904 research outputs found

    On the optimal operation of wireless networks

    Get PDF
    With the ever increasing mobile traffic in wireless networks, radio frequency spectrum is becoming limited and overcrowded. To address the radio frequency spectrum scarcity problem, researchers proposed advanced radio technology-Cognitive Radio to make use of the uncommonly used and under-utilized licensed bands to improve overall spectrum efficiency. Mobile service providers also deploy small base stations on the streets, into shopping center and users\u27 households in order to improve spectrum efficiency per area. In this thesis, we study cooperation schemes in cognitive radio networks as well as heterogeneous networks to reuse the existing radio frequency spectrum intelligently and improve network throughput and spectrum efficiency, reduce network power consumption and provide network failure protection capability. In the first work of the thesis, we study a multicast routing problem in Cognitive Ratio Networks (CRNs). In this work, all Secondary Users (SUs) are assumed not self interested and they are willing to provide relay service for source SUs. We propose a new network modeling method, where we model CRNs using a Multi-rate Multilayer Hyper-Graph (MMHG). Given a multicast session of the MMHG, our goal is to find the multicast routing trees that minimize the worst case end-to-end delay, maximize the multicast rate and minimize the number of transmission links used in the multicast tree. We apply two metaheuristic algorithms (Multi-Objective Ant Colony System optimization algorithm (MOACS) and Archived Multi-Objective Simulated Annealing Optimization Algorithm (AMOSA)) in solving the problem. We also study the scheduling problem of multicast routing trees obtained from the MMHG model. In the second work of the thesis, we study the cell outage compensation function of the self-healing mechanism using network cooperation scheme. In a heterogeneous network environment with densely deployed Femto Base Stations (FBSs), we propose a network cooperation scheme for FBSs using Coordinated Multi-Point (CoMP) transmission and reception with joint processing technique. Different clustering methods are studied to improve the performance of the network cooperation scheme. In the final work of the thesis, we study the user cooperative multi-path routing solution for wireless Users Equipment (UEs)\u27 streaming application using auction theory. We assume that UEs use multi-path transport layer service, and establish two paths for streaming events, one path goes through its cellular link, another path is established using a Wi-Fi connection with a neighbor UE. We study user coordinated multi-path routing solution with two different energy cost functions (LCF and EAC) and design user cooperative real-time optimization and failure protection operations for the streaming application. To stimulate UEs to participate into the user cooperation operation, we design a credit system enabled with auction mechanism. Simulation results in this thesis show that optimal cooperation operations among network devices to reuse the existing spectrum wisely are able to improve network performance considerably. Our proposed network modeling approach in CRN helps reduce the complicated multicast routing problem to a simple graph problem, and the proposed algorithms can find most of the optimal multicast routing trees in a short amount of time. In the second and third works, our proposed network cooperation and user cooperation approaches are shown to provide better UEs\u27 throughput compared to non-cooperation schemes. The network cooperation approach using CoMP provides failure compensation capability by preventing the system sum rate loss from having the same speed of radio resource loss, and this is done without using additional radio resources and will not have a significant adverse effect on the performance of other UEs. The user cooperation approach shows great advantage in improving service rate, improving streaming event success rate and reducing energy consumption compared to non-cooperation solution

    Self-organizing Bluetooth scatternets

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2002.Includes bibliographical references (p. 71-73).There is increasing interest in wireless ad hoc networks built from portable devices equipped with short-range wireless network interfaces. This thesis addresses issues related to internetworking such networks to form larger "scatternets." Within the constraints imposed by the emerging standard Bluetooth link layer and MAC protocol, we develop a set of online algorithms to form scatternets and to schedule point-to-point communication links. Our efficient online topology formation algorithm, called TSF (Tree Scatternet Formation), builds scatternets by connecting nodes into a tree structure that simplifies packet routing and scheduling. Unlike earlier works, our design does not restrict the number of nodes in the scatternet, and also allows nodes to arrive and leave at arbitrary times, incrementally building the topology and healing partitions when they occur. We have developed a Bluetooth simulator in ns which includes most aspects of the entire Bluetooth protocol stack. It was used to derive simulation results that show that TSF has low latencies in link establishment, tree formation and partition healing. All of these grow logarithmically with the number of nodes in the scatternet. Furthermore, TSF generates tree topologies where the average path length between any node pair grows logarithmically with the size of the scatternet. Our scheduling algorithm, called TSS (Tree Scatternet Scheduling), takes advantage of the tree structure of the scatternets constructed by TSF. Unlike previous works, TSS coordinates one-hop neighbors effectively to increase the overall performance of the scatternet. In addition, TSS is robust and responsive to network conditions, adapting the inter-piconet link schedule effectively based on varying workload conditions. We demonstrate that TSS has good performance on throughput and latency under various traffic loads.by Godfrey Tan.S.M

    A critical analysis of research potential, challenges and future directives in industrial wireless sensor networks

    Get PDF
    In recent years, Industrial Wireless Sensor Networks (IWSNs) have emerged as an important research theme with applications spanning a wide range of industries including automation, monitoring, process control, feedback systems and automotive. Wide scope of IWSNs applications ranging from small production units, large oil and gas industries to nuclear fission control, enables a fast-paced research in this field. Though IWSNs offer advantages of low cost, flexibility, scalability, self-healing, easy deployment and reformation, yet they pose certain limitations on available potential and introduce challenges on multiple fronts due to their susceptibility to highly complex and uncertain industrial environments. In this paper a detailed discussion on design objectives, challenges and solutions, for IWSNs, are presented. A careful evaluation of industrial systems, deadlines and possible hazards in industrial atmosphere are discussed. The paper also presents a thorough review of the existing standards and industrial protocols and gives a critical evaluation of potential of these standards and protocols along with a detailed discussion on available hardware platforms, specific industrial energy harvesting techniques and their capabilities. The paper lists main service providers for IWSNs solutions and gives insight of future trends and research gaps in the field of IWSNs

    Optimisation of Mobile Communication Networks - OMCO NET

    Get PDF
    The mini conference “Optimisation of Mobile Communication Networks” focuses on advanced methods for search and optimisation applied to wireless communication networks. It is sponsored by Research & Enterprise Fund Southampton Solent University. The conference strives to widen knowledge on advanced search methods capable of optimisation of wireless communications networks. The aim is to provide a forum for exchange of recent knowledge, new ideas and trends in this progressive and challenging area. The conference will popularise new successful approaches on resolving hard tasks such as minimisation of transmit power, cooperative and optimal routing

    Routing in mobile Ad Hoc Networks

    Get PDF
    A Mobile Ad Hoc Network (MANET) is built on the fly where a number of wireless mobile nodes work in cooperation without the engagement of any centralized access point or any fixed infrastructure. Two nodes in such a network can communicate in a bidirectional manner if and only if the distance between them is at most the minimum of their transmission ranges. When a node wants to communicate with a node outside its transmission range, a multihop routing strategy is used which involves some intermediate nodes. Because of the movements of nodes, there is a constant possibility of topology change in MANET. Considering this unique aspect of MANET, a number of routing protocols have been proposed so far. This chapter gives an overview of the past, current, and future research areas for routing in MANET. In this chapter we will learn about the following things: - The preliminaries of mobile ad hoc network - The challenges for routing in MANET - Expected properties of a MANET routing protocol - Categories of routing protocols for MANET - Major routing protocols for MANET - Criteria for performance comparison of the routing protocols for MANET - Achievements and future research directions - Expectations and realit

    A Cognitive Routing framework for Self-Organised Knowledge Defined Networks

    Get PDF
    This study investigates the applicability of machine learning methods to the routing protocols for achieving rapid convergence in self-organized knowledge-defined networks. The research explores the constituents of the Self-Organized Networking (SON) paradigm for 5G and beyond, aiming to design a routing protocol that complies with the SON requirements. Further, it also exploits a contemporary discipline called Knowledge-Defined Networking (KDN) to extend the routing capability by calculating the “Most Reliable” path than the shortest one. The research identifies the potential key areas and possible techniques to meet the objectives by surveying the state-of-the-art of the relevant fields, such as QoS aware routing, Hybrid SDN architectures, intelligent routing models, and service migration techniques. The design phase focuses primarily on the mathematical modelling of the routing problem and approaches the solution by optimizing at the structural level. The work contributes Stochastic Temporal Edge Normalization (STEN) technique which fuses link and node utilization for cost calculation; MRoute, a hybrid routing algorithm for SDN that leverages STEN to provide constant-time convergence; Most Reliable Route First (MRRF) that uses a Recurrent Neural Network (RNN) to approximate route-reliability as the metric of MRRF. Additionally, the research outcomes include a cross-platform SDN Integration framework (SDN-SIM) and a secure migration technique for containerized services in a Multi-access Edge Computing environment using Distributed Ledger Technology. The research work now eyes the development of 6G standards and its compliance with Industry-5.0 for enhancing the abilities of the present outcomes in the light of Deep Reinforcement Learning and Quantum Computing

    A survey of machine learning techniques applied to self organizing cellular networks

    Get PDF
    In this paper, a survey of the literature of the past fifteen years involving Machine Learning (ML) algorithms applied to self organizing cellular networks is performed. In order for future networks to overcome the current limitations and address the issues of current cellular systems, it is clear that more intelligence needs to be deployed, so that a fully autonomous and flexible network can be enabled. This paper focuses on the learning perspective of Self Organizing Networks (SON) solutions and provides, not only an overview of the most common ML techniques encountered in cellular networks, but also manages to classify each paper in terms of its learning solution, while also giving some examples. The authors also classify each paper in terms of its self-organizing use-case and discuss how each proposed solution performed. In addition, a comparison between the most commonly found ML algorithms in terms of certain SON metrics is performed and general guidelines on when to choose each ML algorithm for each SON function are proposed. Lastly, this work also provides future research directions and new paradigms that the use of more robust and intelligent algorithms, together with data gathered by operators, can bring to the cellular networks domain and fully enable the concept of SON in the near future
    corecore