3,249 research outputs found

    Multiphase deployment models for fast self healing in wireless sensor networks

    Get PDF
    The majority of studies on security in resource limited wireless sensor networks (WSN) focus on finding an efficient balance among energy consumption, computational speed and memory usage. Besides these resources, time is a relatively immature aspect that can be considered in system design and performance evaluations. In a recent study(Castelluccia and Spognardi, 2007), the time dimension is used to lower the ratio of compromised links, thus, improving resiliency in key distribution in WSNs. This is achieved by making the old and possibly compromised keys useful only for a limited amount of time. In this way, the effect of compromised keys diminish in time, so the WSN selfheals. In this study we further manipulate the time dimension and propose a deployment model that speeds up the resilience improvement process with a tradeoff between connectivity and resiliency. In our method, self healing speeds up by introducing nodes that belong to future generations in the time scale. In this way, the duration that the adversary can make use of compromised keys become smaller

    Uneven key pre-distribution scheme for multi-phase wireless sensor networks

    Get PDF
    In multi-phase Wireless Sensor Networks (WSNs), sensor nodes are redeployed periodically to replace nodes whose batteries are depleted. In order to keep the network resilient against node capture attacks across different deployment epochs, called generations, it is necessary to refresh the key pools from which cryptographic keys are distributed. In this paper, we propose Uneven Key Pre-distribution (UKP) scheme that uses multiple different key pools at each generation. Our UKP scheme provides self healing that improves the resiliency of the network at a higher level as compared to an existing scheme in the literature. Moreover, our scheme provides perfect local and global connectivity. We conduct our simulations in mobile environment to see how our scheme performs under more realistic scenarios

    KALwEN+: Practical Key Management Schemes for Gossip-Based Wireless Medical Sensor Networks

    Get PDF
    The constrained resources of sensors restrict the design of a key management scheme for wireless sensor networks (WSNs). In this work, we first formalize the security model of ALwEN, which is a gossip-based wireless medical sensor network (WMSN) for ambient assisted living. Our security model considers the node capture, the gossip-based network and the revocation problems, which should be valuable for ALwEN-like applications. Based on Shamir's secret sharing technique, we then propose two key management schemes for ALwEN, namely the KALwEN+ schemes, which are proven with the security properties defined in the security model. The KALwEN+ schemes not only fit ALwEN, but also can be tailored to other scalable wireless sensor networks based on gossiping

    A highly resilient and zone-based key predistribution protocol for multiphase wireless sensor networks

    Get PDF
    Pairwise key distribution among the sensor nodes is an essential problem for providing security in Wireless Sensor Networks (WSNs). The common approach for this problem is random key predistribution, which suffers from resiliency issues in case of node captures by adversaries. In the literature, the resiliency problem is addressed by zone-based deployment models that use prior deployment knowledge. Another remedy in the literature, which is for multiphase WSNs, aims to provide self-healing property via periodic deployments of sensor nodes with fresh keys over the sensor field. However, to the best of our knowledge, these two approaches have never been combined before in the literature. In this paper, we propose a zone-based key predistribution approach for multiphase WSNs. Our approach combines the best parts of these approaches and provides self-healing property with up to 9-fold more resiliency as compared to an existing scheme. Moreover, our scheme ensures almost 100% secure connectivity, which means a sensor node shares at least one key with almost all of its neighbors

    HaG: Hash graph based key predistribution scheme for multiphase wireless sensor networks

    Get PDF
    Wireless Sensor Networks (WSN) consist of small sensor nodes which operate until their energy reserve is depleted. These nodes are generally deployed to the environments where network lifespan is much longer than the lifetime of a node. Therefore, WSN are typically operated in a multiphase fashion, as in [1-3, 9-10], which use different key pools for nodes deployed at different generations. In multiphase WSN, new nodes are periodically deployed to the environment to ensure constant local and global network connectivity. Also, key ring of these newly deployed nodes is selected from their deployment generation key pool to improve the resiliency of WSN. In this paper, we propose a key predistribution scheme for multiphase WSN which is resilient against permanent and temporary node capture attacks. In our Hash Graph based (HaG) scheme, every generation has its own key pool which is generated using the key pool of the previous generation. This allows nodes deployed at different generations to have the ability to establish secure channels. Likewise, a captured node can only be used to obtain keys for a limited amount of successive generations. We compare the connectivity and resiliency performance of our scheme with other multiphase key predistribution schemes and show that our scheme performs better when the attack rate is low. When the attack rate is high, our scheme still has better resiliency performance inasmuch as using less key ring size compared to the existing multiphase schemes

    Key management for wireless sensor network security

    Get PDF
    Wireless Sensor Networks (WSNs) have attracted great attention not only in industry but also in academia due to their enormous application potential and unique security challenges. A typical sensor network can be seen as a combination of a number of low-cost sensor nodes which have very limited computation and communication capability, memory space, and energy supply. The nodes are self-organized into a network to sense or monitor surrounding information in an unattended environment, while the self-organization property makes the networks vulnerable to various attacks.Many cryptographic mechanisms that solve network security problems rely directly on secure and efficient key management making key management a fundamental research topic in the field of WSNs security. Although key management for WSNs has been studied over the last years, the majority of the literature has focused on some assumed vulnerabilities along with corresponding countermeasures. Specific application, which is an important factor in determining the feasibility of the scheme, has been overlooked to a large extent in the existing literature.This thesis is an effort to develop a key management framework and specific schemes for WSNs by which different types of keys can be established and also can be distributed in a self-healing manner; explicit/ implicit authentication can be integrated according to the security requirements of expected applications. The proposed solutions would provide reliable and robust security infrastructure for facilitating secure communications in WSNs.There are five main parts in the thesis. In Part I, we begin with an introduction to the research background, problems definition and overview of existing solutions. From Part II to Part IV, we propose specific solutions, including purely Symmetric Key Cryptography based solutions, purely Public Key Cryptography based solutions, and a hybrid solution. While there is always a trade-off between security and performance, analysis and experimental results prove that each proposed solution can achieve the expected security aims with acceptable overheads for some specific applications. Finally, we recapitulate the main contribution of our work and identify future research directions in Part V

    A cell outage management framework for dense heterogeneous networks

    Get PDF
    In this paper, we present a novel cell outage management (COM) framework for heterogeneous networks with split control and data planes-a candidate architecture for meeting future capacity, quality-of-service, and energy efficiency demands. In such an architecture, the control and data functionalities are not necessarily handled by the same node. The control base stations (BSs) manage the transmission of control information and user equipment (UE) mobility, whereas the data BSs handle UE data. An implication of this split architecture is that an outage to a BS in one plane has to be compensated by other BSs in the same plane. Our COM framework addresses this challenge by incorporating two distinct cell outage detection (COD) algorithms to cope with the idiosyncrasies of both data and control planes. The COD algorithm for control cells leverages the relatively larger number of UEs in the control cell to gather large-scale minimization-of-drive-test report data and detects an outage by applying machine learning and anomaly detection techniques. To improve outage detection accuracy, we also investigate and compare the performance of two anomaly-detecting algorithms, i.e., k-nearest-neighbor- and local-outlier-factor-based anomaly detectors, within the control COD. On the other hand, for data cell COD, we propose a heuristic Grey-prediction-based approach, which can work with the small number of UE in the data cell, by exploiting the fact that the control BS manages UE-data BS connectivity and by receiving a periodic update of the received signal reference power statistic between the UEs and data BSs in its coverage. The detection accuracy of the heuristic data COD algorithm is further improved by exploiting the Fourier series of the residual error that is inherent to a Grey prediction model. Our COM framework integrates these two COD algorithms with a cell outage compensation (COC) algorithm that can be applied to both planes. Our COC solution utilizes an actor-critic-based reinforcement learning algorithm, which optimizes the capacity and coverage of the identified outage zone in a plane, by adjusting the antenna gain and transmission power of the surrounding BSs in that plane. The simulation results show that the proposed framework can detect both data and control cell outage and compensate for the detected outage in a reliable manner

    A Survey on Wireless Sensor Network Security

    Full text link
    Wireless sensor networks (WSNs) have recently attracted a lot of interest in the research community due their wide range of applications. Due to distributed nature of these networks and their deployment in remote areas, these networks are vulnerable to numerous security threats that can adversely affect their proper functioning. This problem is more critical if the network is deployed for some mission-critical applications such as in a tactical battlefield. Random failure of nodes is also very likely in real-life deployment scenarios. Due to resource constraints in the sensor nodes, traditional security mechanisms with large overhead of computation and communication are infeasible in WSNs. Security in sensor networks is, therefore, a particularly challenging task. This paper discusses the current state of the art in security mechanisms for WSNs. Various types of attacks are discussed and their countermeasures presented. A brief discussion on the future direction of research in WSN security is also included.Comment: 24 pages, 4 figures, 2 table
    • …
    corecore