the answer to the question at the end of the previous section leads us to
consider a new class of semantics of incompleteness, in which not one, but several val-
uations can be applied to nulls. In other words, we produce several valuations (hence
the name powerset semantics), and then combine them into a single one. Notationally,
we distinguish them by using

`

| |
˘

brackets.
We start with a semantics defined as follows:

`

|D|
˘

CWA
“ th1pDq Y . . .Y hnpDq | h1, . . . , hn are valuations, n ě 1u.

That is, D1 P
`

|D|
˘

CWA
iff there exists a set of valuations h1, . . . , hn on D so that D1 “

Ť

thipDq | 1 ď i ď nu. We call it the CWA powerset semantic.
Next, we describe the ordering ŤCWA induced by this semantics: that is, D ŤCWA D

1

iff
`

|D1|
˘

CWA
Ď

`

|D|
˘

CWA
).

To updates used as the justification of orderings in the previous section, we now add
a new type. A copying CWA update is of the form

D ֌։CWA Drv{Ks YD
fresh,

where Dfresh is a copy of D in which all nulls are replaced by fresh ones. This is a
relaxation of CWA: we can add tuples in an update, but only in a very limited way, if
they mimic the original database.

It turns out that the ordering ŤCWA can be seen as a sequence of regular and copying
CWA updates, and that when restricted to Codd databases, it coincides precisely with
ĎP. That is, we have the following.

THEOREM 7.1.

—D ŤCWA D
1 iff there exists a set of database homomorphisms h1, . . . , hn defined on D

so that D1 “
Ť

thipDq | 1 ď i ď nu.
— The transitive-reflexive closure of ֌CWA Y֌։CWA is ŤCWA.
— Over Codd databases, ŤCWA and ĎP coincide.

PROOF. We first show the first item of the Theorem. Let D and D1 be two relational
instances such that D ŤCWA D

1, i.e.,
`

|D1|
˘

CWA
Ď

`

|D|
˘

CWA
. Let E P

`

|D1|
˘

CWA
be an instance

having a bijection b : adompEq Ñ adompD1q which is the identity on ConstpDq and

such that bpEq “ D1. By E P
`

|D|
˘1

CWA
, also E P

`

|D|
˘

CWA
and so there exists a set of

valuations h1, . . . , hn with n ě 1 such that E “
Ť

thipDq | 1 ď i ď nu. It follows that
D1 “

Ť

tb ˝ hipDq | 1 ď i ď nu where the b ˝ hi’s are database homomorphisms.
Conversely assume that there exists a set of database homomorphisms h1, . . . , hn

defined on D so that D1 “
Ť

thipDq | 1 ď i ď nu. Remark that the existence of a set of
database homomorphism is a transitive relation, i.e. if there exists a set of database
homomorphism from D to D1 and a set of database homomorphism from D1 to D2,
then there exists a set of database homomorphism from D to D2. Remark also that
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`

|D1|
˘

CWA
is precisely the set of complete relational instance E such that there exists a

set of database homomorphisms from D1 to E. Then, by transitivity, there exists a set
of database homomorphisms from D to each E P

`

|D1|
˘

CWA
. Hence E P

`

|D|
˘

CWA
for all

E P
`

|D1|
˘

CWA
. In other words,

`

|D1|
˘

CWA
Ď

`

|D1|
˘

CWA
, and therefore D ŤCWA D

1.
We will show the second item of the Theorem last and so we show now its last item.

Let D and D1 be two Codd databases. Assume D ŤCWA D1, i.e., there exists a set of
homomorphisms h1, . . . , hn from D so that D1 “

Ť

thipDq | 1 ď i ď nu. So for every
tuple pa1, . . . , amq P D, there is some 1 ď i ď n such that phipa1q, . . . , hipamqq P D

1, i.e.,
pa1, . . . , amq Ď phipa1q, . . . , hipamqq. It follows that D ĎH D1. Similarly for every tuple
pb1, . . . , bmq P D

1, there exists i such that pb1, . . . , bmq P hipDq, which entails that there
is pa1, . . . , amq P D such that for every 1 ď j ď m, hipajq “ bj and so pa1, . . . , amq Ď

pb1, . . . , bmq. It follows that D ĎP D1.
Conversely, assume D ĎP D1. For every tuple t P D, consider the set tt1 P D1 | t Ď t1u

and observe that it is both finite and non empty. Now for every tuple t P D, let Ht “
t11, . . . , t

1
k be a finite arbitrarily ordered sequence of tuples such that for every 1 ď i ď k:

t1i P Ht iff t1i P tt
1 P D1 | t Ď t1u.

Note that nothing prevents tuples to be repeated in the Ht’s. So without loss of gen-
erality we can assume that there is some m big enough so that for every t P D,
Ht “ t11, . . . , t

1
m for some t11, . . . , t

1
m P D

1. For every 1 ď i ď m, we can now put:

D1
i “ tt

1 P D1 | Dt P D such that Ht “ t11, . . . , t
1
i, . . . , t

1
m and t1 “ t1iu.

Observe that by D ĎP D1,
Ť

1ďiďmD1
i “ D1. Now for every 1 ď i ď m let hi : D Ñ Di be

as follows. For every x P NullYConst occurring as the jth component in a tuple t P D, we
define hipxq as the jth component of the ith tuple in Ht. As nulls are repeated neither
in D nor in D1 and by D ĎP D1, hi is a homomorphism and moreover hipDq “ Di. It
follows that D ŤCWA D

1.
We finally show the last item of the Theorem. We first show ֌։

˚
CWA “ ŤCWA.

ñ Let D ŤCWA D
1, i.e., there exists a set of homomorphisms h1, . . . , hn from D so that

D1 “
Ť

1ďjďn hjpDq. Now let tK1, . . . ,Kku be the set of nulls occurring in D. We

inductively define a sequence D0 ֌։CWA D1 ֌։CWA . . . ֌։CWA Dk of ֌։CWA-updates of
length k where D0 “ D and for all 1 ď i ď k:

Di “
ď

1ďjďn

Di´1rhjpKiq{Kis

Observe that Dk “ D1 entails D ֌։
˚
CWA D1 and assume as inductive hypothesis

that Dk “ D1 whenever k ď m. Now let k “ m ` 1 be the number of nulls oc-
curring in D. Let also Dc “ Drc{Km`1s be the result of substituting a fresh con-

stant c for Km`1 everywhere in D and let Dc1

“
Ť

1ďjďn hjpD
cq. Homomorphisms

being always the identity on constants, each hj : Dc Ñ hjpD
cq is also a homomor-

phism and so Dc ŤCWA Dc1

. Now by inductive hypothesis, Dc1

“ Dc
m, where Dc

m “
Ť

1ďjďnD
c
m´1rhjpKmq{Kms. It follows immediately that

Ť

1ďjďn hjpD
crKm`1{csq “

Ť

1ďjďnD
c
mrhjpKm`1q{cs. Finally, as

Ť

1ďjďn hjpD
crKm`1{csq “

Ť

1ďjďn hjpDq “ D1

and as
Ť

1ďjďnD
c
mrhjpKm`1q{cs “ Dm`1, it follows that Dm`1 “ D1.

ð AssumeD ֌։
˚
CWA D

1. So there is a set of nulls tK1, . . . ,Kku, a set of ordered sequences
of constants and nulls tS1, . . . , Sku (i.e., sequences over ConstYNull) and a sequence
D0 ֌։CWA D1 ֌։CWA . . . ֌։CWA Dk of ֌։CWA-updates of length k where D0 “ D,
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D1 “ Dk and for all 1 ď i ď k:

Di “
ď

xPSi

Di´1rx{Kis.

Without loss of generality we can assume that there is somem big enough so that for
every 1 ď i ď k there exist some xi1, . . . , x

i
m such that Si “ xi1, . . . , x

i
m. Indeed, take

m to be the length of the longest Si sequence. If there is some Sj “ x
j
1
, . . . , xjn with

n ă m, then we can simply add to Sj a sequence of identical elements xjn`1
, . . . , xjm

all equal to xjn without altering the construction, i.e., we will obtain exactly the same
database Dj by replacing multiple times the null Kj by the same element xjn. The
reason for that is simply that Dj´1rx

j
n{Kjs YDj´1rx

j
n{Kjs “ Dj´1rx

j
n{Kjs.

Out of this sequence of ֌։CWA-updates of length k, we will now construct for every
0 ď i ď k and for every 1 ď j ď mi a family of homomorphisms hij ’s from D to Di so

that Di “
Ť

1ďjďmi h
i
jpDq, which will entail in particular that D1 “

Ť

1ďjďmk h
k
j pDq,

i.e., D ŤCWA D
1 and will achieve the proof of ֌։˚

CWA “ ŤCWA.
We construct the hij ’s by induction on k, first ordering them in a sibling-ordered

tree of depth k and rank m to ease the construction. We start by defining h01 and
use it to label the root of the tree. We then label the rest of the nodes so that each
homomorphism hij lies at depth i and labels the jth node according to the left to right

ordering in the tree. This will conveniently allow us to define each hij in function of

some previously defined homomorphism lying at depth i ´ 1. Now for each hij with

i ‰ 0, observe that there is a unique r and a unique s such that hij is the rth child of

hi´1
s . We can now proceed to defining the hij ’s. We let h01 be the identity and for all

i ‰ 0 we let hij be exactly as its parent hi´1
s , except that it assigns the value xir to all

the preimages of Ki by hi´1
s .

We now show the correctness of the construction. Assume as inductive hypothesis
that for all i ă k, the following property holds:
— for every 1 ď j ď mi, hij : D Ñ Di is a homomorphism and moreover Di “

Ť

1ďjďmi h
i
jpDq.

(Notice in particular that the property holds trivially for i “ 0.) We now derive
that it also holds for i “ k. For each 1 ď j ď mk, the fact that hkj : D Ñ Dk is

a homomorphism follows from the fact that hk´1
s : D Ñ Dk´1 is a homomorphism

(recall that hkj is the rth child of hk´1
s ). Indeed, hkj is exactly as its parent hk´1

s ,

except that it assigns the value xkr to all the preimages of Kk by hk´1
s . So hkj pDq “

Dk´1rx
k
r{Kks, which by assumption is a subinstance of Dk. But given that Dk´1 “

Ť

1ďjďmk´1 h
k´1

j pDq, this also implies that Dk “
Ť

1ďjďmk h
k
j pDq.

Observe now that a CWA update D ֌CWA Drv{Ks can be seen as a special case of
multiple CWA update D֌։CWA

Ť

tDrv{Ks | v P Su where S is a singleton. The proof of
֌։

˚
CWA “ ŤCWA then adapts immediately to a proof of ֌˚

CWA “ ĺCWA. Showing ֌
˚
CWA Ě

ĺCWA amounts to restricting in the first direction of the proof to the special case where
n “ 1 for every Di “

Ť

1ďjďnDi´1rhjpKiq{Kis, while showing ֌
˚
CWA Ď ĺCWA amounts to

restricting in the second direction to the special case where the length of the longest
Si sequence is m “ 1.

The fact that p֌OWA Y ֌CWAq
˚ “ ĺOWA now follows from ֌

˚
CWA “ ĺCWA. Consider

indeed D ĺOWA D
1. So there is a homomorphism h such that hpDq is a subinstance of

D1 and D ֌
˚
CWA hpDq. But then there is also a sequence of OWA updates hpDq ֌OWA

. . . ֌OWA D1 and so Dp֌OWA Y ֌CWAq
˚D1. Conversely let Dp֌OWA Y ֌CWAq

˚D1. So
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there is a homomorphism h from D and a sequence of p֌OWA Y ֌CWAq
˚ updates

D ֌CWA . . . ֌CWA hpDq ֌OWA . . . ֌OWA D1 where all the OWA updates are performed
last. Adding new tuples to hpDq does not alter the tuples in it and so hpDq is a subin-
stance of D1, i.e., D ĺOWA D1. Finally it can be shown using a similar reasoning that
p֌OWA Y֌CWAq

˚ “ p֌OWA Y֌։CWAq
˚, which achieves the proof of the Theorem.

Abstract framework for powerset semantics. We now cast the powerset semantics
in our general relation-based framework, which enables us to establish when naı̈ve
evaluation works for it. For a set D of databases and a set C of complete databases, we
have a pair R “ pRval,Rsemq of relations with Rval Ď D ˆ 2C and Rsem Ď 2C ˆ C. The
first relation corresponds to applying multiple valuations (e.g., relating D with sets
th1pDq, . . . , hnpDqu). The second relation, in our example, is RY “ tpX , Xq | X “

Ť

X u.
The semantics given by R is again the composition of two relations: D1 P rrDss

R
iff

D1pRval ˝RsemqD.
The basic conditions on these relations are essentially the same as we used before

for non-powerset semantics except that we need to deal with relations between C and
2C. Let idℓ Ď Cˆ 2C contain precisely all pairs pc, tcuq and idr Ď 2C ˆ C contain precisely
all pairs ptcu, cq for c P C. We say that a semantics rr ss

R
is given by R if both relations

are total, relation Rval equals idℓ when restricted to C, relation Rsem contains idr, and
D1 P rrDss

R
iff DpRval ˝RsemqD

1. Previously we just used identity instead of idℓ and idr.
We say that Rsem is transitive if Rsem˝ idℓ˝Rsem ĎRsem. Note that RY is transitive.

Now we have an analog of Proposition 4.1.

PROPOSITION 7.2. A pair R “ pRval,Rsemq gives rise to a fair database domain if
Rsem is transitive.

PROOF. We prove a more general necessary and sufficient condition for fairness:

LEMMA 7.3. A powerset semantics given by R “ pRval,Rsemq gives rise to a fair
database domain iff Rval ˝Rsem ˝ idℓ ˝Rsem Ď Rval ˝Rsem. In particular if Rsem is
transitive then the database domain is fair.

PROOF. Assume first that Rval˝Rsem˝idℓ˝Rsem ĎRval˝Rsem, and take an arbitrary
x P D and c P C. We have

(1) c P rrcss
R

.
Indeed we know pc, tcuq PRval and ptcu, cq PRsem, then c P rrcss

R
.

(2) c P rrxss
R

implies rrcss
R
Ď rrxss

R
.

Indeed if c P rrxss
R

there exists y Ď C such that px, yq P Rval and py, cq P Rsem.
Moreover if c1 P rrcss

R
then pc, c1q P idℓ ˝Rsem (because Rval is idℓ when restricted

to C). Hence px, c1q P Rval ˝Rsem ˝ idℓ ˝Rsem. This implies px, c1q P Rval ˝Rsem, and
therefore c1 P rrxss

R
.

By Proposition 3.2, the database domain is fair.
Conversely assume that the database domain is fair, and px, cq P Rval ˝Rsem ˝ idℓ ˝

Rsem, then there exist c1 such that px, c1q P Rval ˝Rsem and pc1, cq P idℓ ˝Rsem. Then
c1 P rrxss

R
and c P rrc1ss

R
(because Rval coincides with idℓ over C). Then by fairness,

c P rrxss
R

, and hence px, cq PRval ˝Rsem.

Proposition 7.2 immediately follows from the lemma above. l

Preservation for powerset semantics. Our next goal is to understand how we can
make naı̈ve evaluation work under the powerset semantics. For the standard seman-
tics of incompleteness, we related naı̈ve evaluation to preservation of queries under
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homomorphisms. We shall do the same here, but the setting for homomorphisms will
be a bit different.

Recall that before we looked at relational semantics defined by two relations, re-
lation Rrdb

val
“ tpD, vpDqq | v is a valuationu and relation Rsem between complete

databases. Now we deal with relations Rval and Rsem. The natural powerset-based
analog of Rrdb

val
is the relation

R
rdb

val “ tpD, tv1pDq, . . . , vnpDquq | vi’s are valuationsu.

Hence, we now look at the semantics where the valuation relations are R
rdb

val , and thus
the semantics is determined by Rsem (e.g., by RY “ tpX , Xq | X “

Ť

X u).
Consider complete relational databases D and D1. An Rsem-homomorphism be-

tween D and D1 is a set th1, . . . , hnu of mappings defined on adompDq so that
th1pDq, . . . , hnpDquRsemD

1. Note that if n “ 1, this is exactly the notion of Rsem-
homomorphisms seen earlier. The connection between naı̈ve evaluation and homomor-
phism preservation now extends to powerset semantics.

PROPOSITION 7.4. For every powerset semantics given by a relation Rsem, naı̈ve
evaluation works for a generic Boolean query Q iff Q is preserved under Rsem-
homomorphisms.

PROOF. We prove the proposition by proving some slightly more general results
which will be useful later, when dealing with other forms of powerset semantics.

We start by defining a notion of «-equivalence for powerset semantics. This is the
analog of the notion of «-equivalence (and strong «-equivalence) introduced for prov-
ing Proposition 4.3.

If D “ xD, C, rr ss,«y is a database domain, R and R
1 are subsets of D ˆ 2C , we say

that R1 is «-equivalent to R if the following two conditions are satisfied:

(1) if px,X q PR then there exists x1 P D such that x1 « x and px1,X q PR1;
(2) if px,X q PR1 then there exists x1 P D such that x1 « x and px1,X q PR.

When the semantics is given by a pair pRval,Rsemq, we have the exact analog of
Lemma 4.5:

LEMMA 7.5. Let D “ xD, C, rr ss,«y be a database domain whose semantics rr ss is
given by a pair pRval,Rsemq and let R1 Ď Dˆ2C be «-equivalent to Rval, then R

1 ˝Rsem

is «-equivalent to the graph of rr ss (i.e. to Rval ˝Rsemq. In particular a generic Boolean
query over D is weakly monotone iff it is preserved under R

1 ˝Rsem.

A powerset mapping type M is a function which associates to each complete rela-
tional instance D a class tH1, . . .Hn, . . . u, where each Hi is a finite non-empty set of
mappings adompDq Ñ Const.

If M is a powerset mapping type, we denote by RM the set of pairs
pD, th1pDq, . . . hkpDquq such that D is a complete instance and th1, . . . hku P MpDq.
Given two complete relational instances D and D1, an M-Rsem-homomorphism from
D to D1 is an Rsem-homomorphism th1, . . . hku from D to D1 which belongs to MpDq.

The following claim follows directly from definitions:

CLAIM 2. If M is a powerset mapping type then pD,D1q PRM˝Rsem iff there exists
an M-Rsem-homomorphism from D to D1

By combining the above claim with Lemma 7.5 we have:

COROLLARY 7.6. Let D “ xD, C, rr ss,«y be a relational database domain whose se-
mantics rr ss is given by a pair pRval,Rsemq and let M be a powerset mapping type. As-
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sume that RM is «-equivalent to Rval. Then a generic Boolean query is weakly mono-
tone iff it is preserved under M-Rsem-homomorphisms.

We say that R “ PpRq if R consists of precisely the pairs px,X q such that X ‰ H
and px, yq P R for all y P X .

Similarly if M is a mapping type, we denote as PpMq the powerset mapping type
associating to each instance D the set consisting of all possible finite non-empty H Ď
MpDq. It is easy to check that if M “ PpMq then RM “ PpRMq.

We now consider a special case when Rval “ PpRvalq.

LEMMA 7.7. On an arbitrary database domain, assume R Ď Dˆ C and R “ PpRq.
If R1 Ď D ˆ C is strongly «-equivalent to R, then PpR1q is «-equivalent to R.

If a powerset relational semantics rr ss is based on Rval “ PpRvalq and RM is strongly
«-equivalent to Rval, for some mapping type M, then a generic Boolean query is weakly
monotone iff it is preserved under M-Rsem-homomorphisms, where M “ PpMq.

PROOF. Assume R1 is strongly «-equivalent to R. Let px,X q be in R. Note that
px, cq P R for all c P X . Since R1 is strongly «-equivalent to R, there exists y « x such
that py, cq P R1 for all c P X . Thus py,X q P PpR1q. Symmetrically we prove that if py,X q
is in PpR1q then there exists x « y such that px,X q P R. This proves that PpR1q is
«-equivalent to R.

Now assume a powerset relational semantics is based on Rval “ PpRvalq, and RM is
strongly «-equivalent to Rval. The PpRMq is «-equivalent to Rval. But PpRMq “RM

for M “ PpMq. Then by Corollary 7.6, a generic Boolean query is weakly monotone iff
it is preserved under M-Rsem-homomorphisms.

We are now ready to prove Proposition 7.4. Remark that Rrdb

val “ PpRrdb

val
q. Moreover

by Lemma 4.7, if M “ all, then RM is strongly «-equivalent to Rrdb

val
. Remark also

that for M “ all, PpMq-Rsem-homomorphisms are precisely Rsem-homomorphisms. It
follows then from Lemma 7.7 that, for every powerset semantics given by a relation
Rsem, a generic Boolean query is weakly monotone iff it is preserved under Rsem-
homomorphisms. Now note that, under all relational semantics given by a relation
Rsem the database domain has the saturation property. Then the statement of Propo-
sition 7.4 follows from Theorem 3.1. l

Let us now look at the semantics
`

| |
˘

CWA
given by relation RY. The notion of preser-

vation under RY-homomorphisms is preservation under union of strong onto homo-
morphisms: if Q is true in D, and h1, . . . , hn are homomorphisms defined on D, then Q
is true in h1pDq Y . . .Y hnpDq.

For previous preservation results among FO queries, we looked at classes Pos and
DPos of positive and existential positive queries, and the class Pos ` @G of positive

queries with universal guards. Now let DPos ` @G
bool be the class of existential posi-

tive queries extended with Boolean universal guards, i.e., universally guarded formu-
lae which are sentences. More precisely, if x̄ is a tuple of distinct variables, ϕpȳq is a

formula in DPos ` @G
bool, where all ȳ variables are contained in x̄, and R is a relation

symbol (possibly the equality relation), then @x̄ pRpx̄q Ñ ϕpȳqq is in DPos` @G
bool.

LEMMA 7.8. Sentences in DPos ` @G
bool

are preserved under unions of strong onto
homomorphisms.

PROOF. We first define the notion of preservation under unions of strong onto ho-
momorphisms for non-Boolean queries. This will allow us to prove the preservation

property by structural induction on formulas in DPos` @G
bool.
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If Q is a k-ary query over complete relational instances (i.e. Q associates to each
complete relational instance D a k-ary relation over adompDqq, we say that Q is pre-
served under unions of strong onto homomorphisms if, whenever there exists a union
of strong onto homomorphisms th1 . . . hnu from an instance D to an instance D1, and
ā P QpDq, then hipāq P QpD

1q, for all i P 1, . . . , k.

To prove Lemma 7.8, we show that formulae in DPos ` @G
bool are preserved under

unions of strong onto homomorphisms. We proceed by structural induction on the for-
mula ϕ. If ϕ “false or ϕ “true, it is clearly preserved under unions of strong onto
homomorphisms.

Assume now that ϕpx̄q is a positive atom Rpȳq (including the case of an equality
atom), where variables occurring in ȳ are precisely x̄. It follows from the definition
of homomorphism that if an instance D |ù ϕpāq then hpDq |ù ϕphpāqq, for every ho-
momorphism h. Then if D1 “ h1pDq Y ¨ ¨ ¨ Y hkpDq one has that D1 |ù ϕphipāqq for all
i “ 1, . . . , k.

It is also easy to verify that if ϕ1 and ϕ2 are preserved under unions of strong onto
homomorphisms, so are ϕ1 ^ ϕ2 and ϕ1 _ ϕ2.

Now assume ϕpx̄q “ Dyϕ1py, x̄q, where ϕ1 is preserved under unions of strong onto
homomorphisms. Assume that an instance D |ù ϕpāq, and thatD1 “ h1pDqY¨ ¨ ¨YhkpDq.
Then D |ù ϕ1pb, āq for some value b P adompDq. Since ϕ1 is preserved under unions of
strong onto homomorphisms, D1 |ù ϕ1phipbq, hipāqq for each i P 1, . . . , k. Thus D1 |ù
Dyϕ1py, hipāqq, i.e. D1 |ù ϕphipāqq, for each i P 1, . . . , k.

Now assume that ϕ is a sentence of the form @x̄pRpx̄q Ñ ϕ1px̄qq where variables x̄ are
pairwise distinct. Assume that an instance D |ù ϕ and that D1 “ h1pDq Y ¨ ¨ ¨ Y hkpDq.
We prove D1 |ù ϕ. Assume that D1 |ù Rpb̄q for some tuple b̄; then hipDq |ù Rpb̄q for
some i P 1, . . . , k. Thus there exists a tuple ā over adompDq such that D |ù Rpāq and
hipāq “ b̄. Since D |ù ϕ one has that D |ù ϕ1pāq. Now, by the induction hypothesis, ϕ1px̄q
is preserved under union of strong onto homomorphisms, therefore D1 |ù ϕ1phipāqq “
ϕ1pb̄q. Since this holds for all b̄ such that D1 |ù Rpb̄q, we have that D1 |ù ϕ.

This also concludes the proof of Lemma 7.8.

Combining with Proposition 7.4, we get the following result.

COROLLARY 7.9. If Q is a Boolean query from the class DPos ` @G
bool

, then naı̈ve
evaluation works for Q under the

`

| |
˘

CWA
semantics.

Semantics similar to
`

| |
˘

CWA
did appear in the literature. In fact, the closest comes

from the study of CWA in the context of data exchange [Arenas et al. 2010]. It was
presented in [Hernich 2011] (and based in turn on a semantics from [Minker 1982]),
and essentially boils down to the

`

| |
˘

CWA
semantics, but based on a restricted notion of

valuations, namely minimal valuations. We shall study those in Section 10.

8. LIFTING TO NON-BOOLEAN QUERIES

So far our results dealt with Boolean queries. Now we show how to lift them to the
setting of arbitrary k-ary relational queries. The basic idea is to consider database
domains where objects are pairs consisting of a database and a k-tuple of constants.
This turns queries into Boolean, and we apply our results. This requires more technical
development than seems to be implied by the simple idea, but it can be carried out for
all the semantics. We sketch now how the extension works.

A k-ary query Q maps a database D to a subset of adompDqk. It is generic if, for each
one-to-one map f : adompDq Ñ ConstY Null, we have QpfpDqq “ fpQpDqq.
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Given a semantics rr ss, certain answers to Q are defined as certainpQ,Dq “
Ş

tQpD1q |
D1 P rrDssu. Naı̈ve evaluation works for Q if certainpQ,Dq is precisely the set of tuples

in QpDq that do not have nulls. We refer to this set (i.e., QpDq X Const
k) as QCpDq.

As before, Q is weakly monotone if QCpDq Ď QCpD1q whenever D1 P rrDss.
We will need a stronger form of saturation property. A relational database domain

is strongly saturated if every database has “sufficiently” many complete instances in
its semantics that are isomorphic to it. More precisely, for each database D, and each
finite set C Ă Const, there is an isomorphic instance D1 P rrDss such that both the
isomorphism from D to D1 and its inverse are the identity on C.

If we deal, as before, with relational semantics given by pairs R “ pRrdb

val
,Rsemq, we

say that a k-ary query is weakly preserved under a class of Rsem-homomorphisms if for
every database D, a k-tuple t of constants, and an Rsem-homomorphism h : D Ñ D1

from the class that is the identity on t, the condition t P QpDq implies t P QpD1q. Note
that for Boolean queries this is the same as preservation under Rsem-homomorphisms.

Then the main connections continue to hold.

LEMMA 8.1. Let D be a relational database domain with the strong saturation prop-
erty, and Q a k-ary generic query. Then the following are equivalent:

(1) naı̈ve evaluation works for Q;
(2) Q is weakly monotone; and
(3) (if the semantics is given by a relation Rsem): Q is weakly preserved under Rsem-

homomorphisms.

We postpone the proof of Lemma 8.1 until Section 11 where it will be proved together
with its analog for minimal semantics.

One can develop similar transfer techniques for powerset semantics. Specifically
Lemma 8.1 remains true if one replaces (3) by:

(3) (if the semantics is given by a relation Rsem): Q is weakly preserved under Rsem-
homomorphisms.

In addition, one can then check that for all the classes of FO formulae considered here,
preservation results hold when extended to formulae with free variables. One can then
conclude that all the results remain true for non-Boolean queries.

THEOREM 8.2. Let Q be a k-ary FO query, k ě 0. Then:

— If Q is in DPos, then naı̈ve evaluation works for Q under OWA.
— If Q is in Pos, then naı̈ve evaluation works for Q under WCWA.
— If Q is in Pos` @G, then naı̈ve evaluation works for Q under CWA.

— If Q is in DPos` @G
bool

, then naı̈ve evaluation works for Q under
`

| |
˘

CWA
.

PROOF. One can easily verify that all relational semantics given by a relation Rsem

(respectively Rsem) have the strong saturation property. Moreover every k-ary FO
query is generic. Then using Lemma 8.1 we have

CLAIM 3. If Q is a k-ary FO query, naı̈ve evaluation works for Q iff Q is weakly
preserved under

— homomorphisms, under OWA

— strong onto homomorphisms, under CWA

— onto homomorphisms, under WCWA

— unions of strong onto homomorphisms, under
`

| |
˘

CWA
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We showed (see proofs of Proposition 5.1 and Lemma 7.8) that k-ary formulae of
Pos ` @G are preserved under strong onto homomorphisms, and k-ary formulae of

DPos ` @G
bool are preserved under unions of strong onto homomorphisms. Moreover

it is known that k-ary formulae of DPos (respectively Pos) are preserved under ho-
momorphisms (respectively onto homomorphisms) in the way defined in the proof of
Proposition 5.1.

Now notice that, for all these notions of homomorphism, preservation of k-ary for-
mulae implies weak preservation. Then the statement of Theorem 8.2 immediately
follows.

9. NON-SATURATED DOMAINS

So far we dealt with saturated domains, those in which every object x has an iso-
morphic object y in its semantics: y P rrxss and y « x. While the semantics allowing
arbitrary valuations of nulls are such, there are others. Such semantics, originating in
AI, restrict possible valuations to minimal ones, i.e., valuations that produced results
that cannot be smaller by using other valuations instead. We shall formally define and
study them in Section 10. For now, our goal is to see what happens with non-saturated
semantics, since all the equivalences we used previously require that domains be sat-
urated.

The key idea is that to recover all the results, we need two conditions:

— the existence of a saturated subdomain, which we shall call a representative set, and
— the existence of a canonical function selecting a representative for each element of

the domain.

Recall that a database domain was defined as a structure D “ xD, C, rr ss,«y, where D

is a set and C one of its subset, rr ss is a function from D to nonempty subsets of C, and
« is an equivalence relation on D. A set S Ď D is representative if

— C Ď S (it contains all complete objects);
— S is saturated, i.e., for each x P S there is y P rrxss such that x « y (every object in S

has a complete object in its semantics that is isomorphic to it); and
— there is a function χS : D Ñ S such that rrxss “ rrχSpxqss for every x P D (each object

has a representation in S with the identical semantics).

Over relational database domains, if moreover S is strongly saturated, we say that
S is a strong representative set.

In all the examples encountered so far we had S “ D, but as we just said (and will
study in detail in the following section) this need not always be the case.

If S ‰ D, the equivalence between naı̈ve evaluation and weak monotonicity need not
work any more. However, we have the following generalization.

THEOREM 9.1. Let D be a database domain with a representative set S, and Q a
generic Boolean query. Then naı̈ve evaluation works for Q iff Q is weakly monotone and
Qpxq “ QpχSpxqq for every x P D.

PROOF. Theorem 9.1 follows immediately from the lemma below. We say that naı̈ve
evaluation works over D1 Ď D if certainpQ, xq “ Qpxq for every x P D1.

LEMMA 9.2. Let D “ xD, C, rr ss,«y be a database domain, and Q a generic Boolean
query. Assume that D has a representative set S, and let D1 be a set S Ď D1 Ď D. Then
naı̈ve evaluation works for Q over D1 iff Q is weakly monotone over D1 and Qpxq “
QpχSpxqq for every x P D1.
In particular if S “ D (i.e. if D is saturated) then naı̈ve evaluation works for Q iff Q is
weakly monotone.
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PROOF. Let Q be a Boolean generic query. Assume that naı̈ve evaluation works for
Q over D1; then weak monotonicity of Q over D1 immediately follows.

For all x P D1, we have rrxss “ rrχSpxqss; moreover naı̈ve evaluation works forQ on both
x and χSpxq (because D1 Ě S). Then we have Qpxq “ certainpQ, xq “ certainpQ,χSpxqq “
QpχSpxqq.

Conversely assume that Q is weakly monotone over D1 and Qpxq “ QpχSpxqq for
all x P D1. Let x P D1. By weak monotonicity over D1 (and because D1 Ě S Ě C) we
have Qpxq ď certainpQ, xq. To prove the converse, assume certainpQ, xq “ 1. Recall that
rrxss “ rrχSpxqss and χSpxq P S. Therefore there exists c P rrxss such that c « χSpxq. We
know Qpcq “ 1; then by genericity QpχSpxqq “ 1 “ Qpxq. Hence certainpQ, xq “ Qpxq for
all x P D1.

We have thus proved that naı̈ve evaluation works for Q over D1 if and only if Q is
weakly monotone over D1 and Qpxq “ QpχSpxqq for all x P D1. Now if in particular
S “ D we can always assume χS to be the identity mapping D Ñ D. In this case then
naı̈ve evaluation works for Q if and only if Q is weakly monotone.

This ends the proof of Theorem 9.1. l

Thus, our recipe for finding out when naı̈ve evaluation works continues to apply,
but with one extra condition: the query (Boolean, in this case), should not distinguish
between an object x and its representative χSpxq in S.

Immediately from the above theorem, we have:

COROLLARY 9.3. Let D be a database domain with a representative set S, and Q
a generic Boolean query. Then naı̈ve evaluation works for Q over S iff Q is weakly
monotone over S.

Thus, for instances restricted to those in the representative set, our previous recipe
applies without any changes. We shall next see an example of non-saturated semantics
where representative instances are a well known object, namely cores.

10. MINIMAL VALUATIONS SEMANTICS

So far all the semantics that we saw allowed arbitrary valuations to be applied to
instances with nulls. These are not the only possible semantics. In fact [Hernich 2011],
based on earlier work in the area of logic programming [Minker 1982], proposed a
powerset semantics that is based on minimal valuations. We now introduce it in our
context (as [Hernich 2011] defined it in the context of data exchange). In this section,
we again only look at Boolean queries, and in Section 11 we show how to lift results to
non-Boolean ones.

For now we deal with database homomorphisms, i.e., hpcq “ c for each c P Const.
We say that a homomorphism h defined on an instance D is D-minimal if no proper
subinstance of hpDq is a homomorphic image ofD; equivalently, there is no other homo-
morphism h1 so that h1pDq Ĺ hpDq. If h is a valuation, then we talk about a D-minimal
valuation.

Not every valuation (or homomorphism) is minimal. Consider an incomplete table
D “ tpK,Kq, pK,K1qu and a valuation vpKq “ 1, vpK1q “ 2. This is not minimal: take for
instance v1pKq “ v1pK1q “ 1 and we have v1pDq Ĺ vpDq. The valuation v1 is minimal.

The semantics of [Hernich 2011] is defined as
`

|D|
˘min

CWA
“ t

ď

hPH

hpDq | H is a nonempty set of D-minimal valuationsu.

This is a powerset-based semantics, and the semantic relation it uses is the union
relation RY, the same as in Section 7. However the valuation relation is no longer
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R
rdb

val , allowing all valuations, but rather R
min

val containing all pairs pD, thpDq | h P Huq
with H ranging over nonempty sets of D-minimal valuations.

One can define a non-powerset analog of such a semantics with valuation relation
Rmin

val
“ tpD,hpDqq | h is a D-minimal valuationu. For the identity relation, playing the

role of Rsem for CWA, this gives us

rrDss
min

CWA
“ thpDq | h is a D-minimal valuationu.

Combining Rmin

val
with the subset relation (playing the role of Rsem for OWA) gives us

the usual OWA semantics.
Thus, we study the rr ss

min

CWA
and

`

| |
˘min

CWA
semantics. We start by looking at the connection

between minimal homomorphisms and the closely related notion of cores.
The fact that we no longer allow all valuations makes the equivalence of naı̈ve eval-

uation and preservation of Rsem-homomorphisms invalid. However, we can apply the
results of the previous section to recover results on naı̈ve evaluation. The main goal is
then to find out what the representative sets are. This is what we do next.

10.1. Minimal homomorphisms and cores

Recall that a core of a structure D (in our case, a relational database of vocabulary σ)
is a substructure D1 Ď D such that D1 is a homomorphic image of D but no proper
subinstance of D1 is. In other words, there is a homomorphism h : D Ñ D1 but there
is no homomorphism g : D Ñ D2 for D2 Ĺ D1. It is known that a core is unique up
to isomorphism, so we can talk of the core of D, and denote it by corepDq. A structure
is called a core if D “ corepDq. The cores are commonly used over graphs [Hell and
Nešetřil 2004]; here we use them with the database notion of homomorphism that
preserves constants (for which all results about cores remain true [Fagin et al. 2005]).

Even if minimal homomorphisms are related to cores, their images cannot be de-
scribed precisely in terms of cores, as shown next. We strengthen results given in sev-
eral examples in [Hernich 2011] (where constants were used in an essential way):

PROPOSITION 10.1. If h is D-minimal, then hpDq is a core and hpDq “ hpcorepDqq.
However, there is a core D and a homomorphism h defined on it so that hpDq is a core,
but h is not D-minimal. This also holds if both D and hpDq contain only nulls, and if
D is a graph.

PROOF. Let D be a relational instance and let h be a D-minimal database homomor-
phism. Assume by contradiction that hpDq is not a core. Then there exists a database
homomorphism h1 on hpDq such that h1phpDqq Ĺ hpDq. Clearly h1 ˝ h is a database
homomorphism on D, then this contradicts the D-minimality of h.

Now assume by contradiction that hpcorepDqq Ĺ hpDq, and let hcore be the database
homomorphism from D onto corepDq. Clearly h ˝ hcore is a database homomorphism on
D and hcorephpDqq “ hpcorepDqq Ĺ hpDq. Again this contradicts the D-minimality of h.

We now prove that there exists a core D and a database homomorphism h :

adompDq Ñ Null such that hpDq is a core, but h is not D-minimal.
Fix a schema with a single 4-ary relation, and consider instances

D
K1 K1 K2 K3

K4 K5 K2 K2

hpDq
K6 K6 K7 K7

K6 K7 K7 K7

where h : K1 Ñ K6, K2 Ñ K7, K3 Ñ K7, K4 Ñ K6, K5 Ñ K7

It is easy to check that both D and hpDq are cores. However h is not D-minimal. In
fact there exists a mapping h1 : K1 Ñ K6, K2 Ñ K7, K3 Ñ K7, K4 Ñ K6, K5 Ñ K6

such that h1pDq Ĺ hpDq.
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In fact one can produce a pure graph example (below, we shall assume that the nodes
in graphs are distinct nulls, so we use the standard graph homomorphisms).

Let Cn be the directed cycle on n vertices. Let G “ C4 ` C6, where ` stands for
disjoint union. Note that each Cn is a core. Moreover, G is a core, since there is no
homomorphism from C6 to C4. Let H “ C3 ` C2. Likewise, it is a core, and there is a
strong onto homomorphism h : GÑ H that sends C4 to C2 and C6 to C3 (as in general
we have C2n Ñ Cn). Hence, H,G are cores, but h is not G-minimal since GÑ C2, as G
is 2-colorable.

This also provides an example ofD such that rrDss
min

CWA
‰ rrcorepDqss

CWA
. Indeed, take D

to be C6`C4 consisting of all nulls; note that corepDq “ D. Let CC
n be the cycle Cn whose

nodes are distinct constants. Then CC
3 `C

C
2 is in rrDss

CWA
. However, it is not in rrDssmin

CWA
.

Indeed, if it were, there would be an onto homomorphism h : C6 ` C4 Ñ CC
3 ` CC

2 .
Since we have no homomorphism C4 Ñ C3, then C4 ought to be mapped by h to CC

2 ,
and hence C6 will be mapped by h to CC

3 as h is onto. But we already saw that such a
homomorphism cannot be minimal, since we have a homomorphism g : C6 ` C4 Ñ CC

2 .

Thus, CC
3 ` C

C
2 R rrDss

min

CWA
.

Proposition 10.1 also shows that rrDss
min

CWA
need not be the same as rrcorepDqss

CWA
. Nev-

ertheless, cores do play a crucial role in the study of minimal semantics.

THEOREM 10.2. For the semantics rr ssmin

CWA
and

`

| |
˘min

CWA
, the set of cores is a represen-

tative set.
This remains true for every semantics given by pairs R “ pRmin

val
,Rsemq or R “

pRmin

val ,Rsemq.

PROOF. In order to easily work with minimal homomorphisms we extend the D-
minimality notion to arbitrary mappings, and prove some technical facts about D-
minimal mappings.

For an arbitrary mapping h : adompDq Ñ Const Y Null we define, fixph,Dq “ tc P
ConstpDq | hpcq “ cu.

Given a relational instance D and a mapping h : adompDq Ñ Const Y Null we say
that h is D-minimal if there is no mapping g : adompDq Ñ ConstYNull with fixph,Dq Ď
fixpg,Dq and gpDq Ĺ hpDq.

Notice that a D-minimal database homomorphism (D-minimal valuation, resp.) is a
database homomorphism (valuation, resp.) which is also a D-minimal mapping.

We now prove a technical lemma about minimal mappings.

LEMMA 10.3. Let D and D1 be relational instances and assume there exists a D-
minimal mapping h : adompDq Ñ Const Y Null with D1 “ hpDq. Let E and E1 be rela-
tional instances with isomorphisms µ : E Ñ D and µ1 : D1 Ñ E1, such that µ, µ1 and
their inverses are the identity on fixph,Dq. Then the mapping µ1 ˝ h ˝ µ is E-minimal.

PROOF. Let h1 “ µ1 ˝ h ˝ µ. First notice that h1 is a mapping over adompEq such that
h1pEq “ E1, and h1 is the identity on fixph,Dq.

Now assume by contradiction that there exists a mapping g : adompEq Ñ ConstYNull

such that fixph1, Eq Ď fixpg, Eq and gpEq Ĺ h1pEq. Then gpEq Ĺ E1 and g is the identity on
fixph,Dq. Let g1 “ µ1´ ˝ g ˝ µ´; clearly g1 is a mapping over adompDq and is the identity
on fixph,Dq; therefore fixph,Dq Ď fixpg1, Dq. We now show that g1pDq Ĺ hpDq. In fact
g1pDq “ µ1´pgpEqq. Recall that gpEq Ĺ E1, therefore µ1´pgpEqq Ĺ µ1´pE1q “ D1 “ hpDq

This contradicts the assumption that h is D-minimal.

We are now ready to prove the theorem. Indeed we prove the following more general
proposition:
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PROPOSITION 10.4. If a relational semantics is given by a pair pRmin

val
,Rsemq or

pRmin

val ,Rsemq, the set S of cores is a strong representative set, and χSpDq “ corepDq for
every instance D.

PROOF. We first prove that for a semantics rr ss given by pRmin

val
,Rsemq the set of cores

is a strong representative set.
Clearly the set of cores contains all complete instances (recall that cores are defined

w.r.t database homomorphisms here).
We now prove that if D is a core and K Ď Const, there exists a D-minimal valuation

v such that D and vpDq are isomorphic in the way required by the definition of strong
representative set. We observe that this property indeed follows from [Hernich 2011]
(Proposition 6.11 (1) and (2)), but we prove it here directly for completeness.

If D is a core and K Ď Const, let v be an arbitrary injective valuation adompDq Ñ
ConstzK. Clearly v is an isomorphism between D and vpDq and both v and v´ are the
identity on ConstpDqYK, and therefore the identity on K, as required by the definition
of strong representative set. We need to prove that vpDq P rrDss. Now notice that the
identity mapping over adompDq is D-minimal, because D is a core. Moreover v and v´

are the identity on ConstpDq, which is precisely the set of constants fixed by the identity
mapping on D. Then we can apply Lemma 10.3 with D “ D1 “ E and conclude that v
is D-minimal.

Thus pD, vpDqq P Rmin

val
and, since Rsem contains the identity, vpDq P rrDss.

It remains to prove that rrDss “ rrcorepDqss. This will show that one can define
χSpDq “ corepDq for every instance D.

Let D be a relational instance. We prove that D and corepDq have the same minimal
images, i.e. pD,D1q P Rmin

val
iff pcorepDq, D1q P Rmin

val
, for all D1. This will imply rrDss “

rrcorepDqss. We observe that this property has been proved in [Hernich 2011] (Lemma
6.9) restricted to the canonical solution in data exchange and its core.

Assume first that pD,D1q P Rmin

val
, then there exists a D-minimal valuation h such

that D1 “ hpDq. We know by Proposition 10.1 that hpcorepDqq “ hpDq “ D1. Moreover
h has to be a corepDq-minimal valuation. In fact assume by contradiction that there
exists a valuation h1 on corepDq such that h1pcorepDqq Ĺ hpcorepDqq “ D1. Let hcore be
the database homomorphism from D to corepDq. Then h1 ˝hcore is a valuation on D and
h1 ˝ hcorepDq “ h1pcorepDqq Ĺ D1. This contradicts the assumption that h is D-minimal.
Then h is a corepDq-minimal valuation and thus pcorepDq, D1q P Rmin

val
.

Conversely assume that pcorepDq, D1q P Rmin

val
, then there exists a corepDq-minimal

valuation h such that hpcorepDqq “ D1. Therefore h ˝ hcore is a valuation and
hphcorepDqq “ hpcorepDqq “ D1. We prove that h ˝ hcore is D-minimal. Assume by con-
tradiction that there exists a valuation h1 on D such that h1pDq Ĺ D1. Then, since
corepDq Ď D1 we have h1pcorepDqq Ď h1pDq Ĺ D1, contradicting the fact that h is corepDq-
minimal.

We have then shown that the set S of cores is a representative set and χSpDq “
corepDq for all relational instances D. We need to extend this result to powerset se-
mantics given by pRmin

val ,Rsemq.
Recall that we say that R “ PpRq if R consists of precisely the pairs px,X q such

that X ‰ H and px, yq P R for all y P X . Remark that Rmin

val “ PpRmin

val
q. We have:

CLAIM 4. If a powerset semantics rr ss
R

is given by a pair pRval,Rsemq where Rval “
PpRvalq. The following holds:

— For all x, x1 P D, if x and x1 are related by Rval to the same set of instances (i.e px, cq P
Rval iff px1, cq P Rval for all c P C) then rrxss

R
“ rrx1ss

R
.

— Rval ˝Rsem Ě Rval
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PROOF. The first item immediately follows from the fact that Rval “ PpRvalq.
As for the second item, assume px, cq P Rval then px, tcuq PRval. Since Rsem contains

idr, we have that ptcu, cq PRsem. Hence px, cq PRval ˝Rsem.

The following lemma easily follows:

LEMMA 10.5. Let id be the identity relation over complete relational instances. As-
sume that S is a strong representative set under a relational semantics given by a pair
pRval, idq. Then S is a strong representative set also under any powerset semantics given
by pPpRvalq,Rsemq.

PROOF. Because S is a strong representative set under a semantics, S Ě C. More-
over there exists a function χS : D Ñ S, such that D and χSpDq are related by Rval to
precisely the same instances. Then by Claim 4, D and χSpDq have the same semantics
under pPpRvalq,Rsemq.

We further know that for all D P S and for all K Ď Const there exists D1 with
pD,D1q P Rval and a bijection i : adompDq Ñ adompD1q with ipDq “ D1 such that i and
i´ are the identity on K. Again by Claim 4, pD,D1q P PpRvalq ˝Rsem.

This proves that S is a strong representative set under the semantics
pPpRvalq,Rsemq.

The lemma above implies that the set of cores is a strong representative set also un-
der any powerset semantics given by pRmin

val ,Rsemq. This concludes the proof of Propo-
sition 10.4 and of Theorem 10.2. l

Recall that a generic Boolean query Q is weakly monotone under
`

| |
˘min

CWA
if QpDq “ 1

and D1 P
`

|D|
˘min

CWA
imply QpD1q “ 1. Immediately from Theorem 10.2 and Theorem 9.1,

we obtain:

COROLLARY 10.6. Let Q be a generic Boolean relational query. Then naı̈ve evalu-

ation works for Q under the rr ss
min

CWA
or the

`

| |
˘min

CWA
semantics iff Q is weakly monotone

(under the corresponding semantics), and QpDq “ QpcorepDqq for every D.

(Indeed by Theorem 10.2 and Theorem 9.1 the above corollary holds in general for
arbitrary semantics given by pRmin

val
,Rsemq or pRmin

val ,Rsemq.)
Hence, the crucial new condition for minimal semantics is that Q cannot distinguish

a database from its core.

10.2. Preservation and naı̈ve evaluation

We now relate weak monotonicity to homomorphism preservation. For this, we con-
sider minimality for instances D over Const. For such an instance, and a homo-
morphism h, we let fixph,Dq “ tc P ConstpDq | hpcq “ cu. In the same way as
for arbitrary mappings, h is called D-minimal if there is no homomorphism g with
fixph,Dq Ď fixpg,Dq and gpDq Ĺ hpDq. Note that database homomorphisms fix precisely
the set of constants in D, so the first condition was not necessary.

Given a Boolean queryQ, we say that it is preserved under minimal homomorphisms
if, whenever D is a database over Const and h is a D-minimal homomorphism, then
QpDq “ 1 implies QphpDqq “ 1. Likewise, Q is preserved under unions of minimal
homomorphisms, if for any nonempty set H of D-minimal homomorphisms such that
fixph,Dq “ fixpg,Dq whenever f, g P H, we have that QpDq “ 1 implies Qp

Ť

thpDq | h P
Huq “ 1.
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PROPOSITION 10.7. Let Q be a Boolean generic query. Then it is weakly monotone

under rr ss
min

CWA
(respectively, under

`

| |
˘min

CWA
) iff it is preserved under minimal homomor-

phisms (respectively, their unions).

PROOF. We derive the relationship between weak monotonicity and preservation
for general semantics based on Rmin

val
and R

min

val . The proposition will follow as a special
case.

Recall the notion of mapping type and «-equivalence used to prove Proposition 4.3
and Proposition 7.4. We now consider the mapping type M “ min which associates to
each complete relational instance D the set of all D-minimal mappings adompDq Ñ
Const.

We prove the following lemma:

LEMMA 10.8. If M “ min and « is relational isomorphism, then RM is «-
equivalent to Rmin

val
.

PROOF. Let pD, vpDqq P Rmin

val
, where v is a D-minimal valuation; we prove that

there exists a complete relational instance E « D such that pE, vpDqq P RM.
The instance E is obtained from D by replacing nulls of D with new distinct con-

stants not occurring in ConstpDq. Clearly there exists an isomorphism i : E Ñ D,
thus E « D. Note that both i and i´ are the identity on ConstpDq. Let h “ v ˝ i, then
hpEq “ vpDq. Note that i and i´ are the identity on fixpv,Dq “ ConstpDq. Hence by
Lemma 10.3 h is an E-minimal mapping. As a consequence pE, vpDqq P RM (because
M “ min). This proves one direction.

Conversely assume pE, hpEqq P RM, where h is an E-minimal mapping; we prove
that there exists a relational instance D « E such that pD,hpEqq P Rmin

val
.

The instance D is obtained from E by replacing each element of adompEqzfixph,Eq
with a new distinct null. Clearly this replacement defines an isomorphism i : D Ñ
E and therefore E « D. Note that both i and i´ are the identity on fixph,Eq. Then
the mapping v “ h ˝ i is also the identity on fixph,Eq; moreover vpDq “ hpEq. But
ConstpDq “ fixph,Eq, then v is a valuation on D. Moreover by Lemma 10.3, v is D-
minimal, and hence pD,hpEqq P Rmin

val
.

We say that a set H “ th1, . . . hku of mappings over adompDq is D-minimal if each
hi is D-minimal and fixphi, Dq “ fixphj , Dq for all i, j P t1, . . . , ku. We now consider the
powerset mapping type M “ min which associates to each D the class consisting of
all non-empty finite D-minimal sets of mappings adompDq Ñ Const

LEMMA 10.9. If M “ min and « is relational isomorphism, then RM is «-

equivalent to R
min

val

PROOF. Let pD,X q PRmin

val ; we prove that there exists a complete relational instance
E « D such that pE,X q P RM. Let ConstpX q be the union of ConstpD1q, for all D1 P X .
The instance E is obtained from D by replacing nulls of D with new distinct constants
not occurring in ConstpDq Y ConstpX q. Clearly there exists an isomorphism i : E Ñ D,
thus E « D. Note that both i and i´ are the identity on ConstpDq Y ConstpX q.

For each D1 P X there exists a D-minimal valuation v such that vpDq “ D1. Let
h “ v˝ i, then hpEq “ D1 and, by Lemma 10.3 h is E-minimal. Note also that fixph,Eq “
ConstpDq. Since such an h exists for all D1 P X , we have pE,X q PRM. This proves one
direction.

Conversely assume pE,X q P RM, then X “ th1pEq, . . . hkpEqu where where
th1, . . . hku is E-minimal; we prove that there exists a relational instance D « E such
that pD,X q PRmin

val . Let K “ fixphi, Eq (which is the same for all i P t1, . . . , ku).

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:33

The instance D is obtained from E by replacing each element of adompEqzK with
a new distinct null. Clearly this replacement defines an isomorphism i : D Ñ E and
therefore E « D. Note that both i and i´ are the identity on K. Then the mappings
vj “ hj ˝ i, for j P t1, . . . , ku are all D-minimal, by Lemma 10.3. Moreover notice that
ConstpDq “ K, then vj is a D-minimal valuation on D, and vjpDq “ hjpEq, for all

j “ t1, . . . , ku. It follows that pD,X q PRmin

val .

M-Rsem-homomorphisms with M “ min will be also referred to as minimal Rsem-
homomorphisms. Similarly M-Rsem-homomorphisms with M “ min will be also re-
ferred to as minimal Rsem-homomorphisms.

Notice that minimal homomorphisms are precisely minimal Rsem-homomorphisms
where Rsem is the identity. Similarly unions of minimal homomorphisms are precisely
minimal Rsem-homomorphisms where Rsem “RY.

Using Corollary 4.6 with M “ min, and Corollary 7.6 with M “min we then have:

COROLLARY 10.10. If a relational semantics is given by a pair pRmin

val
,Rsemq (or

pRmin

val ,Rsemq, respectively) andQ is a generic Boolean relational query, thenQ is weakly
monotone (under the corresponding semantics) iff it is preserved under minimal Rsem-
homomorphisms (minimal Rsem-homomorphisms respectively).

Moreover naı̈ve evaluation works for Q iff Q is preserved under minimal
Rsem-homomorphisms (minimal Rsem-homomorphisms respectively), and QpDq “
QpcorepDqq for every D.

Proposition 10.7 is a special case of Corollary 10.10 where Rsem is the identity and
Rsem “RY. l

Combining this with Corollary 10.6 and results in Section 5 and Section 7, and
observing that minimal homomorphisms are a special case of strong onto homomor-
phisms, we obtain:

COROLLARY 10.11. Let Q be a Boolean FO query such that QpDq “ QpcorepDqq for
all D.

— If Q is in Pos` @G, then naı̈ve evaluation works for Q under the rr ss
min

CWA
semantics.

— If Q is in DPos`@G
bool

, then naı̈ve evaluation works forQ under the
`

| |
˘min

CWA
semantics.

The precondition QpDq “ QpcorepDqq is essential for the result to work. To see this,
consider an incomplete instance D “ tpK,Kq, pK,K1qu. Every D-minimal valuation h
must satisfy hpKq “ hpK1q, i.e., their images are precisely the instances tpc, cqu for

c P Const. Hence, under rr ss
min

CWA
, the certain answer to @x Dpx, xq is true, while evaluating

this formula on D produces false. The reason naı̈ve evaluation does not return certain
answers is that QpDq ‰ QpcorepDqq, since corepDq “ tpK,Kqu.

Thus, the extra condition is essential, but it is not fully satisfactory, as we do not
know how to check for this condition in relevant FO fragments. We present two ways
to deal with this issue.

First, by Corollary 9.3, if we only need to compute queries on cores, then the condi-
tion is not necessary. More precisely, recall that we say that naı̈ve evaluation works
for Q over a class K of instances, under a given semantics, if for each D P K, certain
answer to Q over D is the same as QpDq. Then

COROLLARY 10.12. Let Q be a Boolean FO query.

— If Q is in Pos ` @G, then naı̈ve evaluation works for Q over cores under the rr ss
min

CWA

semantics.
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— If Q is in DPos`@G
bool

, then naı̈ve evaluation works for Q over cores under the
`

| |
˘min

CWA

semantics.

A second corollary states that for the above classes of queries, even without the extra
condition we can conclude that if naı̈ve evaluation returns true, then so will the certain
answer. In other words, we can runQ naı̈vely on D, not on corepDq. If the result is true,
then the certain answer is true; but if the result is false, we cannot conclude anything.
That is, naı̈ve evaluation provides an approximation of certain answers.

PROPOSITION 10.13. Let Q be a Boolean FO query. If Q is in Pos`@G (or in DPos`

@G
bool

), andQpDq “ 1, then the certain answer toQ overD under the rr ss
min

CWA
(respectively

`

| |
˘min

CWA
) semantics is true.

PROOF. from Proposition 5.1 and Lemma 7.8, and the fact that minimal homomor-
phisms are a special case of strong onto homomorphisms, we have that queries in

Pos ` @G (respectively in DPos ` @G
bool) are weakly monotone under the rr ssmin

CWA
(re-

spectively the
`

| |
˘min

CWA
) semantics. By definition of weak monotonicity , if QpDq “ 1 then

QpD1q “ 1 for all D1 in the semantics of D (under the corresponding semantics). There-
fore the certain answer to Q over D is true.

11. LIFTING TO NON-BOOLEAN QUERIES FOR MINIMAL SEMANTICS

To lift results to non-Boolean queries for minimal (or, more generally, non-saturated)
semantics requires a bit more work than in the saturated case, but the results still
hold.

Recall that a representative set S is called strong if S is also strongly saturated. If
we deal with semantics given by pairs R “ pRval,Rsemq, we say that a k-ary query is
weakly preserved under a class of Rsem-homomorphisms if for every database D, a k-
tuple t of constants, and an Rsem-homomorphism h : D Ñ D1 from the class that is the
identity on t, the condition t P QpDq implies t P QpD1q. Note that for Boolean queries
this is the same as preservation under Rsem-homomorphisms.

With these concepts, we can lift results to non-Boolean queries.

LEMMA 11.1. Let D be a relational database domain, and Q a k-ary generic query.
If D has a strong representative set, then the following are equivalent:

(1) Naı̈ve evaluation works for Q;
(2) Q is weakly monotone and QCpxq “ QCpχSpxqq for every x P D.

Furthermore, for semantics given by pRmin

val
,Rsemq, naı̈ve evaluation works for Q iff Q is

weakly preserved under minimal Rsem-homomorphisms and QCpDq “ QCpcorepDqq for
each D.

Moreover Lemma 11.1 also holds for powerset semantics given by pRmin

val ,Rsemq. We
now prove it together with its analog Lemma 8.1:

PROOF OF LEMMA 11.1 AND LEMMA 8.1. We prove a more general version of these
results, also accounting for the possible presence of constants in queries. To this end
we use the notion of C-genericity (instead of the stronger notion of genericity). If C Ď
Const, a relational k-ary query is C-generic if for all relational instances D and all one-
to-one mappings i : adompDq Y C Ñ ConstY Null which are the identity on C, one has
QpipDqq “ ipQpDqq.

Clearly if C “ H the notion of C-genericity coincides with the usual notion of gener-
icity for k-ary relational queries.
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In order to relate the notions of naı̈ve evaluation, weak monotonicity and preserva-
tion for k-ary queries, we proceed as follows. For each relational database domain D

and k-ary query Q over D, we define a new database domain D
˚ and a Boolean query

Q˚ over D
˚. These are defined so that the “Boolean” notions of certain answers , naı̈ve

evaluation and weak monotonicity for Q˚ over D
˚ are precisely equivalent to the cor-

responding notions for Q over D. We then apply results from the Boolean case to Q˚

over D
˚, and so derive corresponding results for Q over D.

In what follows, if t is a tuple over Const, with a little abuse of notation, we denote
as t also the set of constants occurring in the tuple t

Given a relational database domain D “ xD, C, rr ss,«y, and a C-generic k-ary query
Q over D, we define D

˚ “ xD˚, C˚, rr ss
˚
,«˚y, and Q˚ over D

˚ as follows:

—D˚ is the set of pairs pD, tq where D P D and t is a k-tuple over Const;
— C˚ is the set of pairs of D˚ where the instance D is in C

— for all pairs pD, tq P D˚ the semantics rrpD, tqss
˚

is defined as the set of pairs pD1, tq
such that D1 P rrDss.

— pD, tq «˚ pD1, t1q iff there exists a bijection i : adompDq Y tÑ adompD1q Y t1 such that
D1 “ ipDq and t1 “ iptq (as tuples), and both i and i´ are the identity on C.

—Q˚pD, tq “ 1 iff t P QpDq.

Note that D˚ and Q˚ depend on D and Q.
The following claim easily follows from definitions:

CLAIM 5.

1) If D is fair, D˚ is also fair;
2) Q˚ is generic (i.e. it does not distinguish «˚-equivalent objects);
3) certainpQ˚, D, tq “ 1 iff t P certainpQ,Dq, for every pD, tq P D˚ ;
4) Naı̈ve-evaluation works for Q˚ iff naı̈ve-evaluation works for Q ;
5) Q˚ is weakly monotone iff Q is weakly monotone;
6) QCpDq “ QCpD1q iff for every k-tuple t over Const one has Q˚pD, tq “ Q˚pD1, tq;
7) If D has a strong representative set S, then D

˚ has a representative set S˚ with
χS˚pD, tq “ pχSpDq, tq.

PROOF.

1) Assume D is fair and consider pD, tq P C˚. Since D is fair, D P rrDss. Then
pD, tq P rrpD, tqss˚. Assume now that pD, tq P rrpD1, tqss

˚
. Then D P rrD1ss. We also

have rrpD, tqss
˚
“ tpE, tq | E P rrDssu, and since D is fair rrDss Ď rrD1ss. Thus

rrpD, tqss˚ Ď tpE, tq | E P rrD1ssu “ rrpD1, tqss
˚
.

By Proposition 3.2, D˚ is fair.
2) We know Q is C-generic. Consider two objects pD, tq, pD1, t1q P D˚ such that pD, tq «˚

pD1, t1q. We prove Q˚pD, tq “ Q˚pD1, t1q, i.e. t1 P QpD1q iff t P QpDq.
We know there exists an bijection i : adompDq Y tÑ adompD1q Y t1 such that ipDq “
D1, iptq “ t1 , and both i and i´ are the identity on C. Note that i can be extended to
a bijection f : adompDq Y tY C Ñ adompD1q Y t1 Y C which is the identity on C and
such that fpDq “ D1 and fptq “ t1.
Since f is injective on adompDq Y C, it is the identity on C, and Q is C-generic,
QpD1q “ fpQpDqq. Thus t1 P QpD1q iff t1 P fpQpDqq. Since f is injective over
adompDq Y t and fptq “ t1, we have that t1 P fpQpDqq iff t P QpDq. Then t1 P QpD1q iff
t P QpDq.

3) Consider D P D˚ and a k-tuple t over Const. We have certainpQ˚, D, tq “ 1 iff
Q˚pD1, tq “ 1 for all pD1, tq P rrpD, tqss

˚
. This is equivalent to saying that t P QpD1q for

all D1 P rrDss, i.e that t P certainpQ,Dq.
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4) We recall that naı̈ve evaluation works forQ˚ iff certainpQ˚, D, tq “ Q˚pD, tq for every
D P D and every k-tuple t over Const. By using the previous item, certainpQ˚, D, tq “
Q˚pD, tq is equivalent to say that t P certainpQ,Dq iff t P QpDq. In other words
naı̈ve evaluation works for Q˚ iff certainpQ,Dq “ QCpDq, for every D P D iff naı̈ve
evaluation works for Q.

5) Assume that Q˚ is weakly monotone and consider D,D1 P D such that D1 P rrDss. We
prove that QCpDq Ď QCpD1q. By definition of rr ss

˚
we know that pD1, tq P rrpD, tqss

˚
,

for all k-tuples t over Const. Since Q˚ is weakly monotone, Q˚pD, tq ď Q˚pD1, tq, i.e.
t P QpDq implies t P QpD1q for all k-tuples t over Const. Then QCpDq Ď QCpD1q.
Assume now that Q is weakly monotone and consider pD, tq and pD1, t1q in D˚ such
that pD1, t1q P rrpD, tqss˚. Then t1 “ t and D1 P rrDss. Since Q is monotone, QCpDq Ď
QCpD1q; then Q˚pD, tq ď Q˚pD1, tq “ Q˚pD1, t1q.

6) It immediately follows from the definition of Q˚.
7) Assume D has a strong representative set S, and take S˚ “ tpD, tq|D P

S and t is a k-tuple over Constu. We prove that S˚ is representative for D
˚.

Notice that for all pD, tq P C˚ we have that D P C, therefore D P S. Thus pD, tq P S˚.
Now consider pD, tq P S˚, then D P S; therefore for K “ C Y t there exists D1 P rrDss
and a bijection i : adompDq Ñ adompD1q such that ipDq “ D1 and both i and i´

are the identity on K. Then pD1, tq P rrpD, tqss˚. We let i1 be the mapping obtained
by extending i with the identity mapping on t. It is easy to see that i1 is a bijection
adompDqY tÑ adompD1qY t, such that i1pEq “ D and i1ptq “ t. Moreover both i1 and

i1
´

are the identity on C. Therefore pD, tq «˚ pD1, tq.
Now we define χS˚pD, tq “ pχSpDq, tq, for all pD, tq P D˚. Clearly rrχS˚pD, tqss

˚
“

tpD1, tq | D1 P rrχSpDqssu, for all pD, tq P D˚. Therefore rrχS˚pD, tqss
˚
“ tpD1, tq | D1 P

rrDssu “ rrpD, tqss˚.

Using this claim in addition to the known relationship between naı̈ve evaluation and
weak monotonicity over D

˚ and Q˚, we immediately get the following corollaries.
From Theorem 9.1 on D

˚ and Q˚, we have:

COROLLARY 11.2. Let D be a relational database domain that has a strong repre-
sentative set S and let Q be a C-generic k-ary query. Then naı̈ve evaluation works for Q
if and only if

—Q is weakly monotone and
—QCpDq “ QCpχSpDqq for all D P D

In particular if the whole set D is strongly saturated, then naı̈ve evaluation works for
Q if and only if Q is weakly monotone.

This proves that (1) ô (2) in Lemma 11.1, as well as in Lemma 8.1. We now need
to prove the relationship between weak monotonicity and preservation for relational
semantics based on Rrdb

val
and on Rmin

val
(as well as their powerset versions).

In the sequel we use the following additional notation.
If H “ th1, . . . hnu is a set of mappings over adompDq, we say that H is the identity

on a set of constants K if hi is the identity on K for all i P 1, . . . , n. Moreover we let
HpDq denote the set th1pDq, . . . hnpDqu.

If t is a tuple over Const and X “ tD1 . . . Dnu is a set of instances we let pX , tq denote
the set tpD1, tq, . . . pDn, tqu.

Let D “ xD, C, rr ss,«y be a relational database domain where rr ss is given by a pair
pRval,Rsemq (respectively pRval,Rsemq), and let Q be a C-generic k-ary query over D.
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Recall the definition of D˚ and Q˚ based on D and Q. Recall that Q˚ is generic over
D

˚ and remark that rr ss
˚

is given by the pair pR˚
val
,R˚

semq (respectively pR˚
val,R

˚
semq)

where

R
˚
val
“ tppD, tq, pD1, tqq | pD,D1q P Rval and t is a k-tuple over Constu

R
˚
sem “ tppD, tq, pD

1, tqq | pD,D1q P Rsem and t is a k-tuple over Constu

Similarly R
˚
val “ tp pD, tq, pX , tq q | pD,X q P Rval and t is a k-tuple over Constu and

R
˚
sem “ tp pX , tq, pD, tq q | pX , Dq PRsem and t is a k-tuple over Constu.
If M is a mapping type, we let R˚

M
“ tpx, yq P C˚ ˆ C˚ | x “ pD, tq, y “

phpDq, tq, the mapping h PMpDq and h is the identity on C Y tu.

Similarly if M is a powerset mapping type, we let R
˚
M “ tpx,X q P C˚ ˆ 2C

˚

| x “
pD, tq, X “ pHpDq, tq, the set of mappings H PMpDq and H is the identity on C Y tu.

The above notion of R˚
M

(respectively R
˚
M) is easily related to M-Rsem-

homomorphisms (respectively M-Rsem-homomorphisms):

CLAIM 6. ppD, tq, pD1, tqq P R˚
M
˝ R˚

sem (respectively ppD, tq, pD1, tqq P R
˚
M ˝ R˚

sem)
if and only if there exists an M-Rsem-homomorphism (respectively an M-Rsem-
homomorphism) from D to D1 which is the identity on C Y t.

Recall that given a class T of Rsem-homomorphisms (respectively Rsem-
homomorphisms), we say that a k-ary query Q̃ over D is weakly preserved under T

if t P Q̃pDq implies t P Q̃pD1q whenever t is a k-tuple over Const, and in T there exists
an Rsem-homomorphism (respectively an Rsem-homomorphism) from D to D1 which is
the identity on t.

From the above claim it follows that weak preservation of Q can be characterized as
follows:

CLAIM 7. Q˚ is preserved under R˚
M
˝R˚

sem (respectively under under R
˚
M ˝R˚

sem)
iff Q is weakly preserved under M-Rsem-homomorphisms (respectively under M-Rsem-
homomorphisms) which are the identity on C.

We now use the above claim and apply Lemma 4.5 and Lemma 7.5 to the database
domain D

˚ and the generic query Q˚. We obtain the following corollary

CLAIM 8. If the semantics rr ss in D is given by pRval,Rsemq and R˚
M

is «˚-
equivalent to R˚

val
, then Q is weakly monotone iff it is weakly preserved under M-Rsem-

homomorphisms which are the identity on C.
If rr ss is given by pRval,Rsemq and R

˚
M is «˚-equivalent to R

˚
val, then Q is weakly

monotone iff it is weakly preserved under M-Rsem-homomorphisms which are the iden-
tity on C.

We now consider mapping types M “ all and M “ min, as well as M “ all (defined
as Ppall)) and M “min for powerset semantics.

CLAIM 9.

1) If rr ss is based on Rval “ Rrdb

val
then R˚

M
is strongly «˚-equivalent to R˚

val
for M “ all ;

2) If rr ss is based on Rval “ Rmin

val
then R˚

M
is «˚-equivalent to R˚

val
for M “ min ;

3) If rr ss is based on Rval “R
rdb

val (respectively Rval “R
min

val ) then R
˚
M is «˚-equivalent

to R
˚
val for M “ all (respectively M “min).

PROOF.

1) Consider a pair ppD, tq, pD1, tqq where pD,D1q P Rrdb

val
and t is a k-tuple over Const.

We prove that there exists pE, tq P C˚ such that pD, tq «˚ pE, tq and ppE, tq, pD1, tqq P
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R˚
M

. The instance E is obtained from D by replacing nulls of D with new distinct
constants not occurring in ConstpDq Y C Y t. Clearly there exists an isomorphism
i : E Ñ D such that both i and i´ are the identity on C Y t. We let i1 be the mapping
obtained by extending i with the identity mapping on t. It is easy to see that i1 is a
bijection adompEq Y t Ñ adompDq Y t, such that i1pEq “ D and i1ptq “ t. Moreover

both i1 and i1
´

are the identity on C. Therefore pE, tq «˚ pD, tq.
We know that there exists a valuation v on D such that vpDq “ D1. Let h “ v ˝ i;
then hpEq “ vpDq “ D1 and h is the identity on CY t (because both v and i are). This
implies ppE, tq, pD1, tqq P R˚

M
, for M “ all. Remark that pE, tq only depends on pD, tq

(and not on v).
Conversely consider a pair ppE, tq, pD1, tqq P R˚

M
. Let D1 “ hpEq where h is the

identity on C Y t. We prove that there exists pD, tq P D˚ such that pD, tq «˚ pE, tq
and pD,D1q P Rrdb

val
. The instance D is obtained from E by replacing each element of

adompEq not occurring in C Y t with a new distinct null. Clearly this replacement
defines an isomorphism i : D Ñ E such that both i and i´ are the identity on C Y t.
As in the previous case i can be extended to show pE, tq «˚ pD, tq.
Let v “ h ˝ i. Remark that v is the identity on ConstpDq (because ConstpDq Ď C Y t
and both i and h are the identity on C Y t). Then v is a valuation on D, and hence
pD,D1q P Rrdb

val
. Note that D depends only on pE, tq (and not on h).

Thus R˚
M

is strongly «-equivalent to pRrdb

val
q˚, for M “ all.

2) Consider a pair ppD, tq, pD1, tqq where pD,D1q P Rmin

val
and t is a k-tuple over Const. We

then know that D1 “ hpDq where h is a D-minimal valuation. We prove that there
exists pE, tq P C˚ such that pD, tq «˚ pE, tq and ppE, tq, pD1, tqq P R˚

M
. The instance E

is obtained fromD by replacing nulls of D with new distinct constants not occurring
in ConstpDq Y C Y t. Clearly there exists an isomorphism i : E Ñ D such that both i
and i´ are the identity on ConstpDqYCY t. It is easy to check that i can be extended
over t to show pE, tq «˚ pD, tq.
Now using Lemma 10.3, the mapping h1 “ h ˝ i is E-minimal. Moreover h1pEq “ D1

and h1 is the identity on C Y t. It follows that ppE, tq, pD1, tqq P R˚
M

for M “ min.
Conversely consider a pair ppE, tq, pD1, tqq P R˚

M
(where M “ min). Let D1 “ hpEq,

where h is E-minimal and h is the identity on C Y t. We prove that there exists
pD, tq P D˚ such that pD, tq «˚ pE, tq and pD,D1q P Rmin

val
. The instance D is obtained

from E by replacing each element of adompEq not occurring in fixph,Eq with a new
distinct null. Clearly this replacement defines an isomorphism i : D Ñ E such
that both i and i´ are the identity on fixph,Eq. Remark that i and i´ are also the
identity on C Y t. Indeed i is the identity on all constants, and i´ is the identity
on C Y t because pC Y tq X adompEq Ď fixph,Eq. Thus as in the previous case, i
can be extended to show pE, tq «˚ pD, tq. Now let h1 “ h ˝ i. By Lemma 10.3 h1 is
D-minimal. Moreover h1pDq “ hpEq “ D1, and h1 is the identity on fixph,Eq. Now
remark that ConstpDq “ fixph,Eq, therefore h1 is a valuation on D. We then conclude
that pD,D1q “ pD,h1pDqq P Rmin

val
.

3) We fist prove that if rr ss is based on Rval “ R
rdb

val then R
˚
M is «˚-equivalent to R

˚
val

for M “ all.
Recall the notation Pp q for powerset semantics. Notice that pRrdb

val q
˚ “ PppRrdb

val
q˚q.

We also know by the first item that R˚
M

is strongly «˚-equivalent to pRrdb

val
q˚ for

M “ all. Then by Lemma 7.7, PpR˚
M
q, for M “ all, is «˚-equivalent to pRrdb

val q
˚.

Now remark that for M “ all we have PpR˚
M
q “R

˚
M, where M “ all.

We now prove that If rr ss is based on Rval “ R
min

val , then R
˚
M is «˚-equivalent to

R
˚
val for M “min.
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Let ppD, tq, pX , tqq P pRmin

val q
˚; then pD,X q P R

min

val . We prove that there exists a com-
plete relational instance E such that pE, tq «˚ pD, tq and ppE, tq, pX , tqq PR˚

M (where
M “min). Let ConstpX q be the union of ConstpD1q, for all D1 P X . The instance E is
obtained from D by replacing nulls of D with new distinct constants not occurring
in ConstpDqYConstpX qYC Y t. Clearly there exists an isomorphism i : E Ñ D. Note
that both i and i´ are the identity on ConstpDq Y ConstpX q Y C Y t. Therefore i can
be extended to show pE, tq «˚ pD, tq.
For each D1 P X there exists a D-minimal valuation v such that vpDq “ D1. Let
h “ v ˝ i, then hpEq “ D1 and, by Lemma 10.3, h is E-minimal. Note also that
fixph,Eq “ ConstpDq, and h is the identity on C Y t. Since such an h exists for all
D1 P X , the set of all h mappings, when D1 ranges over X , is E-minimal, as well as
the identity on C Y t. Then ppE, tq, pX , tqq PR˚

M (for M “min).
pE,X q PRM. This proves one direction.
Conversely assume ppE, tq, pX , tqq P R

˚
M for M “min, then X “ th1pEq, . . . hnpEqu

where th1, . . . hnu isE-minimal and the identity onCYt. We prove that there exists a

relational instance D such that pD, tq «˚ pE, tq and pD,X q PRmin

val . LetK “ fixphi, Eq
(which is the same for all i P 1, . . . , n).
The instance D is obtained from E by replacing each element of adompEqzK with a
new distinct null. Clearly this replacement defines an isomorphism i : D Ñ E. Note
that both i and i´ are the identity on K; thus they are the identity on C Y t. Indeed
i is the identity on all constants; moreover pC Y tq X adompEq Ď K, then i´ is the
identity on C Y t. Then we can extend i to show pD, tq «˚ pE, tq.
The mappings vj “ hj ˝ i, for j P 1, . . . , n are all D-minimal, by Lemma 10.3. More-
over notice that ConstpDq “ K, then vj is the identity on ConstpDq, and therefore a
D-minimal valuation on D. Moreover vjpDq “ hjpEq, for all j “ 1, . . . , n. It follows

that pD,X q PRmin

val .

We now combine the above two claims and get a characterization of weak monotonic-
ity under both standard an minimal semantics:

COROLLARY 11.3. Assume that a relational semantics is given by a pair

pRrdb

val
,Rsemq, (respectively pRrdb

val ,Rsemq) and let Q be a C-generic k-ary relational query.
Then Q is weakly monotone iff Q is weakly preserved under Rsem-homomorphisms (re-
spectively Rsem-homomorphisms) which are the identity on C.

Moreover naı̈ve evaluation works for Q iff Q is weakly preserved under Rsem-
homomorphisms (respectively Rsem-homomorphisms) which are the identity on C.

COROLLARY 11.4. Assume that a relational semantics is given by a pair

pRmin

val
,Rsemq, (respectively pRmin

val ,Rsemq) and let Q be a C-generic k-ary relational
query. Then Q is weakly monotone iff Q is weakly preserved under minimal Rsem-
homomorphisms (respectively minimal Rsem-homomorphisms) which are the identity
on C.

Moreover naı̈ve evaluation works forQ iffQ is weakly preserved under minimal Rsem-
homomorphisms (respectively minimal Rsem-homomorphisms) which are the identity
on C, and QCpDq “ QCpcorepDqq for all relational instances D.

The characterization of naı̈ve evaluation in the above two corollaries is obtained by
using Corollary 11.2 and the fact that semantics based on Rrdb

val
as well as on R

rdb

val are
strongly saturated. Similarly semantics based on minimal valuations have a strong
representative set, which is the set of cores (Proposition 10.4).
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Semantics symbol Naı̈ve evaluation works for

open world rr ss
OWA

DPos “ unions of CQs
weak closed-world rr ss

WCWA
Pos

closed world: rr ss
CWA

Pos` @G

powerset closed-world
`

| |
˘

CWA
DPos` @G

bool

minimal closed-world rr ssmin

CWA
Pos` @G, over cores;

result always contained in certain answers

minimal, powerset closed-world
`

| |
˘min

CWA
DPos` @G

bool, over cores;
result always contained in certain answers

Fig. 1. Summary of naı̈ve evaluation results for FO queries

Corollary 11.3 with C “ H completes the proof of Lemma 8.1. Similarly Corollary
11.4 with C “ H completes the proof of Lemma 11.1. l

Using Lemma 11.1, we can achieve the desired lifting result for minimal semantics,
i.e. we can show that Corollary 10.11 continues to hold for k-ary FO queries.

THEOREM 11.5. Let Q be a k-ary FO query such that QCpDq “ QCpcorepDqq for all
D.

— If Q is in Pos` @G, then naı̈ve evaluation works for Q under the rr ss
min

CWA
semantics.

— If Q is in DPos`@G
bool

, then naı̈ve evaluation works for Q under the
`

| |
˘min

CWA
semantics.

PROOF. The statement follows directly from Lemma 11.1, by recalling that Rsem

is the identity for rr ssmin

CWA
and therefore minimal Rsem-homomorphisms are just usual

minimal homomorphisms. Similarly Rsem is RY for
`

| |
˘min

CWA
, and minimal Rsem-

homomorphisms are unions of minimal homomorphisms. By Proposition 5.1 and
Lemma 7.8 the above fragments guarantee these preservation properties, and there-
fore the corresponding weak preservation properties.

12. SUMMARY FUTURE WORK

The table in Figure 1 summarizes results on naı̈ve evaluation for fragments of FO
queries. The first line of course is the classical result of [Imielinski and Lipski 1984],
proved to be optimal in [Libkin 2011]. Other results were shown using the methodol-
ogy established here, that reduced naı̈ve evaluation to monotonicity and preservation
under homomorphisms.

There are several directions in which we would like to extend this work.

Other data models. So far we looked at either a very general setting, which can sub-
sume practically every data model, or at relational databases. We would like to extend
our results to XML. At this time, we have a good understanding of the semantics of
incomplete XML documents and the complexity of answering queries over them [Abite-
boul et al. 2006; Barceló et al. 2010; Gheerbrant et al. 2012] that can serve as a good
starting point.

Other languages. When we dealt with relations, we studied FO as the main query
language. However, our structural results are in no way limited to FO. In fact it is
known that naı̈ve evaluation works for datalog (without negation). Given the toolkit
of this paper, we would like to consider queries in languages that go beyond FO and
admit naı̈ve evaluation.
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Preservation results. There are open questions related to preservation results in both
finite and infinite model theory. We already mentioned that the results of [Keisler
1965b] about preservation under strong onto homomorphisms are limited to a sim-
ple vocabulary, and even then appear to be problematic. We would like to establish a
precise characterization in the infinite case, and see whether it holds or fails in the fi-
nite. We also want to look at preservation on restricted classes of structures, following
[Atserias et al. 2006] which looked at bounded treewidth (but does not capture XML
with data). We note in passing that [Atserias et al. 2006] does not apply directly to the
study of XML since models of documents with data generate relational structures of
arbitrary treewidth.

The impact of constraints. Constraints (e.g., keys and foreign keys) have a huge im-
pact on the complexity of finding certain answers [Calı̀ et al. 2003; Vardi 1986], so it is
thus natural to ask how they affect good classes we described in this paper. Constraints
appear in another model of incompleteness – conditional tables [Imielinski and Lipski
1984] – that in general have higher complexity of query evaluation [Abiteboul et al.
1991] but are nonetheless useful in several applications [Arenas et al. 2011].

Applications. In applications such as data integration and exchange, finding certain
answers is the standard query answering semantics [Arenas et al. 2010; Lenzerini
2002]. In fact one of our semantics came from data exchange literature [Hernich 2011].
We would like to see whether our techniques help find classes of queries for which
query answering becomes easy in exchange and integration scenarios.

Bringing back the infinite. We have used a number of results from infinite model
theory to get our syntactic classes. Another way of appealing to logic over infinite
structures to handle incompleteness was advocated by Reiter [Reiter 1977; 1982] three
decades ago. In that approach, an incomplete database D is viewed as a logical theory
TD, and finding certain answers to Q amounts to checking whether TD entails Q. This
is in general an undecidable problem, and entailment in the finite is known to be more
problematic than unrestricted one. This is reminiscent of the situation with homomor-
phism preservation results, but we saw that we can use infinite results to obtain useful
sufficient conditions. Motivated by this, we would like to revisit Reiter’s proof-theoretic
approach and connect it with our semantic approach.
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