research

Multiphase deployment models for fast self healing in wireless sensor networks

Abstract

The majority of studies on security in resource limited wireless sensor networks (WSN) focus on finding an efficient balance among energy consumption, computational speed and memory usage. Besides these resources, time is a relatively immature aspect that can be considered in system design and performance evaluations. In a recent study(Castelluccia and Spognardi, 2007), the time dimension is used to lower the ratio of compromised links, thus, improving resiliency in key distribution in WSNs. This is achieved by making the old and possibly compromised keys useful only for a limited amount of time. In this way, the effect of compromised keys diminish in time, so the WSN selfheals. In this study we further manipulate the time dimension and propose a deployment model that speeds up the resilience improvement process with a tradeoff between connectivity and resiliency. In our method, self healing speeds up by introducing nodes that belong to future generations in the time scale. In this way, the duration that the adversary can make use of compromised keys become smaller

    Similar works