12,501 research outputs found

    Empirical exploration of air traffic and human dynamics in terminal airspaces

    Full text link
    Air traffic is widely known as a complex, task-critical techno-social system, with numerous interactions between airspace, procedures, aircraft and air traffic controllers. In order to develop and deploy high-level operational concepts and automation systems scientifically and effectively, it is essential to conduct an in-depth investigation on the intrinsic traffic-human dynamics and characteristics, which is not widely seen in the literature. To fill this gap, we propose a multi-layer network to model and analyze air traffic systems. A Route-based Airspace Network (RAN) and Flight Trajectory Network (FTN) encapsulate critical physical and operational characteristics; an Integrated Flow-Driven Network (IFDN) and Interrelated Conflict-Communication Network (ICCN) are formulated to represent air traffic flow transmissions and intervention from air traffic controllers, respectively. Furthermore, a set of analytical metrics including network variables, complex network attributes, controllers' cognitive complexity, and chaotic metrics are introduced and applied in a case study of Guangzhou terminal airspace. Empirical results show the existence of fundamental diagram and macroscopic fundamental diagram at the route, sector and terminal levels. Moreover, the dynamics and underlying mechanisms of "ATCOs-flow" interactions are revealed and interpreted by adaptive meta-cognition strategies based on network analysis of the ICCN. Finally, at the system level, chaos is identified in conflict system and human behavioral system when traffic switch to the semi-stable or congested phase. This study offers analytical tools for understanding the complex human-flow interactions at potentially a broad range of air traffic systems, and underpins future developments and automation of intelligent air traffic management systems.Comment: 30 pages, 28 figures, currently under revie

    A survey on Human Mobility and its applications

    Full text link
    Human Mobility has attracted attentions from different fields of studies such as epidemic modeling, traffic engineering, traffic prediction and urban planning. In this survey we review major characteristics of human mobility studies including from trajectory-based studies to studies using graph and network theory. In trajectory-based studies statistical measures such as jump length distribution and radius of gyration are analyzed in order to investigate how people move in their daily life, and if it is possible to model this individual movements and make prediction based on them. Using graph in mobility studies, helps to investigate the dynamic behavior of the system, such as diffusion and flow in the network and makes it easier to estimate how much one part of the network influences another by using metrics like centrality measures. We aim to study population flow in transportation networks using mobility data to derive models and patterns, and to develop new applications in predicting phenomena such as congestion. Human Mobility studies with the new generation of mobility data provided by cellular phone networks, arise new challenges such as data storing, data representation, data analysis and computation complexity. A comparative review of different data types used in current tools and applications of Human Mobility studies leads us to new approaches for dealing with mentioned challenges

    Using Incomplete Information for Complete Weight Annotation of Road Networks -- Extended Version

    Full text link
    We are witnessing increasing interests in the effective use of road networks. For example, to enable effective vehicle routing, weighted-graph models of transportation networks are used, where the weight of an edge captures some cost associated with traversing the edge, e.g., greenhouse gas (GHG) emissions or travel time. It is a precondition to using a graph model for routing that all edges have weights. Weights that capture travel times and GHG emissions can be extracted from GPS trajectory data collected from the network. However, GPS trajectory data typically lack the coverage needed to assign weights to all edges. This paper formulates and addresses the problem of annotating all edges in a road network with travel cost based weights from a set of trips in the network that cover only a small fraction of the edges, each with an associated ground-truth travel cost. A general framework is proposed to solve the problem. Specifically, the problem is modeled as a regression problem and solved by minimizing a judiciously designed objective function that takes into account the topology of the road network. In particular, the use of weighted PageRank values of edges is explored for assigning appropriate weights to all edges, and the property of directional adjacency of edges is also taken into account to assign weights. Empirical studies with weights capturing travel time and GHG emissions on two road networks (Skagen, Denmark, and North Jutland, Denmark) offer insight into the design properties of the proposed techniques and offer evidence that the techniques are effective.Comment: This is an extended version of "Using Incomplete Information for Complete Weight Annotation of Road Networks," which is accepted for publication in IEEE TKD

    A Simple Baseline for Travel Time Estimation using Large-Scale Trip Data

    Full text link
    The increased availability of large-scale trajectory data around the world provides rich information for the study of urban dynamics. For example, New York City Taxi Limousine Commission regularly releases source-destination information about trips in the taxis they regulate. Taxi data provide information about traffic patterns, and thus enable the study of urban flow -- what will traffic between two locations look like at a certain date and time in the future? Existing big data methods try to outdo each other in terms of complexity and algorithmic sophistication. In the spirit of "big data beats algorithms", we present a very simple baseline which outperforms state-of-the-art approaches, including Bing Maps and Baidu Maps (whose APIs permit large scale experimentation). Such a travel time estimation baseline has several important uses, such as navigation (fast travel time estimates can serve as approximate heuristics for A search variants for path finding) and trip planning (which uses operating hours for popular destinations along with travel time estimates to create an itinerary).Comment: 12 page

    A Force-Directed Approach for Offline GPS Trajectory Map Matching

    Full text link
    We present a novel algorithm to match GPS trajectories onto maps offline (in batch mode) using techniques borrowed from the field of force-directed graph drawing. We consider a simulated physical system where each GPS trajectory is attracted or repelled by the underlying road network via electrical-like forces. We let the system evolve under the action of these physical forces such that individual trajectories are attracted towards candidate roads to obtain a map matching path. Our approach has several advantages compared to traditional, routing-based, algorithms for map matching, including the ability to account for noise and to avoid large detours due to outliers in the data whilst taking into account the underlying topological restrictions (such as one-way roads). Our empirical evaluation using real GPS traces shows that our method produces better map matching results compared to alternative offline map matching algorithms on average, especially for routes in dense, urban areas.Comment: 10 pages, 12 figures, accepted version of article submitted to ACM SIGSPATIAL 2018, Seattle, US

    Security of GPS/INS based On-road Location Tracking Systems

    Full text link
    Location information is critical to a wide-variety of navigation and tracking applications. Today, GPS is the de-facto outdoor localization system but has been shown to be vulnerable to signal spoofing attacks. Inertial Navigation Systems (INS) are emerging as a popular complementary system, especially in road transportation systems as they enable improved navigation and tracking as well as offer resilience to wireless signals spoofing, and jamming attacks. In this paper, we evaluate the security guarantees of INS-aided GPS tracking and navigation for road transportation systems. We consider an adversary required to travel from a source location to a destination, and monitored by a INS-aided GPS system. The goal of the adversary is to travel to alternate locations without being detected. We developed and evaluated algorithms that achieve such goal, providing the adversary significant latitude. Our algorithms build a graph model for a given road network and enable us to derive potential destinations an attacker can reach without raising alarms even with the INS-aided GPS tracking and navigation system. The algorithms render the gyroscope and accelerometer sensors useless as they generate road trajectories indistinguishable from plausible paths (both in terms of turn angles and roads curvature). We also designed, built, and demonstrated that the magnetometer can be actively spoofed using a combination of carefully controlled coils. We implemented and evaluated the impact of the attack using both real-world and simulated driving traces in more than 10 cities located around the world. Our evaluations show that it is possible for an attacker to reach destinations that are as far as 30 km away from the true destination without being detected. We also show that it is possible for the adversary to reach almost 60-80% of possible points within the target region in some cities
    corecore