49 research outputs found

    Distributed algorithms for shape sculpting of lattice-arrayed modular robots via hole motion

    Get PDF
    A self-reconfigurable modular robot can change its own shape by rearranging the connectivity of the modules of which it is composed. In this paper, we focus on a two-dimensional lattice-arrayed self-reconfigurable modular robotic system. Each module can move to a neighboring lattice under certain motion constraints, communicate with its neighbors and act upon local knowledge only. A scalable shape sculpting algorithm based on the manipulation of regularly shaped voids within the lattice (“holes”) is given. We present detailed solutions to the conflict test and settlement problem encountered when applying this algorithm, and make improvement on the efficiency of shape sculpting. We believe that the algorithm can potentially generalize to 3D and scale to handle millions of modules.published_or_final_versio

    Bio-inspired locomotion control for UBot self-reconfigurable modular robot

    Get PDF
    This paper first presents a mathematic CPG (central pattern generator) model which has been developed based on the characteristics of a self-reconfigurable modular robot (UBot)'s modules with universal joints. Then, a bionic motion neural control network based on the CPG is proposed to solve the problem of multi-mode locomotion control problem in the complex environment. The bionic network is composed of perceptual neurons, CPG phase modulation network and motor neurons, so it can coordinate the walking and creeping gait of the modular robot before and after deformation, and adapt to autonomous movement in the complex environment with challenging features, such as steps, slopes and obstacles. Finally, the proposed motion control algorithm is verified by experiments

    Reconfiguration of 3D Crystalline Robots Using O(log n) Parallel Moves

    Full text link
    We consider the theoretical model of Crystalline robots, which have been introduced and prototyped by the robotics community. These robots consist of independently manipulable unit-square atoms that can extend/contract arms on each side and attach/detach from neighbors. These operations suffice to reconfigure between any two given (connected) shapes. The worst-case number of sequential moves required to transform one connected configuration to another is known to be Theta(n). However, in principle, atoms can all move simultaneously. We develop a parallel algorithm for reconfiguration that runs in only O(log n) parallel steps, although the total number of operations increases slightly to Theta(nlogn). The result is the first (theoretically) almost-instantaneous universally reconfigurable robot built from simple units.Comment: 21 pages, 10 figure

    The DoF-Box project: An educational kit for configurable robots

    Get PDF
    China: Shanghai. AirportCNAC is the China National Aviation Corporation. The Shanghai Longhua Airport.GrayscaleForman Nitrate Negatives, Box 2

    Challenges in the Locomotion of Self-Reconfigurable Modular Robots

    Get PDF
    Self-Reconfigurable Modular Robots (SRMRs) are assemblies of autonomous robotic units, referred to as modules, joined together using active connection mechanisms. By changing the connectivity of these modules, SRMRs are able to deliberately change their own shape in order to adapt to new environmental circumstances. One of the main motivations for the development of SRMRs is that conventional robots are limited in their capabilities by their morphology. The promise of the field of self-reconfigurable modular robotics is to design robots that are robust, self-healing, versatile, multi-purpose, and inexpensive. Despite significant efforts by numerous research groups worldwide, the potential advantages of SRMRs have yet to be realized. A high number of degrees of freedom and connectors make SRMRs more versatile, but also more complex both in terms of mechanical design and control algorithms. Scalability issues affect these robots in terms of hardware, low-level control, and high-level planning. In this thesis we identify and target three major challenges: (i) Hardware design; (ii) Planning and control; and, (iii) Application challenges. To tackle the hardware challenges we redesigned and manufactured the Self-Reconfigurable Modular Robot Roombots to meet desired requirements and characteristics. We explored in detail and improved two major mechanical components of an SRMR: the actuation and the connection mechanisms. We also analyzed the use of compliant extensions to increase locomotion performance in terms of locomotion speed and power consumption. We contributed to the control challenge by developing new methods that allow an arbitrary SRMR structure to learn to locomote in an efficient way. We defined a novel bio-inspired locomotion-learning framework that allows the quick and reliable optimization of new gaits after a morphological change due to self-reconfiguration or human construction. In order to find new suitable application scenarios for SRMRs we envision the use of Roombots modules to create Self-Reconfigurable Robotic Furniture. As a first step towards this vision, we explored the use and control of Plug-n-Play Robotic Elements that can augment existing pieces of furniture and create new functionalities in a household to improve quality of life

    SUPERBOT: A Deployable, Multi-Functional, and Modular Self-Reconfigurable Robotic System

    Get PDF
    Abstract – Self-reconfigurable robots are modular robots that can autonomously change their shape and size to meet specific operational demands. Recently, there has been a great interest in using self-reconfigurable robots in applications such as reconnaissance, rescue missions, and space applications. Designing and controlling self-reconfigurable robots is a difficult task. Hence, the research has primarily been focused on developing systems that can function in a controlled environment. This paper presents a novel self-reconfigurable robotic system called SuperBot, which addresses the challenges of building and controlling deployable self-reconfigurable robots. Six prototype modules have been built and preliminary experimental results demonstrate that SuperBot is a flexible and powerful system that can be used in challenging realworld applications

    Self-deformable modular robot inspired by cellular structure

    Get PDF
    Thesis (S.B.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2008.Includes bibliographical references (leaves 15-16).In this paper, we present a modular robot design inspired by the creation of complex structures and functions in biology via deformation. Our design is based on the Tensegrity model of cellular structure, where active filaments within the cell contract and expand to control individual cell shape, and sheets of such cells undergo large-scale shape change through the cooperative action of connected cells. Such deformations play a role in many processes: early embryo shape change, heart and intestine function, and in lamprey locomotion. Modular robotic systems that replicate the basic deformable multicellular structure have the potential to quickly generate large-scale shape change and create time-varying shapes to achieve different global functions. We present a design and initial hardware implementation of this model. Our design includes four different modular components: (1) actuating links, (2) passive (compressive) links, (3) elastic surface membranes, and (4) universal connecting interfaces. In both hardware implementation and simulation, we show several self-deformable structures that can be generated from these four components, including the deformable surface, expandable cube, terrain-adaptive bridge from [1] and some examples inspired by biology. We argue that self-deformation is more appropriate for dynamic and sensing-adaptive shape change in a certain class of tasks.by Kristina M. Haller.S.B
    corecore