
A FRAMEWORK FOR SPATIO-TEMPORAL

TRAJECTORY DATA SEGMENTATION AND QUERY

Huaqiang Kang

A thesis

in

The Department

of

Electrical and Computer Engineering(ECE)

Presented in Partial Fulfillment of the Requirements

For the Degree of Mast of Applied Science(MASc)

Concordia University
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Abstract

A Framework for Spatio-Temporal Trajectory Data Segmentation and

Query

Huaqiang Kang

Trajectory segmentation is a technique of dividing sequential trajectory data into seg-

ments. These segments are building blocks to various applications for big trajectory

data. Hence a system framework is essential to support trajectory segment indexing,

storage, and query. When the size of segments is beyond the computing capacity of a

single processing node, a distributed solution is proposed. In this thesis, a distributed

trajectory segmentation framework that includes a greedy-split segmentation method

is created. This framework consists of distributed in-memory processing and a cluster

of graph storage respectively. For fast trajectory queries, distributed spatial R-tree

index of trajectory segments is applied. Using the trajectory indexes, this framework

builds queries of segments from in-memory processing and from the graph storage.

Based on this segmentation framework, two metrics to measure trajectory similarity

and chance of collision are defined. These two metrics are further applied to iden-

tify moving groups of trajectories. This study quantitatively evaluates the effects of

data partition, parallelism, and data size on the system. The study identifies the

bottleneck factors at the data partition stage, and validate two mitigation solutions.

The evaluation demonstrates the distributed segmentation method and the system

framework scale as the growth of the workload and the size of the parallel cluster.
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Chapter 1

Introduction

With the fast development in micro-electronics, increasing location tracking equip-

ment is facilitated in transportation, personal health and public security fields. GPS

tracking systems have been applied to collecting data of wearable devices, vehicles

to study their behaviors, track vehicle’s routes, and produce diverse applications in-

cluding points of interests, recommendation, health monitoring safety regulation, and

fleet management.

1.1 Problem Statement

GPS raw data are usually recorded as spatio-temporal points. For example, an IMU

sensor [32] applied to automotive car produces ten records per second, with each

record of at least 20 Bytes. For every hour each car on the road, the IMU sensor gen-

erates 36,000 records with the size of over 700MB [70]. As the scale of managed cars

expands dramatically, the trajectory data becomes a source of Big Data. Processing of

trajectory data timely or in real-time inherits Big Data challenges.[61] When the data

size is beyond the capacity of a single processing node or the processing latency has

a higher requirement shorter than a single node processing time, the trajectory data

are required to be distributed and processed in more salable multiple nodes. [29] [30]

For self-join query operation, the time complexity is O(N2). Partitioning the data

site into smaller set can significantly reduce the time cost of each single query. Should

the framework distribute the data based on file objects or based on geolocation? If

geolocation partitioning is considered, which strategy is the best practice to handle
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the data density varying from urban to rural? [16]

After data are distributed, how to express the trajectories is a big challenge.

Is there any possibility to transform a set of points into more efficient geometry

shapes? How the system organizes the shapes and utilizes any index to optimize

the queries is another challenge. After the transformation, to what extent of the

shape characteristic of the trajectory is preserved during trajectory similarity search?

Based on the index and segmentation, there should be an algorithm to evaluate the

trajectory similarity and finding the most one out. [23] [42]

In this thesis, the study focuses on three research questions of distributed parallel

processing of trajectory segmentation.

� R1: How to partition and segment trajectories in a distributed framework?

� R2: What are the key factors of parallelism that affect the scalability of trajec-

tory segmentation and queries?

� R3: When trajectory segments are queried for analysis, how much performance

the result gains in cluster processing compared to the single node processing of

trajectories.

1.2 Objective

The objective of this thesis is to develop a framework that can parallel process the

trajectory into segments and distribute the trajectories into multiple nodes using data

partitioning strategies. The load and transformation should be parallel to increase

the efficiency. There should also be a parallel trajectory query framework that enables

intersection query to get the desired trajectory results. The framework should ensure

the low latency in the streaming processing scenario and it can also adapt to the data

warehouse’s large quantity of data case. The framework can be elastic to adapt to

the size of data to be processed and the latency requirement.

Furthermore, trajectory metrics could be developed based on these queries for

further analysis model. Last but not least, we should have a story in real data to

demonstrate the ease of use in this framework and track down the bottleneck and

data skew of the system to avoid this when put it into practice.
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1.3 Methodology

In this thesis, it requires a parallel trajectory segmentation method that scales hor-

izontally as the size of the trajectory data, the load of queries and the number of

worker nodes grow. This method consists of a split algorithm for parallel trajectory

partition and workflows for queries of segments for trajectory analysis. This work-

flow is to be implemented to investigate the parallelism factors of scalability using

two frameworks, one is distributed in-memory processing and the other is NoSQL

graph storage. Spatial indexes and query operations in each framework are built.

To realize this workflow, this study further requires a data model for representing

trajectory segments and associated geometric operations. A long trajectory should

be transformed into small segments and then being warped with Minimum Bounding

Rectangles(MBRs). For the lowest latency, the MBRs as well as the indexes of the

MBRs is going to be stored in each cluster node’s memory. On the other hands, when

the data exceed the size of cluster memory,geometric objects are indexed and stored

in a NoSQL graph database as an alternative.

To demonstrate the usage of the proposed method, two metrics that are integral

to applications such as trajectory clustering analysis are defined. One metric esti-

mates the similarity of trajectories. This study also defines a threshold of Euclidean

distances of trajectories to count if any moving objects are within this threshold at

a certain period. The other metric detects the collision chance by measuring the

intersections of two trajectories.

This research evaluates the method proposed by two means, (1) system-level per-

formance evaluation and (2)comparison of results from the trajectory clustering work-

flow with another clustering method. For the system level performance evaluation,

workflows on the Amazon Elastic MapReduce (EMR) platform are developed. The

trajectory data are from Microsoft GeoLife [74] data with the size of 1.6GB and 24

million moving object records. The experiments show the performance on GeoSpark

has an improvement speedup ranging from 2 to 2.5 with 8 node cluster or 16 cluster

compared with the single node system. The evaluation on Neo4j framework has a

maximum speedup of 17.5 times improvement when expanding the cluster size from

1 node to 16. In term of accuracy of clustering results, it reaches 87.2% accuracy

compared to GPFinder [68] as ground truth.

Through this research study, it identifies that the bottleneck is data skew due to
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geographic imbalance. A dynamic partitioning method to adjust each partition’s load

of objects is adopted. Furtherly a data skew mitigation solution by involving other

non-geographical property as secondary key when distributing data is devised.

1.4 Contributions

The main contribution of the thesis is four-fold. The implementation is accessible

from Github-https://github.com/kanghq/SparkApp [31].

1. We firstly apply the Greedy-Split trajectory segmentation algorithmwith MapRe-

duce programming model on a distributed system;

2. A system workflow that queries trajectories segments in-memory and in a

graph database is developed. Integration indexing techniques for fast queries

is also performed.

3. This study defines metrics that are further utilized by applications such as

trajectory clustering analysis

4. A data skew migration solution is developed to balance the workload as

both the size of the data and the computing cluster grow.

1.5 Thesis Structure

The thesis follows this structure:

� Chapter 2 introduces the related works of trajectory segmentation, storage, and

access.

� Chapter 3 presents the framework system architecture, segmentation, indexing

and query flow.

� Chapter 4 illustrates a real life use case for evaluating.

� Chapter 5 shows the experiments results.

� Chapter 6 discusses the data skewness, evaluating reliability, and validity.
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Chapter 2

Background and Related Works

2.1 MapReduce Model

Previously, the parallel computing is restricted to parallel algorithms. Traditional

parallel algorithms include dense matrix algorithms, sorting, graph algorithm, search

algorithms, dynamic programming, and fast Fourier transform [36]. This limits the

usage of high-performance parallel computers. In 2008, Google proposed MapReduce

programming model to make it possible for large datasets in parallel processing.

This model can be described in five stages.1) mapping input as <Key, Value> pair.

2) computing on single <Key, Value> record. 3) grouping intermediate data. 4)

computing on intermediate data. 5) reducing for final result. Figure 1 gives an

intuitive impression on MapReduce model.

MapReduce provides a simple and universal parallel programming model. How-

ever, there are also cons. There are a large number of algorithms can not be rewritten

to MapReduce model. Not like SQL, it is a lower level language. You have to focus on

how to retrieve data and how to sort these. Recently, there are some middlewares like

Hive [70] providing similar SQL language to manipulate data as well as the indexing

support. Another drawback is its low efficiency. It enables only single dataflow in

the whole framework. The stages between map and reduce are block operations. The

shuffling stage consuming large of I/O also needs attention when programming.
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Figure 1: How Map Reduce works

2.2 NoSQL Database

2.2.1 NoSQL Fundamental Concepts

NoSQL or Not Only SQL database emerges at the background of big data analy-

sis. The appearance of NoSQL databases aims to solve the following weakness that

traditional RDBMS can not handle.

Here are the motivations of creating NoSQL databases [59]:

� To avoid unnecessary ACID complexity;

� Giving high throughput in big data analysis;

� Ability of horizontal expatiation on non-dedicated servers;

� More flexibility than database norms;

� Low administration and setting up cost.
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2.2.2 Imperfect NoSQL

NoSQL is not a replacement of DBMS. However, it is more an alternative when the

data are more flexible where it is hard to fit for the RDBMS. In traditional RDBMS,

all data fields should be defined property with constraints. RDBMS can provide the

maximum robust data integrity. The simple SQL query method makes optimization

easy and reliable.

For this system, the choice of graph database gives the system more flexibility in

the query of graph theory algorithms. For example, as a graph database, Neo4j pro-

vides some path finding algorithms, community detection like Louvain algorithm [6]

or connected components algorithm.

2.3 Open GIS Support

Spatial topology refers to the relationship between spatial objects. Applying topology

in a GIS system has three benefits.

� Topology is necessary for route planning. Without topology, it is impossible to

route to a certain destination via the road network.

� Topology can be used to validate data for better data quality. For example,

a utility hole should be outside polygon objects where the shape of roads are

represented.

� By creating the topology relationship between features and objects, it is possible

to synchronize the features to make them consistent.

This framework imports a third party library to support spatial topology called

JTS Topology Suit. It’s a group of core APIs for processing geometry. The UML

chart is shown in Figure 2 [14]. With JTS library, it is possible to read standard

WKT or WKT format shapes, building indexes, to query desirable objects and to

compute metrics.

It has complete 2-D linear geometry model supporting Point, LineString, Lin-

earRing, Polygon, MultiPoint, MultiLineString, MultiPolygon, GeometryCollection.

JTS follows OpenGIS API standards, and follows Dimensionally Extended nine-

Intersection Model(DE-9IM) [60], which means you can compute the spatial relation-

ships with the predicates like intersects, contains, within, equanls, disjoint, touches,

7



Figure 2: JTS UML Chart

crosses, overlaps, covers, coveredBy. These 9 intersection relationships are shown in

Figure 3.

There are four overlay methods in JTS. They are intersection, union, difference,

symmetric difference as heterogeneous overlay.

The precision Model provides floating and fixed coordinate models. It can give

different capacities putting points in the grid.

JTS also provides the metrics to measure the spatial objects including area, length,

distance, WithinDistance and Hausdorff Distance.

The supported spatial indexes are Quadtree,StRtree, kD-tree, Bintree, Mono-

toneChains, and SweepLine.

2.4 Algorithms and Queries

Trajectories need to be simplified by cutting into smaller, less complex primitives.

Anagnostopoulos et al. [4] illustrate a method of segmentation that adapts to Nearest-

Neighbor search and analyzes the segmentation problem in a global view. Cudre-Ma

uroux et al. [13] give a solution for large size of trajectories on disk. They maintain

an optimal index and the data are dynamically co-located. To reduce the I/O, the

system also adapts to queries for optimization. Mokbel et al. [45] show us three major

8



Figure 3: Modelling Object Interactions. [7]

spatio-temporal access methods, namely “Indexing the Past”, “Indexing the Current

Positions” and “Indexing the Current and Future Positions”. The mostly used one

is indexing the past positions, such as STR-tree or RT-tree [27]. Another method

commonly used is to index the current positions, such as LUR-tree [37] and Hashing.

The third method of indexing is to index the current and future positions, including

PMR-quadtree [49] and SV-Model [11]. A new trend of accessing trajectories is using

parametric rectangles [11]. They do not enclosure the trajectories directly; they create

the bounding rectangles as a function of time. The moving objects would be in the

same rectangles for a time instance t.

For motion classification, Fu et al. proposed a similarity-based pattern grouping

method compared with fuzzy K-means [24]. Giannotti et al. [25] also presented two

purely temporal trajectory pattern mining approaches. They firstly transform the

sequences of points into regions of interest. Then they use origin-destination matrices

9



to find out pre-conceived regions or used a dense based discretization method to find

out the popular regions. The authors Panagiotakis et al. [52] introduce a methodology

to find out the most representative sub-trajectories. They represent the trajectories

based on multiple attributes and then sampled them without supervision.

2.4.1 R-tree Building and Query

R-tree is widely used both in partitioning technique and indexing method. R-tree is

a depth-balanced tree, so the root should have at least two children to be balanced.

The children number of a node (except leaf or root) is between m and M , where

m ∈ [0,M/2]. M is the max number of children of a node. The depth d of an R-tree:

�logmN − 1� < d < �logMN − 1�
.

Algorithm 2 gives an example query(root,q) to find object q from root of R-tree.

Algorithm 1 Algorithm for R-tree Query query(u,r)

Input: a query object r wrapped by MBR mbrr, search root entry u.
Output: objects overlapped with r.
1: if u is a leaf then
2: return all objects overlapped with r
3: else
4: for each each child v in node u do
5: if mbrv overlapped with r then
6: query(v,r)
7: end if
8: end for
9: end if

The time complexity of search can be considered into two conditions: 1) if Bound-

ing boxes do not overlap the query object q, the complexity is O(logmN). in the worst

case, when all objects’ bounding boxes are overlapping on q, it is O(N) [63].

Given an object p to be inserted, the study illustrates the insert(root, p) al-

gorithm to show how R-tree is built.

For the choose-subtree(u,p) function in Algorithm 3, the aim of this function is

to reduce the volume growth when adding a new object p. When the new leaf exceeds

10



Algorithm 2 Algorithm for R-tree Insertion insert(u,p)

Input: a new object p wrapped by MBR mbrp, R-tree root entry u.
1: if u is a leaf then
2: add p in node u
3: if u overflows then
4: handle-overflow(u)
5: end if
6: else
7: v := choose-subtree(u,p)
8: insert(v,p)
9: end if

its capacity during the inserting, it triggers handle-overflow shown in Algorithm 4 to

split one node into two to ensure the tree is balanced.

Algorithm 3 Algorithm for R-tree sub tree choosing choose-subtree(u,p)

Input: root entry u, new object p to be inserted.
Output: the
1: for vi as one of the child of root u do
2: voli := volume(mbrv+p - mbrv)
3: end for
4: get the smallest volk
5: return vk

Algorithm 5 illustrates the split operation in R-tree.

For a good split solution, there are two standards to evaluate it. 1) the total area

of the two nodes is minimized and the overlapping of the two nodes is minimized.

Study shows that the complicity of finding an optimized split solution is O(2M+1).

Figure 4 is a typical R-tree structure, where M = 3 , m = 2.

2.4.2 Quad-tree Building and Query

Quad-tree is another hierarchical spatial data structure. It is a rooted tree and each

node has a fixed number of 4 children. Each node expresses a square area in the space

and each child of this node expresses one quadrant of the space. It’s a non-balanced

tree and can be used to express non-uniform meshes. Algorithm 6 shows how to insert

a point p from a Quad-Tree with insert(root, p) function. From the algorithm, each

leaf contains one object most. It is easy to be very unbalanced when points lie close
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Algorithm 4 Algorithm for R-tree overflow handling handle-overflow(u)

Input: root entry u.
1: split(u) into two parts u and u′

2: if u is the root then
3: create a new root and connecting u and u′

4: else
5: w:= parent(u)
6: update w := new MBR(u)
7: add new child u′ to w
8: if w overflows then
9: handle-overflow(w)
10: end if
11: end if

Algorithm 5 Algorithm for R-tree split split(u)

Input: root entry u, parameter β ≥ 3 .
Output: two new child MBRs mbrs1 and mbrs2 covering u
1: m := size of objects in u
2: sort objects under u in x-dimension
3: for i := �0.4β� to m− �0.4β� do
4: S1 := first i objects in list
5: S2 := the other i objects in list
6: get mbrS1 and mbrS2

7: end for
8: repeat 2-6 line with the respect of another dimension
9: return mbrS1 and mbrS2 with the best solution

together. The depth of a Quad-tree

d = log(s/c) + 3/2

where s is the initial square length and c is the smallest distance between two points.

It has O((d+1)n) nodes and the construction time complexity is O((d+1)n) too [46].

In the case of rectangles, it is resembled that the point as zero height zero width

polygon. During the insertion, it should make sure each cell is not big enough to fit

the whole polygon and the polygon does not need to be stored in the leaf node.

2.4.3 DTW for Trajectory Similarity

Dynamic Time Wrapping (DTW) [5] algorithm is firstly introduced for speech recog-

nition. Then it is used to time series analysis applications. It can be used to compare
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Figure 4: An R-tree Structure [2]

two trajectories with different length. To find out the mating points, the pairwise Eu-

clidean distance matrix should be prepared first. A path satisfies ”monotonic” and

”continuity” from bottom left to top right makes the alignment between sampling

nodes.

It should be noticed that the DTW algorithm only compares the sampled ”points”,

not the trajectory. So the GPS sampling interval or video stream frame rate may

interfere the accuracy between two trajectories. Also, DTW origins from time series

algorithms, which lacks the consideration of temporal attribute [43].
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Algorithm 6 Algorithm for Quad-Tree Construction insert(u,p)

Input: root entry u, point to be inserted p
1: if u’s boundary not contain p then
2: return false
3: end if
4: if v is empty then
5: add p to cell v
6: return true
7: else
8: subdivide NW,NE, SW, SE four quadrants
9: if insert(NW,p) then
10: return true
11: end if
12: if insert(NE,p) then
13: return true
14: end if
15: if insert(SE,p) then
16: return true
17: end if
18: if insert(SW,p) then
19: return true
20: end if
21: return false
22: end if

2.5 Spatial Data Storage

Most geological data are based on geometry. The most common method is to use

traditional RDBMS as column wise store. For the geographical data, there are two

ways for storage. The first one is raster-based and the second one is vector-based [66].

The object is represented as a series of lines connected to form a polygon. The

RDBMS can easily store the coordinates of vertices. In the raster-based system,

the real world object is formatted by cells and represented as a series of contiguous

cells. ESRI company develops a spatial database engine providing the middle layer

to store GIS data in RDBMS like DB2, SQL Server or Oracle. It is also popular

to use geometry database to store this geological information. DISASTER [73] is a

Portuguese GIS database based on the most popular open source MySQL database

engine. It stored floods and landslides for the period of the year 1865 to the year 2010.

In [40], they have developed mechanisms to integrate multiple data sources and finally
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a seamless database was achieved. A data warehouse supporting streaming data was

designed [51]. The data warehouse supports trajectory properties such as average

velocity, maximum acceleration as well as aggregation operations.

2.5.1 RDBMS SQL Server 2008 Spatial Indexing

This study uses SQL Server as an example to introduce how traditional database

handles spatial data. SQL Server has built-in geometry support. “GEOMETRY”

and “GEOGRAPHY” types express points, lines, polygons or multi-polygons. The

expression format can be Well-Known Text (WKT), Well-Known Binary (WKB) as

well as GML [12].

In traditional RDBMS like SQL Server, it utilizes B-tree to achieve the support of

2-dimensional spatial data. The entire space is decomposed into a grid hierarchy. The

cells are numbered in Hibert space-filling curve. There are four levels grid hierarchy

and each level can be configured as HIGH, MEDIUM or LOW density divisions to

decide the density of cells per layer. If a cell is contained in an object, it is not

tessellated further. If an object is covered by multiple cells, the database records

these cells respectively. Figure 5 is an example of SQL Server indexing [20].

2.6 Processing Framework

For distributed spatial analytic systems, they can be divided into two camps. The one

is Hadoop based systems that store the intermediate data in the shared disk system.

The other one is Spark based, which processes data in memory only.

2.6.1 Simba

Simba [69] is a new distributed spatial processing framework. Most of its operations

are based on native Spark APIs. It extends the query features with the support of

SQL statements. Multiple varieties of space operations like kNN Query, kNN join

distant join are supported in this framework. It reconstructs the fundamental RDD

architecture to IndexRDD. It is possible to have the indexes persisted on disk and

loaded back but it does not support full data disk persistence.

An important feature for Simba is that it provides SQL planer. With the SQL
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Figure 5: SQL Server Indexing [1]

planer, SQL can be used as input and the optimizer in SQL planer can make the best

use of existing indexes and statistics. This planer is based on optimization rules and

cost-based optimizations.

Simba has two-level indexing strategy. The first level index gives quick access

to the partition where the spatial object belongs; the second level R-tree indexes

optimize the spacial operations like range query, kNN join or distance join. Simba

supports concurrent query execution by deploying a thread pool in the query engine.

This is a platform level concurrency strategy that does not need the involvement of

users.

As a cluster based system, Simba has the ability of fault tolerance inherited from

Spark. When a master fails in the multiple masters environment, recovery mechanism

ensures the global indexes are not missing. Also the query job in Simba triggering

Spark transformation job can be guaranteed to recover from failure with the help of
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Spark native design.

2.6.2 SpatialHadoop

SpatialHadoop [15] is another distributed processing framework based on Hadoop. It

provides native support of spatial data. Not like Hadoop-GIS [3] treats the Hadoop

framework as a black box; Spatial Hadoop realizes range query, kNN query, and spatial

join functions which enable the user to develop a higher level application.

In SpatialHadoop, there are four layers: language layer, operation layer,

MapReduce layer, and storage layer. In language layer, SpatialHadoop sup-

ports SQL-like scripting by applying Pig Latin [50] extension. To support spatial

data, Pegeon [17] is also integrated into SpatialHadoop. Casual users can directly do

Ad-hoc query with SQL-like scripts. In Operation layer, the spatial operations are

encapsulated for developer use. Higher level functions can be expanded in SQL-like

scripts. In MapReduce layer, SpatialHadoop involves SpatialFileSplitter to split in-

put file by blocks so that the indexes can be built up efficiently. SpatialRecordReader

transforms spatial data into key-value pairs, extracts indexes and sends the spatial

data to map function in blocks. Lastly, the storage layer provides grid partition file

storage and R-tree or R+-tree support. It archives up to 4.6 TB data processing in

the prototype test.

2.6.3 Others

LocationSpark [62] and Magellan [58] are both spatial data processing extensions

based on Spark. They provide multiple partition techniques, indexes and multiple

query methods such as range query, KNN or spatial join. Table 1 lists the features of

different frameworks.

Table 1: Comparison Between Different Spatial Processing Frameworks.

Features GeoSpark Simba SpatialHadoop Magellan LocationSpark This Framework
Data Dimensions 2 Multiple 2 2 2 3
Spatial Indexing R-tree/Quad-tree R-tree Grid/R-tree ZOrderCurves Grid/R-tree/Quad-tree R-tree
In-memory Yes Yes No Yes Yes Yes
SQL No Yes Yes No Yes No
Data Persistence Index Only Index Only No No No Yes
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2.7 Distributed Parallel Data Analysis System

2.7.1 Overview

While data size exceeds the capacity of a single machine, especially in today’s Web 2.0

era, a new way to share the resource between multiple computing nodes are required.

Distributed computing consists of software components, hardware components as

well as network components. Compared to the centralized system, there are many

benefits that distributed system can offer:

� Scalability: a centralized system can be limited by the microelectronics to in-

crease the capacity or power to boost the scalability of a system. The distributed

system scalability can be easily expanded by adding more computing nodes as

required.

� Redundancy: centralized system reserves all the resources in the server. When

the central server is unavailable, the whole system is down. Distributed system

can duplicate the data into multiple copies to ensure more accessibility and

avoid single node failure.

� Price/performance ratio: since many smaller machines can be used to scale out,

the total cost is lower than one powerful machine.

2.7.2 Requirement

The design of a distributed system should achieve the following goals:

� Openness: the communication protocols or infrastructures should be easy to

access, which will make it easier for troubleshooting in a large scale distributed

system.

� Transparency: The framework designed should conceal heterogeneous architec-

ture. The fact that the resources are distributed across the network and should

provide a universal way of retrieving the resources even though the resources

are relocated or part of the system is in a failure status.

� Scalability: A scalable distributed system is a system that can be flexible with

the size, geographical location, and administration.
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2.8 Cluster Manager

In this cloud distributed system, Yarn is selected as the cluster manager. Yarn [65]

is a resource manager for scheduling jobs and monitoring the CPU, memory, disk

and network usage. There are two components called Resource Manager(RM) and

Node Manager(NM). Between the Resource Manager and Node Manager, there is

a frame specific Application Master(AM) which is responsible for negotiating with

RM and NM. The NM is responsible for nodes and responds to the requests from

RM. RM is the interface accepting jobs from clients and schedules it. The manager

communication between nodes uses RPC service [48]. The whole architecture of

YARN can be found in Figure 6.

To execute a distributed job. There are several steps happening in the cluster :

1. Client decides which input data is required for execution and fetches its meta-

data.

2. Client generates descriptor HDFS files that contains the location of each parti-

tion.

3. Client triggers AM and RM.

4. AM negotiates resource containers with a set of nodes.

5. Application executes in the container.

6. Containers are deregistered and shut down after work has been finished.
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Figure 6: Overview of YARN Architecture [34]
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Chapter 3

On Cloud Data Processing

Framework

3.1 System Components

The system designed has the following key components.

Data Pool: Data pool is the source of data to be processed. It can be from other

OLTP databases, some offline wearable devices, offline storage drives like tape drives

or any other distributed file system such as HDFS.

Processing Framework: This thesis uses Spark as the processing framework.

Inside Spark, Remote Procedure Call (RPC) and event loop mechanisms are used to

communicate with each other. There is a subsystem called Netty achieving these.

For bulk data transportation like shuffling, Spark uses Java Non-blocking I/O (NIO)

to transfer the data. There is also some broadcast data transportation delivered by

Jetty [33] subsystem. As an extent to the spatial field, Java Topology Suit (JTS) is

selected as the GIS format data support.

Distributed System Management Software: To sufficiently manage these

resources and to schedule tasks, Yarn a cluster manager is introduced to track these

resources. This component will be explained in the following section.

Distributed Persistent Software: In this system, two persistent methods are

used, one is an in-memory method based on Spark native RDD, another one is based

on graph-database implemented by Neo4j.
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3.1.1 On Cloud Data Pool

In this system, Amazon S3 is selected to store the raw dataset gathered from the

Internet.

Amazon S3 stands for Simple Storage Service. As an object storage system, it

mostly is used for backup and restore, disaster recovery, archive, data lakes and big

data analytics, hybrid cloud storage or cloud application data storage. As an object

storage service, it can ensure 11 9’s durability and 99.99% availability.

To use the S3 storage, users are required to create a bucket in a specific region.

Then it is possible to use API like REST API or SOAP interface to upload objects

into buckets. Each object consists of object data and metadata. An object can be

identified by a key in the bucket and a version ID. Amazon S3 provides eventual

consistency when multiple clients are writing at the same items.

3.1.2 Processing Framework Architecture

Apache Spark[72] is an In-memory computing framework based on the MapReduce

programming model. It has multiple extension modules such as streaming comput-

ing, machine learning, graph theory, or SQL support. Spark is written in Scala

but supports multiple languages including Python and Java. Resilient Distributed

Dataset(RDD) is the primary storage structure in Spark. All computation operations

on the dataset are the transormations towards RDDs.

RDD is cacheable and fault-tolerant. If one or more partitions are missing or

failed, Spark can restore from the data source with the help of lineage transformation

plan. RDDs are read-only. There are two ways of creating an RDD: parallelizing

existing in-memory collection or referencing a dataset from external storage.

For a better optimization, Spark transforms RDD lineage into Directed Acyclic

Graph(DAG) stages. The stage is the minimal schedule unit. It applies lazy load

technique which means the stages are not executed until an action in the workflow

requiring the results to produce non-RDD values.

Previous frameworks store the intermediate data on disk like HDFS, so the next

task can retrieve the shared data from there. Spark provides a new approach to

enable the intermediate data stored in memory and shared between nodes for parallel

computing.
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The framework architecture follows a layered architecture to support metrics cal-

culation, topology modeling, parallel distributive processing, query, and storage. The

architecture is shown in Figure 7.

Point MBR MBRListPointSet

Java Topology Suit

Gathering Finder Other Apps...

Graph 
Processing

Graph 
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In-Memory 
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Figure 7: Overview of Framework Architecture

Application Layer

The first layer is the Application Layer. All applications that utilize trajectory metrics

are defined to exist in this layer.

Middle-ware Layers

The second layer is the Trajectory Metric layer. In this layer, all trajectory metrics

are calculated. Three dimensions are considered in the system, namely time, latitude

and longitude. The topology calculation results are further processed as numeric

metrics.

The third layer is the Trajectory Expression Layer, where the raw GPS coordinate

data are generated into trajectory segments. The raw spatio-temporal data generated

from portable devices are loaded in the system in a batch mode. At this layer, each

trajectory data are converted to Point objects in the data model of Figure 7. And then

the trajectories are further processed as rectangles shape called Minimum Boundary

Rectangles (MBRs). The further discussion about MBR is elaborated in the next

section.
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The fourth layer is the Geometry Model Layer. At this layer, topology calculation

is performed. It converts MBR objects to JTS objects. The benefit of converting to

JTS objects is that the trajectory metrics relying on geometric calculating operations

on MBRs are supported by JTS library, such as spatial predicates, convex hull, and

metric calculation referred in Section 4.3.

Infrastructure Layers

The fifth layer is the Spatial Object Access Layer. The operations on MBRs are

specific to the data processing frameworks. In this thesis, two kinds of data processing

frameworks are considered, namely a NoSQL graph database and Apache Spark in-

memory processing framework. If MBRs are stored in a graph processing system (such

as Neo4j), Cypher, a graph query language is programmed to operate these data. If

the MBRs are operated by an in-memory geometry processing framework(such as

GeoSpark [71]), Spark parallel functions to access MBRs are developed.

The sixth layer is storage layer. In the graph processing system, MBRs are indexed

and stored in the directed graph structure. They are distributed on multiple database

nodes. For the in-memory processing framework, MBRs are indexed and stored in a

customized tree structure. The tree structure is organized in Spark RDD structure

for distributing.
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3.2 Trajectory Expression

Trajectories can be collected from various types of devices. The most commonly seen

trajectory data are collected from GPS tracker. A GPS tracker periodically receives

the signals from GPS satellites and calculates the current position. This requires

the device to be exploded to an open area to receive signals. For indoor trajectory

collection, GSM cell stations, WI-FI hot spots or RFID labels are used to get the

approximate current location. Furthermore, the trajectories can also be extracted

from video stream file like surveillance cameras.

A trajectory is a collection of unique points organized in time series order. For the

unprocessed data, this thesis uses Tr =< pt1, pt2, ..., ptn > to express a trajectory.

A point can be expressed with four elements: ptk = (idk, lock, tk, Ak) in kth position.

idk is the position identifier; lock is the spatial location of the position; tk is the

time at which the position was recorded; Ak is the additional data like altitude or

temperature. For lock, it can be expressed as coordinate data (x, y) if the data is

collected from GPS-based device or the lock will be marked as the cell ID of a GSM

base station, Wi-Fi hot spot, or an RFID label. If the location is marked by cell ID,

these data should be transformed into coordinates so that they can be expressed in

Euclidean space.

Further more, the trajectory can be simplified as a rectangle or an envelope formed

by the minimum and maximum latitude and longitude coordinate. The rectangle is

called Minimum Bounding Rectangle (MBR). The MBR is an approximation of

the trajectories and that transforms the discrete point problem into topology problem.

Figure 8 shows how an MBR bounding a trajectory in 3 dimensions.

In this project, the trajectory files generated by GeoLife devices are GPS position

logs. Each trajectory is a single “plt” file. It records the latitude, longitude, altitude

in feet, data and time. The framework firstly loads the data in bulk from Amazon S3

datastore. Then it parses each single ptk into Point datatype and a sub trajectory

Tr can be expressed as a PointSet datatype.

A segmentation method splits one trajectory into maximal K segments. In this

thesis, segments are the first class entities for indexing, storage, and query. In this

segmentation method, a data model with components to encapsulate the operations

on segments is designed. Then a greedy split algorithm to split each trajectory into

segments is presented. Since trajectories are independent, this greedy-split method is
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Figure 8: The Trajectory MBR in 3-D. [9]

processed in parallel. The commonly used notations in this thesis is listed in Table 2.

Table 2: Frequently Used Notations.

Notation Meanning

Trp (resp. Trr) a trajectory p (resp.r)

mbru,Trp,i

an MBR in trajectory Trp, sequence i,

partition u , K ∈ N, k ∈ [1, K], K is the maxi-

mum segmentation number of one trajectory

ptTrp,i

a GPS coordinate point in trajectory

Trp, sequence i, pt ∈ Tr

pt.x
coordinate longitude

pt.y
coordinate latitude

Rc,v(resp.Rq,u)
Candidate MBR relation, partition v

(resp. query MBR, partition u)

Est(Trp, T rr)
Trajectory similarity estimation

between Trp and Trr

Dist(pta, ptb)
the Euclidean distance between points a and b
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3.3 The Data Model

The data model’s entities and their relationships are presented in Figure 9.

Figure 9: Data Model of Trajectory Segmentation

Point. Since the GPS trajectories are described as spatio-temporal points, the

fundamental component in this data model is Point. Compared to existing data
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models or topology, they mostly support only 2-D attributes of longitude as X and

latitude as Y. This framework supports an extra attribute of the timestamp T . Ours

also supports the Euclidean distance calculation when required.

PointSet. A trajectory consists of a cluster of points as time elapses. PointSet

class to express the sub-trajectories is created. At least one point can be the smallest

sub-trajectory. These sub-trajectories can be linked to form a longer sub-trajectory

by using addAll() function or only adding one point to extend this trajectory. All

these internal points have their sequence order by sorting their timestamps.

To get one position snapshot at a specific time, this framework uses the func-

tion getPtSnp(). As an estimation in between two real points, a virtual position is

calculated based on the average velocity between the two adjacent positions.

Minimum Boundary Rectangle (MBR). The MBR class focuses on the at-

tributes that relate to operations on trajectory segments such as the volume and

merging cost in the greedy-split algorithm. The merge procedure will be presented in

detail in this section later. Since an MBR covers a sub-trajectory, it is a composition

made from this sub-trajectory’s PointSet and this MBR’s four vertexes. The frame-

work can get the MBR vertexes of its sub-trajectory by using the range() function

and get its volume by using volume() function.

MBRList. The MBRList is a data structure to organize the MBRs in a linked

list. The attribute MBRKey is used in the MBRList for queries.

3.3.1 Trajectory Segmentation Methods

Dieter Pfoser et al. [53] compare several query approaches of moving objects. The

naive way is to query the sampled points directly. Using the coordinate-based query

such as nearest-neighbor, range query is possible. It can not reflect all the movement

of the objects especially for the times in-between the sampled points. Further, the

linear interpolation can be used. the algorithm connects the points as endpoints

of segments. The queries are trajectory-based topological queries which can handle

speed, acceleration information or more.

In this system, it puts the sub-trajectories into Minimum Bounding Rectangles

(MBRs). MBRs can simplify the topology query and as an approximation spatial

query as well as for spatial indexing propose.

For time-series analysis, the objective of trajectory segmentation is to provide
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homogeneous pieces. A high standard trajectory segment can expose clear informa-

tion in high level representation, reduce the chance of noise and finally give a bet-

ter expression for the algorithm to analyze the behavior behind the trajectories [10].

The commonly used trajectory segmentation methods including three thoughts: fixed

length split, probatlity splitting, and greedy algorithm.

Fixed Length Split

Ferreira et al. [21] provide a fixed time length trajectory segmentation method. They

transform the sub-trajectories into vectors for K-Means clustering. It cannot ensure

the sub-trajectories are evenly divided, so the accuracy is limited.

Probability Theory Split

Lee et al. [41] presents a partition algorithm using Minimum Description Length(MDL).

They turn the optimal partitioning into best hypothesis using MDL principle. Since

it’s used for trajectory clustering, line segments with the best similarities are clustered

together. The time complexity is O(n)

3.3.2 The Greedy Split Algorithm

Stage 1: Trajectory segmentation. The segmentation process transforms a tra-

jectory expressed by coordinate points into a sequence of MBRs. An illustrating

process is depicted in Figure 10. In this process, smaller MBRs are aggregated into

larger MBRs. Initially, each two consecutive points in a trajectory sequence resemble

as diagonal vertexes of an MBR.
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Figure 10: Main Steps of the Greedy Splitting Process

The next step is merging two direct adjacent MBRs. Since an MBR may have

its left or right neighbour to merge, the criteria of merging is based on the merging

cost. Suppose two consecutive MBRs mbra and mbrb are merged to a new mbrab, the

merging cost is defined as [54] :

Cost(mbra,mbrb) = V ol(mbrab)− V ol(mbra)− V ol(mbrb)

Where Vol denotes the volume function of MBRs.

The merging that leads to a smaller volume is selected. In one round of the greedy

splitting algorithm, this merging action repeats till all the MBRs are scanned.

The framework adopts a greedy-split algorithm [67] to balance the cost and ap-

proximation quality. The implementation uses the data model defined. The full

details of greedy-split are listed in Algorithm 7. The merging action is listed in

Algorithm 8.
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Algorithm 7 The Algorithm of Greedy Split

Input: Trp = {pt1, pt2, · · · }: a single spatio-temporal trajectory,

K: an integer denoting the final number of segments split into(All subscripts Trp

are omitted compared to Table. 2)

Output: An MBR list MBRList = {mbr1,mbr2, · · · } that covers Tr

Creation of MBR :

1: for each South West Point ptSW ∈ Tr and its consecutive right side

ptNE(assuming located at NE direction) do

2: create new Points

ptNW := Point(ptSW .x, ptNE.y),

ptSE := Point(ptNE.x, ptSW .y)

3: create new MBR, with above four points as vertexes m :=

Polygon(ptSW , ptSE, ptNE, ptNW )

4: MBRList.insert (m)

5: end for

6: for each two consecutive MBRs mbrl ∈ MBRList and mbrr := mbrl.next() do

7: call merging algorithm to mergembrl and mbrr to a new temporary MBR mbrlr

8: Cost(l, r) := V olume(mbrlr)− V olume(mbrr)− V olume(mbrl)

9: CostQue.put(Cost(l, r))

10: end for

Merging loop :

11: while M.size() > k do

12: Cost(i, j) := CostQue.min()

13: mbri := merge(mbri,mbrj)

14: MBRList.remove(mbrj),

CostQue.remove(Cost(i, j))

15: merger mbri and mbrk := mbri.next()

to get Cost(i, k)

16: CostQue.insert(Cost(i, k))

17: end while

18: return an MBRList M covering Tr
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Algorithm 8 The Algorithm of Merging MBRs

Input: one MBR mbra and its consecutive right side MBR mbrb

Output: a new MBR mbrabthat covers both mbra and mbrb

1: Pa′ := Pa ∪ Pb, where Pa and Pb is mbra and mbrb’s inside PointSet

2: get xmax := Max (Pa′.X),

xmax := Max (Pa′.Y ) ,

xmin := Min (Pa′.X),

ymin := Min (Pa′.Y )

3: ptSW := Point(xmin, ymin) ,

ptSE := Point(xmax, ymin),

ptNE := Point(xmax, ymax),

ptNW := Point(xmin, ymax)

4: mbrab := Polygon(ptSW , ptSE, ptNE, ptNW ),

mbrabinside pointSet =Pa′
5: return a new MBRmbrab covering mbra and mbrb

When data points are missing at certain timestamps, the algorithm uses the next

available data point to merge MBRs. Therefore, in the implementation of the greedy

split algorithm, the size of MBRs, as well as the time span of individual MBRs are

both varied.

3.3.3 Parallel and Distributed Implementation

The greedy-split algorithm is independently applied to each trajectory. Thus the

segmentation is processed in parallel. When the dataset contains a large number of

trajectories that is beyond a single node’s capacity, the dataset can be partitioned on

a cluster of nodes. Therefore, each partition contains a number of trajectories that

are segmented in parallel.

To enable parallel processing on data partitioning, this study develops the greedy-

split algorithm using Resilient Distributed Datasets (RDDs) in Apache Spark [72].

RDDs are first created by reading the dataset from stable storage such as HDFS into

the partitioned collection of records. These RDDs are further transformed by opera-

tions such as map, filter, groupBy, reduce and so on all elements in the dataset. So

RDDs are immutable. RDDs are distributed datasets processed in memory of worker
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nodes. Accordingly, different RDDs containing different data types correspond to

objects defined in this data model. The transformations and operations on RDDs

realize the greedy-split algorithm.

When the raw data are stored in HDFS or any other file system with distributed

blocks like S3, the initial RDDs created by reading files from that are already dis-

tributed and partitioned. The partition size and their distribution are inherited from

HDFS’s block size and the partitions will be distributed into multiple nodes. At this

time, the trajectories in the same partition origin from the same block in HDFS host.

Each Geolife trajectory is a text-based file in the dataset. After reading to Spark,

each trajectory record is a <key, value> pair in the RDD. In each RDD record,

the key is the file name of that trajectory, and the value is the raw content of that

file. Followed by that, the content is read line by line to create position records with

latitude, longitude and the timestamp to a Point in this data model.

After this transformation, it has a new <key,value> pair RDD, where the key is

still the file name and the value is this trajectory’s point list, as LinkedList<Point>.

The next transformation is using the greedy-split algorithm to group points into

MBRs described in this section. After this, the point list is replaced by MBRList. In

the MBRList, each MBR is a polygon element that contains the sub-trajectory Points

in its PointSet structure.

Afterwards, system uses the flatMap transformation to flatten RDD’s value that

is represented as MBRList to a sequence of MBRs. The new RDD has the compound

key called MBRRDDKey that consists of two attributes. One attribute is the trajectory

name, and the other is trajectyr’s MBR sequence number in a chronological order

acquired from the MBRList.
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3.4 Partition and Indexing

The trajectory repartitioning shuffles all MBRs within a certain geographic bound-

ary to the same partition. These spatio-temporal partitions form closures. Inside this

closure, the framework can perform the intersection join operation. It further extends

the spatial boundary with the temporal boundary, that means MBRs within a certain

time period are also partitioned to the same node. Under this spatio-temporal repar-

titioning, an intersection query to sub-trajectories occurs within the same partition.

This is different from the initial MBR based partition discussed in Section 3.3.3.

In the initial MBR based partition, all MBRs of the same trajectory are located in the

same partition, and all the trajectories with similar name prefix are also located in

the same partition. Compared to the initial file based partition, the spatio-temporal

partitioning significantly reduces the data shuffling in the following processing.

The workflow is depicted in Figure 11. This thesis notates activities of this data

flow with numbers to present the techniques involved and the mapping of activi-

ties in the distributed cluster deployment (depicted in Figure 12). Both workflows

share stages. After segmentation, the in-memory processing framework stores MBRs

in cluster node memories; and the graph database framework stores MBRs in the

distributed graph database.

34



Query Trajectory

Trajectory Data

Sampling

Trajectory 
MBR RDD Bulk 

Loading

Spatial 
RDD

MBR Spatial 
Join Query

Spatial Join 
Result RDD

Metric 
Calculation

Final Metric 
Result

Segmentation

Indexing
Duplication 
Elimination

❶ 

❷ 

❹ ❺ 
❻ 

Shuffling

❼ 

Partition 
Grid

❹ ❸ 

❷ 

(a) In-memory Processing Workflow

Query Trajectory

Trajectory Data

Sampling

Trajectory 
MBR RDD Bulk 

Loading

Graph 
Datastore MBR Spatial 

Join Query

Spatial Join 
Result RDD

Metric 
Calculation

Final Metric 
Result

Segmentation

Inserting 
MBRs Duplication 

Elimination

❶ 

❷ 

❺ 
❻ 

Create 
Layers

❼ 

Partition 
Grid

❸ 

❷ 

Indexing

❸ ❹
 

(b) Graph Database Workflow

Figure 11: Framework Workflows

35



Spark Node 1Spark Node 1

Spark Node 1Spark Node 1 Spark Node 2Spark Node 2 Spark Node 3Spark Node 3

Spark Node 2Spark Node 2 Spark Node 3Spark Node 3
Cloud Storage

Hadoop File APIs Hadoop File APIs Hadoop File APIs

SegmentationSegmentation

Duplication 
Elimination
Duplication 
Elimination

Duplication 
Elimination
Duplication 
Elimination

Spark Node 1Spark Node 1 Spark Node 2Spark Node 2 Spark Node 3Spark Node 3
Output 
Result
Output 
Result

Output 
Result
Output 
Result

Output 
Result
Output 
Result

Neo4j DB 1Neo4j DB 1 Neo4j DB 2Neo4j DB 2 Neo4j DB 3Neo4j DB 3

IndexingIndexing IndexingIndexing IndexingIndexing

Spatial
 Query
Spatial
 Query

Spatial
 Query
Spatial
 Query

Spatial
Query
Spatial
Query

GeoSpark Node 1GeoSpark Node 1 GeoSpark Node 2GeoSpark Node 2 GeoSpark Node 3GeoSpark Node 3

IndexingIndexing IndexingIndexing IndexingIndexing

Metric
Calculation
Metric
Calculation

Metric
Calculation
Metric
Calculation Metric

Calculation
Metric
Calculation

Spatial 
Query
Spatial 
Query

Spatial
 Query
Spatial
 Query

Spatial
Query
Spatial
Query

Duplication 
Elimination
Duplication 
Elimination

PartitioningPartitioning

❺  

❻ 

❼ 

❶

❷

❸ 
 

❸  B
❸  A

❹ 

Graph Datastore 
Workflow

In-Memory 
Datastore Workflow

Sampling&Bulk 
Loading
Sampling&Bulk 
Loading

PartitioningPartitioning

SegmentationSegmentation

PartitioningPartitioning

SegmentationSegmentation

Sampling&Bulk 
Loading
Sampling&Bulk 
Loading

Sampling&Bulk 
Loading
Sampling&Bulk 
Loading

Figure 12: Dataflow Between Nodes

3.4.1 Partitioning Techniques

The Spatial Partition activity in the data flow uses a spatial partition method. The

spatial partitioning methods include Equidistant, Hibert, Voronoi, Quad-tree and

R-tree [16].

This study develops an R-tree partition to achieve balanced partition of MBRs.

Since it aims to put MBRs within the same spatio-temporal boundary to the same

partition. Therefore, the even distribution of MBRs among partitions is achieved
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through the adjustment of boundary size. The boundary size of a partition is deter-

mined by factors as the number of partitions and the number of trajectory MBRs.

Assume there are 2000 MBRs after the segmentation process, and sample 1% MBRs

to build the R-tree. Then it is 20 MBRs for building up boundaries for partitions.

Assume further that the system can get 10 partitions, then boundary ranges are di-

vided into the 10 ranges based on the 20 MBRs’s spatio-temprol span. In addition,

there is one more range for any MBRs that are beyond the spatio-temporal range

from the samples called overflowed partition. In general, if it targets p number of

partition, it finally has p+ 1 ranges.

Each leaf node of the R-tree has even numbers of MBR objects contained. There-

fore the boundary range of each leaf node is dynamically changed to make the bal-

anced distribution of MBR objects. Since the range of each leaf node represents a

geographic area within a period time, the adjustment of the range scale of a leaf

node eventually modify the geographic area given a time covered by the partition,

thus the density distribution of MBRs on each partition. If the objects in an area

are scattered, this leaf node contains a larger range than average; if the objects in an

area are dense, this leaf node contains a smaller range than average.

The thesis develops the R-tree spatial partition in-memory using GeoSpark. The

major tasks and techniques are presented below.

Stage 2: Creating a geographical partitioning grid. In this step, the

framework creates a geological partitioning strategy. This is a spatial grid based on

R-tree rectangles. There are two sub-steps including step 2.1 and 2.2.

Stage 2.1: Data sampling. The framework randomly samples 1% of the whole

MBRs for establishing range boundaries of the partitions with R-tree. This sampling

method avoids building a global index thus helps to reduce the computation cost.

Stage 2.2: Bulk loading. With the samples, the system builds the R-tree using

the Sort-Tile-Recursive (STR) algorithm [27] to split overflowed nodes. The STR

algorithm estimates the number of leaves required as l = �samplesize/p�, except the
last overflowed partition that represents the rest of range of boundaries outside the

boundaries of samples. Eventually, the R-tree has l + 1 leaves. Each leaf represents

one geological boundary. The generated R-tree is stored as a SpatialRDD for further

query usage. SpatialRDD is an abstract class that stores geometry distributively

with index support. It also allows users to accomplish multiple spatial operations like
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Distance Join, Range Query, KNN Query or even saving as text files.

Stage 3: Data shuffling or migration. In this step, there are several sub-steps

marked as 3.1, 3.2 and 3.3.

Stage 3.1: Partition assignment. When an MBR imported has an intersection

with any leaf node boundary in the R-tree, the MBR is assigned to the partition

number that the leaf node belongs to. The partition ID number becomes the key

to the MBR’s RDD. A replication method is further developed to handle the cases

that boundaries may have overlapping or one MBR is large enough to across multiple

partitions. With this replication method, the MBR across multiple boundaries of

partitions is assigned to multiple partitions. To make the query result consistent,

duplicated copies are removed after a query. The assignment algorithm is shown in

Algorithm 9.

Algorithm 9 Algorithm for R-tree Partition Assignment

Input: mbrTrc : one trajectory Trc segmented Candidate MBR and
partitionList : the partition grid generated from R-tree partition method

Output: a partition ID indicating which partition it belongs to
1: containFlag := false

Iterate Each Partition :
2: for each ith partition from partitionList do
3: if partitioni covers mbrTrc then
4: partitionID := i

/*Contain only check*/
5: containFlag := true
6: else if Partitioni intersects mbrTrc then
7: partitionID := i
8: end if
9: end for
10: if containFlag is false then
11: partitionID = overflow
12: end if
13: return partitionID

3.4.2 Data Shuffling

All MBRs within the same geographical partition should be located on the same

Spark worker node. This redistribution process involves shuffling RDDs in GeoSpark

or migration from RDDs in memories to Neo4j data nodes.
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In the following steps, the thesis uses A suffix to distinguish the stages occurring

in the in-memory framework and use B suffix to express the stages occurring in the

graph storage framework.

Stage 3.2A: Repartition. The framework applies the partitionBy() function

in Spark to locate all MBRs (in RDDs) with the same key to the same partition. This

incurs data shuffling between Spark nodes.

3.4.3 Data Persistence

The persistent method of MBRs migrates the MBRs in Spark RDDs to the NoSQL

database, Neo4j. To support the spatial data model, the framework deploys the Neo4j-

spatial extension [64] that contains map layers. A Neo4j map layer is similar to the

Spark partition. One map layer exists in only one data node and is not distributable.

One data node has several map layers. Each layer is independent. Similar to data

shuffling on GeoSpark, MBRs with the same key are inserted into the same map layer

of Neo4j. To keep the term consistent, a map layer is refereed as as partition too.

Stage 3.2B: Create partitions on Neo4j. The framework deploys a total

number of s Neo4j data nodes. Each node runs independently with distinct data

partitions. Therefore it deploys each node in the standalone mode rather than clus-

tering nor in master/worker mode. The number of map layers (or partitions) is

p + 1. Then it assigns p + 1 map layers (or partitions) to s nodes using the bin-

ning method. To identify the node destination, NodeNumber = MBRKey%s and

LayerNumber = MBRKey. The framework builds a router to route each MBR to a

designated map layer (or partition). Before inserting the MBRs, the map layers with

the exact LayerNumber will be created explicitly.

Stage 3.3B: Inserting MBRs to Neo4j partitions. Neo4j uses the WKT

format to represent the geometry when inserting or query. Since the MBRs in Spark

RDDs are serialized objects stored in memory, the framework further inserts MBR’s

RDDs to Neo4j’s nodes. Due to the Neo4j procedure call limitation, the insertion

of polygons in bulk is not supported. The solution is to traverse all the MBRs in

each partition, and partitions execute the insertion operation in parallel. If MBRs

are assigned to a partition on its local Neo4j node, the data is shuffled between map

layers (partitions) on the same physical node. When MBRs are assigned to a remote

Neo4j node, a remote procedure call of Neo4j is executed, which incurs data shuffling
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across the network.

3.4.4 Spatial Indexing

There are a number of data structures supporting spatial indexing. Using fixed cell

methods [28] cannot ensure the best performance because the cell size should be deter-

mined in advance. Quad Tree [22] is more efficient in update-intensive applications

and requires fine tune to realize the best performance [35]. K-dimensional B-tree

(KDB tree) [55] is only useful in point data. R-tree is more robust and can achieve

high performance without too much tuning optimization.

3.4.5 Local R-tree Indexing

Inside each partition, local R-tree indexes are built for fast retrieving. Since the

MBRs are stored in different frameworks, the implementation of R-tree indexing may

differ.

Stage 4A: In-memory R-tree indexing. The JTS library [57] provides an R-

tree index data structure. The framework can create an STRtree and use insert()

function to build that R-tree index as part of SpatialRDD in Spark heap. In each

partition, an R-tree index is built by traversing the MBRs in their partition. All

partitions’ local R-trees are stored in GeoSpark’s SpatialRDD.

Stage 4B: In graph storage R-tree indexing. The R-tree indexes are built

simultaneously when inserting MBRs into the Neo4j map layers. The key of each MBR

is a compound key including Partition ID and Time Slot ID. The Time Slot ID is

a method of rebalancing the data distribution over time. The framework divides one

day into multiple time periods and number each slot. More details can be found in

Section 6.1. Based on this compound key not only the Partition ID, the framework

hashes the key and map the MBR object to a Neo4j map layer. The visualization of an

R-tree structure in Neo4j is shown in Figure 13. A root node is called spatial_root in

the blue colour. The root node links to each Layer Node using a Layer relationship.

For a specific Layer Node another node records the max node for each R-tree layer.

The geometries are linked by the RTREE_METADATA relation. The top level of the R-

tree is a Boundary Box covering all the geometries. The BBOX is accessed following

the RTREE_ROOT relation. The non-top level BBOXes are connected by RTREE_CHILD
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Figure 13: The Neo4j Local R-tree Visualization.

relations. At the leaf level, MBRs are serialized in the WKT format and stored as

one property.
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1 JavaPairRDD<TrajectoryID , Str ing> input = JavaSparkContext .
wholeTextFi l e s ( Path ) ;

2 /� Rading from t e x t �/
3 JavaPairRDD<TrajectoryID , Set<Point>> pointRDD = Formatting ( input ) ;
4 /� Covert ing l o g f i l e to t r a j e c t o r y , each t r a j e c t o r y repre sen ing as a

po in t s e t �/
5 JavaPairRDD<TrajectoryID , Li s t<MBR>> MBRListRDD = GeedySpl it (pointRDD) ;
6 /� Using greedy−s p l i t to transform to MBRs�/
7 JavaPairRDD<<TrajectoryID ,MBRID>,MBR> MBRRDD= Flatten (MBRListRDD) ;
8 /� F la t t en the RDD, each key i s unique �/
9 JavaPairRDD<<<TraID1 ,MBRID1>,<TraID2 ,MBRID2>>, SEValue> SERDD =

S im i l a r i t yEs t ima t i onCa l cu l a t i ng (MBRRDD) ;
10 /� pa i rw i s e s im i l a r i t y e s t ima t ion c a l c u l a t i o n �/
11 JavaPairRDD<<<TraID1 ,MBRID1>,<TraID2 ,MBRID2>>, i sCo l l i d ed> CDRDD =

co l l i s i o nD e t e c t i n g (MBRRDD) ;
12 /� pa i rw i s e c o l l i s i o n d e t e c t i on s t age �/
13 JavaPairRDD<<TraID1 , TraID2>,SEValue> SERecords = aggregate (SERDD) ;
14 /� Aggregat ion to genera te t r a j e c o r y s c a l e r e s u l t �/
15 JavaPairRDD<<TraID1 , TraID2>,CDValue> CDRecords = aggregate (CDRDD) ;
16 /� Aggregat ion to genera te t r a j e c o r y s c a l e r e s u l t �/

Listing 3.1: Spark RDD Workflow Summary

3.5 The Query Workflow

Above steps generate spatio-temporal data indexes and store the data partitions in a

cluster of nodes. The framework further develops queries on trajectories and output

MBRs that meet certain predicates. The queries enable to compute metrics regard-

ing MBRs’ attributes. Given a query trajectory, the objective is to find out other

trajectories having a similar route or having any intersection with the given one. A

metric evaluating the degree of similarity is also defined below. The overall workflow

is shown in Figure 14. A query trajectory is shown in red color (In the query spatial

RDD) that is covered by MBRs distributed in two partitions, in yellow color and

in blue color respectively. The candidate MBRs (illustrated by spatial RDD local

storage) in blue color and yellow color on two distributed partitions. The outline of

the in-memory implementation part of the workflow is presented in List 3.5.

Preprocessing Query Trajectory. The query trajectory needs to be presented

in the same format of the trajectory datasets that are already indexed and stored.

This step involves the same techniques of trajectory segmentation (referred as Stage

1: Trajectory segmentation in Figure 14 ), partitioning (referred as Stage 3:

Data shuffling or migration) and indexing (referred as Stage 4: Local R-tree
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Figure 14: The Trajectory Query Workflow in Two Parallel Partitions.

indexing ) as discussed in previous sections. Due to the difference of the storage

architecture, queries on GeoSpark and on Neo4j have separate workflows.

3.5.1 The Parallel Intersection Join

When a query is executed on partitioned segments of trajectories, a property is re-

quired to ensure the intersection join consistent as if the intersection join is performed

sequentially.

This thesis defines Rc =
p+1⋃
v=1

Rc,v is the relation of candidate MBRs, consisting of

p + 1 partitions, and Rq =
p+1⋃
u=1

Rq,u is the relation of query MBRs. The intersection

join is defined as:
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Rq,mbrTrq ,j
�� Rc =

{
mbrTrc,i|∃mbrTrc,i ∈ Rc ∧mbrTrq ,j ∈ Rq

∧Intersectsxy(mbrTrc,i,mbrTrq ,j) = true
}
.

(1)

Where the Intersects(a,b) predicate is defined in Dimensionally Extended nine-

Intersection Model (DE-9IM) [60]. It is to be true when geometries a and b have at

least one point in common.

This means for each MBR mbrTrq , j in partition u within the query range, it may

exist an MBR belonging to Trq index i, mbrTrc , i (0 ≤ i ≤ k) in partition v1, v2 · · · vn
that overlap with mbrTrq , j. That is Rq,mbrTrq ,j

�� Rc = mbrTrc,i.To ensure consistency

of the intersection join on partitions of MBRs, the study first defines an intersection

closure as Rq,mbrTrq ,j
∪Rc,mbrTrc ,i

that covers the overlapping MBRs, where

Rc,mbrTrc ,i
= ΠmbrTrc ,i

(
vn⋃

v=v1

Rc,v) ⊆
vn⋃

v=v1

Rc,v, (2)

Rq,mbrTrq ,j
= ΠmbrTrq ,j

(Rq,u) ⊆ Rq,u. (3)

It is known that because of the replication strategy, it is possible to make sure

u = v1 = v2 = · · · = vn. This is true with intersection predicate, not KNN or others.

Hence, Rq,mbrTrq ,j
∪Rc,mbrTrc ,i

⊆ Rq,u ∪Rc,u.

Consequently, Rq,mbrTrq ,j
�� Rc is performed on the super partition closure set

of Rq,u ∪ Rc,u. Therefore, MBRs within separate partitions are aggregated by the

reduce stage of Spark to generate the super partition closure set. Therefore the

intersection join is consistent with the sequential and centralized processing whereby

the overlapping MBRs are within the same partition.

An example is illustrated in Figure 14. The two blue partitions form a closure for

Intersection join and two yellow partitions form another closure for Intersection join.

Therefore the query is aggregated by two sub queries in Stage 5.

3.5.2 In-memory Query

Stage 5A.1: Range query pre-screening. The framework utilizes the local R-tree

on each partition to find out the intersected MBRs with the query trajectory’s MBR.
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Each query MBR produces a JavaRDD< QueryMBR,HashSet<MBR>> record. This in-

volves the join operation that is converted to multiple rounds of range queries.

Stage 5A.2: Intersection. The framework retrieves the candidate MBRs that

are within the query range. It traverse the candidate MBRs to execute intersection

predicate.

Algorithm 10 Algorithm for Join Query in Map Stage

Input: MBR relation in candidate partition k Rc,k stored in R-tree structure
RTreeIndex and query MBRs queryMBRList segmented from Trq in query par-
tition Rq,k

Output: tupleList: a list of tuples tupleList in which the query MBR as key and
intersected MBRs as values

1: for each mbrTrq ,j in Rq,k do
2: candidateMBRList = RTreeIndex.query(mbrTrq ,j)

/*Using Index for query*/
3: for each mbrTrc,i in queryResult do
4: if mbrTrc,i.intersects(mbrTrq ,j) then
5: candidateMBRSet.add(mbrTrc,i)

/*Using index can not ensure all results are correct, intersection judgment
once more*/

6: end if
7: end for
8: tupleList.add(Tuple(mbrTrq ,j,candidateMBRSet))
9: end for
10: return tupleList

Algorithm 11 Algorithm for Join Query in Reduce Stage

Input: << mbrTrq ,j > , candidateMBRs [mbra,Trc,m, mbrb,T rd,n . . . ] > collecting from
map stage

Output: a list of tuples as the spatial join result
1: for each mbr in candidateMBRs do
2: MBRList.add(mbr)
3: end for
4: MBRList.deleteDuplicateGeometry()
5: return < mbrTrq ,j, MBRList>
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3.5.3 On Graph Store Query

Stage 5B: Direct intersection query. The query on Neo4j is simple since the

R-tree index on Neo4j involves the execution plan automatically. The intersection

calls the intersect procedure to return MBRs.

The Map Reduce procedures for parallel spatial join are shown in Algorithm 10

and Algorithm 11. In Algorithm 10, from line 2 to line 6, the intersection query

procedure is implemented in different platform based on what you choose. If you

choose GeoSpark method, the indexed query is completed on Spark framework; if

you choose Neo4j method, the indexed query is completed on Neo4j internally.

3.5.4 Duplication Elimination

Stage 6: Duplication eliminate. The intersection operations take place in each

partition. The system gets a result pair <Candidate MBR, Intersection MBR> show-

ing that there is an intersection between the candidate trajectory MBR and query

trajectory MBR. After this it groups the results by Candidate MBR. Duplicated in-

tersection MBRs to one Candidate MBR in different partitions will be grouped and

removed. All distinct Intersection MBRs in the result pair to this trajectory make

up the final results.

3.5.5 Raw Data Separation Technique

For the in-memory framework, the framework embeds the original text raw data into

MBR objects. This is redundancy and this causes more network traffic when shuffling

data. Actually, it do not use these raw data until the last step before outputting the

final result.

It is a chance to split these raw data into a separate RDD aside and add an extra

join step to combine the results later before output. This costs extra time to join but

reduces the shuffling time especially when additional data are extra large. By applying

this technique, it can reduce the memory cost when transforming the RDDs, which

can fit in smaller memory size node cluster. The shuffling transformation execution

time is also reduced based on the experiments.
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Chapter 4

Trajectory Metrics

Stage 7: Metrics calculation. This thesis defines two basic metrics that are com-

puted using the framework architecture and workflows developed above. These two

metrics are basic and composing elements to applications such as clustering analysis

of trajectory data. The study presents one metric to estimate the trajectory similarity

and the other metric to detect the collision of trajectories.

4.1 Trajectory Similarity Estimation

This thesis measures the similarity of trajectories by computing the volume of over-

lapping. Since trajectories are segmented into MBRs, the overlapping of trajectories

is assessed by intersecting MBRs. The volume is calculated by three dimensional

volume size.

For a trajectory Trp the ith MBR is notated as mbrTrp,i that has six attributes

that represented as {tl, th, xl, xh, yl, yh}. tl and th are the starting and ending time of

this MBR; xl and xh are the MBR’s lowest longitude and the highest longitude; yl

and yh are the lowest latitude and the highest latitude.

Given two trajectories Trp and Trr to get the Trp’s ith MBR and Trp’s jth MBR

intersection volume in time axis, the thesis defines the intersection operation in

the time axis as:

Intersectiont(mbrTrp,i,mbrTrr,j)

=
⋂

t

(p)(mbrTrp,i,mbrTrr,j).
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where (p) denotes the partial intersection on the time axis.

It’s possible to get the following property:

mbrTrp,i.tl ≤ mbrTrr,j.tl ≤ mbrTrp,i.th;

or

mbrTrp,i.tl ≤ mbrTrr,j.th ≤ mbrTrp,i.th.

Next, the norm for the time axis is defined as

getLength(Intersectiont(mbrTrp,i,mbrTrr,j))

= ||
⋂

t

(p)(mbrTrp,i,mbrTrr,j)||.

Likewise, it defines the intersection in longitude Intersectionx and in latitude

Intersectiony.

Next, the intersection in an area is defined on two dimensions of longitude and

latitude as

Intersectionxy(mbrTrp,i,mbrTrr,j))

=
⋂

x,y

(p)(mbrTrp,i,mbrTrr,j).

getArea(IntersectionxymbrTrp,i,mbrTrr,j))

=||
⋂

x,y

(p)(mbrTrp,i,mbrTrr,j)||. (4)

Then, it defines the intersection volume:

getV olume(Intersectionxyt(mbrTrp,i,mbrTrr,j)))

=getArea(Intersectionxy(mbrTrp,i,mbrTrr,j)))

× getLength(Intersectiont(mbrTrp,i,mbrTrr,j)))

=||
⋂

V

(p)(mbrTrp,i,mbrTrr,j||V

=||
⋂

x,y

(p)(mbrTrp,i,mbrTrr,j)||

× ||
⋂

t

(p)(mbrTrp,i,mbrTrr,j)||.

(5)

where V denotes volume in 3D.
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For any trajectory Trp and query trajectory Trr, the Intersection Volume is

calculated as:

V olume(Trp, T rr) =
n∑

i=1

m∑

j=1

||mbrTrr,j

⋂

V

mTrp,i||V .

where m is the number of MBRs for Trr and n is the number of MBRs for Trp.

Finally, the similarity estimation between Trp and Trr as Est(Trp, T rr) is:

Est(Trp, T rr) =

1

length(Trp)
×

n∑

i=1

m∑

j=1

||mbrTrr,j

⋂
V mbrTrp,i||V

‖mbrTrp,j‖V
‖mbrTrr,j‖t,

(6)

where length(Trp) is the trajectory lasting time of this moving object, m is the

number of MBRs for Trr and n is the number of MBRs for Trp. An example is shown

in Figure 15 whereby the yellow area is the similarity estimation value of these two

trajectories(refer the gray existing MBRs in Figure 10. ). The algorithm is shown in

Algorithm 12.

Algorithm 12 Intersection MBR volume calculation

Input: MBRRDD: an RDD containing MBRs
Output: a tuple that the two intersected MBRs as key and their intersected volume

as value
1: <<QueryMBR>,[<IntersectedMBRs>]>

queryResult := MBRRDD.spacejoin(MBRRDD);
2: for each < K, Y > pair in queryResult do
3: for each mbr in Y list [< IntersectedMBRs >] do
4: intersectedShape := QueryMBR.intersection(mbr)
5: volume2D := intersectedShape.getArea();
6: intersectedTimePeriod :=

QueryMBR.getTimeInterval().overlap(
mbr.getTimeInterval());

7: volume3D := volume2D*intersectedTimePeriod;
8: return <<QueryMBR,mbr>,<volume3D>>

9: end for
10: end for
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Figure 15: Similarity Estimation Metric in 2D

4.2 Collision Detection Metric

The collision detection metric is defined as the boolean value to check if two moving

objects have overlapping under a certain time span.

The framework pre-screens the collision detection candidates requiring the MBR

pairs whose similarity estimation > 0. So the collision detection operation is the

downstream sector after similarity estimation. However, when two MBRs border

each other or corner each other, the similarity estimation = 0, this may cause a

false negative result. It gives a margin to expand the range fo MBRs so that in this

scenario the similarity estimation > 0. Usually, the margin is set slightly larger than

half of the threshold.

To test the condition of collision detection, the framework samples location points

on sub-trajectory in an MBR. Certainly, the more points sampled, the more precise

the result is. It has three sub steps to calculate this metric. Stage 7.1, it finds out

the timestamps of the checkpoints. A checkpoint is a trajectory position point at a

certain timestamp. Stage 7.2, it calculates the interpolation between two real data

points as checkpoints. And step 7.3, it examines the distance between a series of

checkpoint pairs.

Stage 7.1: Checkpoint timestamp selection.

For any time span as a result of the operation

Intersectiont(mbrTrp,T rr),

defined as

Tmin = Min{Intersectiont(mbrTrp,T rr)}
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and

Tmax = Max{Intersectiont(mbrTrp,T rr)}
.

There is a parameter L as an input reflecting how many checkpoints are required

to examine. To get the timestamp of a series of checkpoints:

Tckp[l] =
l × (Tmax − Tmin)

L
+ Tmin,

0 ≤ l < L, l ∈ N.

(7)

Stage 7.2: Checkpoint coordinate calculation.

Since not all data points are recorded at Tckp, the framework uses a liner interpo-

lation method to estimate the checkpoint position. To find out the index h and h+1

of nearest data points to ptTrp(Tckp):

indexSet = {h|
∃h,getT ime(ptTrp,h) < Tckp[l] < getT ime(ptTrp,h+1)}.

(8)

It is possible to find the coordinate x and y for Trp or Trq at Tckp[l] timestamp.

For x coordinate of Trp at time instant Tckp[l]:

xTrp,Tchk[l] = ptTrp,h.x+

Dist(ptTrp,h, ptTrp,h+1.x∗
Tckp[l]− getT ime(ptTrp,h)

getT ime(ptTrp,h+1)− getT ime(ptTrp,h)
;

(9)

For y coordinate of Trp at time instant Tckp[l]:

yTrp,Tchk[l] = ptTrp,h.y+

Dist(ptTrp,h, ptTrp,h+1).y∗
Tckp[l]− getT ime(ptTrp,h)

getT ime(ptTrp,h+1)− getT ime(ptTrp,h)
.

(10)

Where the Dist() function is the Euclidean distance between two points.

Stage 7.3: Collision detection

Based on the point position, measure the Euclidean distance between two trajec-

tories at timestamp Tchk[l] to judge if there is any collision.
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Figure 16: The Illustration of Three Blue Checkpoints for Collision Detection

To define collision detection is true as a condition that:

∃ l ∈ N, l < L,

Dist((xTrp,Tchk[l]
, yTrp,Tchk[l]

), (xTrr,Tchk[l]
, yTrr,Tchk[l]

))

< threshold.

The study draws a diagram to illustrate the collision check among three check

points in Figure16. If any one of the three dotted lines’ length is smaller than thresh-

old, the study decides there is a collision between this pair of sub-trajectories. The

algorithm is listed in Algorithm 13. In the system, it sets L constantly as 3. When

two MBRs collide, it records the MBR IDs and collision time.
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Algorithm 13 Algorithm for Trajectory Collision Detection

Input: L: number of checkpoints, threshold: distance considered two trajectories are
collided,Trp, T rr : two trajectories

Output: a boolean value indicating if Trpcollides with Trr
1: collision = false
2: for each ith MBR mbri in Trajectory p do
3: for each jth MBR mbrj in Trajectory r do
4: if similarity estimation between mbri and mbrj = 0 then
5: return false
6: end if
7: for each checkpoint sequence l from 0 to d-1 do
8: calculate Tckp[l] using formular (7)
9: end for
10: for each Tckp[l] in Tckp do
11: find index hp and hr that satisfy the function (8)
12: calculate points Pa = (xTrp,Tckp[l], yTrp,Tckp[l]) as well as Pb =

(xTrr,Tckp[l], yTrr,Tckp[l])
13: if Dist(Pa, Pb) < threshold then
14: collision = true
15: end if
16: end for
17: end for
18: end for
19: return collision
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4.3 An Evaluation Application

This thesis develops an application by finding out moving object crowd profiting by

above similarity estimation and collision detection metrics.

A crowd is a set of objects that with a position of collision in a certain of time [44].

In this system, trajectory crowd analysis application is further developed based

on collision detection metric. Finding out the collision MBRs, the study reveals the

moving objects and their positions.it uses graph theory model to explain the crowd

query procedure.

4.3.1 Graph Build Up

This model is expressed as a graph G consisting of the edges E(G) and vertices V (G).

An MBR is a vertex in the graph G, expressed as u ∈ V (G) or v ∈ V (G). A collision

event is an undirected edge connecting each two vertices with the numerical value of

collision timestamp, marked as (u, v) ∈ E(G). this associated value is called weight,

marked as D(u, v). Between these MBRs, a crowd is a set of MBRs in which MBRs

are maximal connected to each other by the edges.

4.3.2 Search Crowds

A connected component [18] is called a crowd in graph G. A connected component

is a maximal set of vertices such that each pair of vertices is connected by an edge.

By searching for the connected components using the Breadth First Search (BFS)

or Depth-first search (DFS), the crowds are derived. The graph creating and search

procedures are listed in Algorithm 14. The result expressed in graph theory is shown

in Figure17 (The figure uses trajectory nodes instead of the MBR nodes for a better

illustration).

54



Figure 17: The Connected Components(Crowds) in Graph Database

Algorithm 14 Algorithm for Crowds Search

Input: [< mbrTrq ,j,mbrTrc,i >] : a list of MBR pairs that have collisions with each

other.

Ensure: Set crowds: each element in the set is a connected component representing

a crowd.

1: for each MBR pair < mbrTrc,i,mbrTrq ,j > do

2: create vertex ui, vertex vj.

3: create edge (ui, vj)

4: end for

5: Set crowds = new Set()

6: for each edge(u, v) ∈ E(G) do

7: Breadth-First or Depth-First Search starting from u to find out a con-

nected component G′

8: crowds.add(G′)

9: end for

10: return crowds

If the data is processed in the graph storage framework, the framework has already

store all MBRs into Neo4j graph database in Stage 3.3B. Otherwise it needs to store

these MBRs into Neo4j explicitly when the previous processing is done in-memory
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framework only. The framework uses Neo4j connected component algorithm [47]

function unionFind with above weight D(u, v) threshold to get the crowds.

4.3.3 Test Dataset

The study applies the clustering analysis on open data fromMicrosoft GeoLife project [74],

which is a GPS trajectory dataset generated by 182 users. The trajectory length varies

from a few minutes to several days, mostly distributed in Beijing urban area. Since

the trajectories are sparsely distributed in five-year range, the study ignores the date

attribute but keep the time attribute to make the data denser as if happening in one

day. The study randomly selects 3330 trajectories to find out crowds.

4.3.4 Existing Gathering Implementation

Zheng et al [75] define a gathering is a pattern occurring at a certain area or location

in a certain time period indicating a non-trivial event.

A gathering pattern should satisfy five attributes-scale, density, durability, sta-

tionariness and commitment. A crowd is a cluster captures the first four attributes.

They use the DBSCAN[19] algorithm to discover the crowd on snapshots, then detect

the gathering patters.

The gathering crowd is the intermediate result when detecting the gathering pat-

terns. This thesis compares the crowds produced by the workflow and ones produced

by the gathering Spark implementation, referred as GPFinder [68] in the following

analytic. The collision threshold = gathering finder application’s threshold is set

for further tests.

4.3.5 Small Size Trajectory Analytics

Evaluating the accuracy of the whole dataset is not quantifiable since the data is

not labeled for ground truth. The analysis is non-supervised. To solve this problem,

13 trajectories are manually labeled and used as ground truth data for evaluation.

The collision detection threshold and margin is set to 10 meters. The K value (max

segmentation number per trajectory) is set to 20; The study compares the gathering

crowds with [68]’s result.
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This thesis visualizes the crowd trajectories for manual evaluation. From Fig-

ure 18, it shows that the A, B and C crowd pairs occurred at a bus station in front of

a university campus and the G pair occurred at a subway station. It is noticeable that

D, E, and F gathering pairs have the same common trajectory whose MBRs are ex-

tremely large. The purple trajectory shows a pathological interpolation. One reason

is the poor data quality that some coordinates of this trajectory location recording

may be lost.

4.3.6 Medium Size Trajectory Analytics

400MB data are also selected for testing, which include 3330 trajectories for crowd

finding. The collision detection threshold is set to 5 meters. The study finds 2740

trajectories are positive, which means they form crowds; while the rest 590 trajectories

are isolated. The thesis also uses similar parameter settings with GPFinder algorithm

to find out the gathering crowds with the same dataset. The confusion matrix is

listed in Table 3.

The study notices that in this system, the sensitivity remains 86%, but the speci-

ficity is only 49%. There is a suspicion that it is the 590 isolated trajectories that

interfered GPFinder to find out crowds.

One thing it should noticed is that the DBSCAN is a dynamic clustering algorithm,

while ours is static. The study exacts the positive gathering trajectories from the

application, which is 2740 from Table 3. Then put these 2740 trajectories as input to

rerun both GPFinder and the application. This application remains the result that

all 2740 are still positive. From Table 3 and Table 4 it is observed that GPFinder

positive number rises a bit from 2484 to 2671.

This thesis does not do the whole set trajectory analytics because the lacking of

the label regarding to the collision in the dataset.
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Figure 18: Positive Crowd Pair Trajectories Snapshot

Table 3: Confusion Matrix for Gathering Detection Result,a total of 3330 Trajectories

GPFinder

Positive Negative

The Predicted Results Positive 2484 256

Negative 421 169

Table 4: Confusion Matrix for Positive Detected 2740 Trajectories as Input

GPFinder

Positive Negative

The Predicted Results Positive 2671 69

Negative No Input No Input
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4.3.7 Trajectory Transforming to MBR Visualization

This thesis creates a heat map showing the distribution of MBRs with the dataset

of 400MB. Similarly, it also plots the heat map of these trajectories. Here the study

visualizes and compare the skeleton of segmented trajectory MBRs and the original

trajectories. The aim of visualizing the MBRs and trajectories is to find out how the

trajectory layout changes after converting the point based trajectory into rectangle

based MBRs. The heatmap can easily observe the distributing of trajectory density.

It is noticeable the sketch of the trajectory heatmap in the top left corner is highly

similar to that of MBRs in the center of Figure 19. The picture on the top left is

the trajectory heat map, the picture at the center is the MBR heat map. It also

highlights the three different parts where the roads are not horizontal or vertical.

Figure 19: The Heat Map of Trajectories and MBRs
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Chapter 5

System Performance Evaluation

In this section, the thesis aims to evaluate the system performance and scalability

under experiments by varying

1. The cluster size,

2. The input data size;

3. The partition number;

4. The segmentation number.

These four factors vary the workload of the system. To further identify the per-

formance bottleneck, the study decomposes the latency by stages. It applies the same

set of metrics to both the in-memory framework and the graph storage framework to

compare the effects of the system architecture. It adjusts the cluster size to foresee

the capacity of this framework if given unlimited resources. The study controls the

input data size to see if the framework can handle large data and keep the processing

efficiency stable. It controls segmentation number for the scenario of a more precise

result requirement. It varies the partition number to assess how the task granular-

ity can affect the parallelism level. Also, it analyzes the latency decomposition for

further optimization. The study has common metrics for both in-memory framework

and graph database framework to make a horizontal comparison.
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5.1 The Experiment Setup

Datasets. The thesis uses Microsoft GeoLife [74] as the trajectory source data. The

whole data size is of 1.6GB, including 17621 trajectories with a distance of 1,300,000

km and a total of 50,000 hours. It uses slices of datasets from the size of 100MB to

the full size of 1.6GB for the varied size of the data input.

Cluster. The computing nodes are set up on Amazon EMR platform. All

nodes are R4.2xlarge instances. Each R4.2 xlarge instance has 8 cores with 61 GB

memory. The cluster size is the instance number of worker nodes, so the exactly

running instances in this cluster number is cluster size plus one master node.

Evaluation tasks. The trajectory metrics evaluated are trajectory similarity

estimation and collision detection. These two metrics can be evaluated in a single

workflow. These tasks allow the framework to execute spatial self join with MBR

intersection predicate and some simple Map-Reduce numeral calculations.

Performance metrics. There are common evaluation metrics for both on in-

memory framework and graph database platform.

� Latency evaluates the end to end execution time.

� Speedup in latency is defined by:

S =
Ts

Tp

Where the Ts is the single node runtime latency and Tp is the multi-node

cluster runtime latency.

� Latency Decomposition the execution time to observe the most time-consuming

steps of a workflow.

� Throughput the effectiveness.

Throughput = DataSize/Latency

� Shuffle Read/Write rate :

Input Data Size is the size of data the Spark is ingesting at this stage.
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Shuffle Write Data Size is the sum of serialized data on all executors before

transmitting in this stage.

Shuffle Read Data Size is the sum of serialized data on all executors after

transmitting at the next stage.

Shuffle Read Rate =
Shuffle Input Data Size

Input Data Size
.

Shuffle Write Rate =
Shuffle Output Data Size

Input Data Size
.

This metric indicates to what extent that data is serialized to and from remote

nodes. Reducing this rate helps reduce the I/O cost.

Global Settings. The cluster size is 4 if no further explanation. In collection

detection metric, the margin is fixed to a half of threshold and the threshold is set to

5 meters.

5.2 Evaluations on In-memory Framework Based

on GeoSpark

5.2.1 Cluster and Partition Size Efffect

The baseline latency is measured with one node. The algorithm is still running

in parallel on 8 cores. The factors affecting the speedup metric include network

communication, data locality and level of parallelism when the number of nodes

increases.

The network communication bandwidth between AWS EMR R4 nodes is 10 GBps.

A large amount of data exchange occurs in the reduce stage and the shuffling stage.

Serializing the objects is an effective way to reduce the I/O volume. A further dis-

cussion is presented in Section 5.2.2.

Data locality refers to how close the data to the processing code. Based on con-

figuration, data and the processing code may reside on the different level of locality,

such as on the same JVM, on the same node, in the same rack or on different nodes

within the network domain. In the experiment, it keeps the settings as default to let

Spark itself to decide the locality level to minimize the data transfer.
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The level of parallelism is reflected by one factor as the number of partitions. The

smaller the partition, the more partitions to be scheduled. In Figure 21, studies

observe that more partitions do not lead to a higher level of parallelism. When the

number of partitions is high, the number of objects across multiple partitions to

be aggregated also increases. Hence, the system duplicates these objects for each

partition before the local join operation. Meanwhile, at the reduce stage, the system

has an extra cost of removing duplicated objects.

Figure 20: Speedup under Different Cluster Size
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Figure 21: Throughput under Different Repartition Numbers

The speedup under the fixed data size of 400MB is plotted in Figure20. The

framework automatically sets the partition number = total MBR number
300

if not

mentioned specifically to minimize the data skew. It can observed that the in-memory

processing system has limited improvement when increasing the cluster size. One

reason is that there are more sequential stages in indexing and query than in the

graph-based system. It is further discussed in Section 6.1 the data skew effect on the

speedup.

The speedup based on the graph storage system has a superlinear benefit. This

is due to a much shorter query time when sharding the spatial data into multiple

individual databases. The spatial join time complexity is O(logM
(n)
p
) where M is the

capacity per R-tree node and p is the partition number. In the graph storage system,

a single spatial join query uses less time after sharding.

The throughputs under different cluster sizes are compared as depicted in Figure22

and Figure23 for the in-memory processing system. Study notices some of the

throughputs are missing because the failure of these tasks for not enough memory

reason. Doubling the cluster worker nodes from 8 nodes to 16 nodes improves through-

put approximately 194% on average. For the graph storage system, K is set to 200
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and use 16 worker nodes. Other configuration remains the same as the in-memory

processing system.

Figure 22: GeoSpark 8 Node Clustering

5.2.2 Data Size Effect

The throughput trend is displayed in Figure 24 when the data size increases. The

K value (the maximum number of segmentation per trajectory) is set to 20. The

throughput of the in-memory processing system is as low as 50% when the dataset is

larger than 1GB compared to 800MB dataset. Further scrutinizing the profiling logs,

The out-of-memory events due to garbage collection actions of Spark is observed.

More garbage collection occurs as the data input size increases. There are two factors

causing this. One is the partition skewness. Another reason is the geometric data,

especially the R-tree data structures in JVM are organized loosely. They occupy more

than ten times of its original data size in memory. Organizing the R-tree structure

efficiently in JVM is beyond the scope of this thesis. For the graph data storage

system, the throughput drops 37.5% when the data size increases from 1000MB to

1800MB.
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Figure 23: GeoSpark 16 Node Clustering

Figure 24: Throughput under Different Data Size

66



Figure 25: Throughput under Different Segments per Trajectory

Segmentation Effect

The study increases the value of K (the maximum number of segmentation per tra-

jectory) from 20 to 200. This increases the total number of MBRs. As shown in

Figure 25, the throughput drops by 29.6% and 21.9% on average when double the

K value for the in-memory processing system and the graph storage system respec-

tively. The degradation of throughput is caused by two factors. The first factor is

the increased processing objects to parse or to shuffle when splitting a trajectory into

more segments. The second factor is increasing the query stage execution time due

to the R-tree capacity in Section 5.2.1.

Latency Decomposition

To further investigate the bottleneck, the latency decomposition for the in-memory

processing system is shown in Figure 26. It shows that R-tree indexing and join

query accounts for 75% of the execution time, which is 1.5 hours. It is impossible

to distinguish the R-tree building and query time due to the lazy loading strategy
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in each partition. After examining the execution log, the garbage collection time

taking over 17% of this stage is observed. This is an indication of insufficient memory

in the cluster. Following join query stage, the next most time-consuming stages

are repartition stage(Stage 3) and collision detection stage(Stage 7). The trajectory

segmentation(Stage 1 and 2) only takes the proportion of 2.3 percent, which is 3

minutes in the 16-worker-node cluster.

Figure 26: In-memory Processing Framework Latency Decomposition

Since R-tree indexing and join query operations are at stage 4 and stage 5 of the

workflow, the study further measures the Shuffle Read Rate and Shuffle Write Rate

under varied partition numbers as shown in Figure 27. When the number of partition

grows from 480 to 960, the Shuffle Read Rate increases for 24.4% and the Shuffle

Write Rate increases for 21.1% percent for 200M dataset. The observation indicates

to what extent the data shuffling overhead affects to the latency of the indexing and

joint query stages when increasing the partition numbers.
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Figure 27: Segmentation Repartition Shuffling Ratio

The latency decomposition of the graph storage system is shown in Figure 28. In

contrast to the in-memory processing system, no significant bottleneck stage occupies

more than a quarter of the time. This indicates the graph storage system is efficient

in scaling the workload.
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Figure 28: Graph Database Based Framework Latency Decomposition

Figure 29: Neo4j 16 Node Clustering
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Chapter 6

Discussion

6.1 Data Skew Analysis

Data skew is a phenomenon of non-uniform distribution of key values and tuples. The

published analyses of joins in the presence of data skew indicate data skew curtail

scalability [38][39][26]. Above experiments indicate the data skew effects due to the

partition and the indexing stages of workflows.

Both workflows of the in-memory processing system and the graph storage system

in Figure 11 have the partition assignment stage before data shuffling. Due to the

R-tree partition limitation, the 1% sample MBRs cannot generate R-tree leaf grids

covering all the spatial range of MBRs. R-tree leaves cover only portions of the whole

range to be partitioned. The rest of MBRs are assigned to the ”overflow” partition.

This causes the data skew problem.

6.2 Replacing Partitioning Strategy

The experiments further measure the latency and the number of MBR records in RDD

processed during the join query stage. Table 5 can give an insight into the partition

data size distribution and the execution latency distribution among the tasks in the

query stage. For in-memory processing framework, the largest partition size (354,

524 records) is 145 times of median partition size (2, 450 records) in 1GB data input.

In the meantime, the largest partition’s execution time is 504 times than the median

partition’s execution time. The variance between partition record number suggests

71



a severe data skew between partitions and the variance between task execution time

indicates the garbage collection overhead takes too much time when processing the

largest partition. This is a sign of lacking resources that the framework can not handle

so much data in one single partition.
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To solve this data skew issue, the R-tree partition strategy is replaced to the Quad-

tree partition strategy [56] within the in-memory processing framework. Unlike the

R-tree partition, the Quad-tree partition has no overflow partition. The depth of a

Quad-tree is adapted to the MBR density. The denser of MBRs in a certain spatial

range, the deeper of the Quad-tree and the more partitions in this range.

Table 5 shows under 1GB data size, the largest partition generates 8, 878 records

compared to 986 records for median partition, which is only approximately 8 times

larger. Meanwhile, the maximum partition’s processing time (53s) is only 25.5 times

longer than the median partition’s processing time. The lower variance results in a

higher level of parallelism is mentioned in Section 5.2.1.

6.3 Introducing Time Dimension When Partition-

ing

The study observes increasing the number of partitions incurs uneven distribution

that leads to data skew and the long tail of the processing time. Since the graph

storage framework has file systems for data storage, it has sufficient capacity to hold

larger size but fewer number of partitions. The solution to reduce the number of

partitions of a graph storage framework is introducing the time dimension as a new

factor when partitioning data.

The study repartitions the MBRs in one geographical partition into multiple map

layers by introducing the time dimension. Each map layer is labeled to contain sub-

trajectories occurring in a certain period of time. That can be a few minutes or

several days depending on the density. The MBRs as the representation of sub-

trajectories have the property indicating when the sub-trajectories start and end.

it is possible to dispense the MBR into certain map layer during the Stage 3. It

follows the replication method in Section 3.4.1 Stage 3 when an MBR is between two

map layers. The following stages treat each map layer in the graph database as an

individual partition in Spark system. Figure 30 demonstrates the trajectory segments

are routed to different map layers.

Table 5 shows the MBR distribution between partitions when applying R-tree and

time dimension partition method in graph storage. Since the Neo4j graph database

has a better ability handling large partition, the repartition number parameter is set
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Figure 30: Multiple Map Layers Routing to Neo4j Nodes

smaller than the in-memory framework. So the record number in one partition is

relatively larger compared to other partition methods based on in-memory frame-

work. From the table shown in 1GB scenario, study reveals the largest partition is

43, 180 MBR records and the median partition record number is 41, 410, which is

only 4% larger. Also, the largest partition’s execution time is only 0.1 times longer

than median partition. The least variance ensures all parallel tasks can complete

simultaneously and gives the most efficiency.
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6.4 Unaddressed Problems

Due to the time limitation, a full evaluation of the Quad-tree performance is not

accomplished. The study does not test the latency using Quad-tree partition method

and graph database. It does not have the time decomposition with Quad-tree parti-

tioning workflow.

This framework is a distributed system consisting of multiple processing nodes

and multiple graph storage nodes. If there is a failure on Spark processing node, the

framework can recover from Spark’s failover mechanism to reproduce the losing RDD.

Due to the lack of synchronization mechanism or high-availability between graph

database nodes. Each database node is in standalone mode to get the maximum

throughput. When facing a network partition, it is impossible to access all data

partitions. We lost the accessibility of our system as CAP theorem [8] described.

CAP theorem stands for Consistency, Availability, and Partition Tolerance.

6.5 Reliability Factors

Test-retest reliability: Due to the random sampling algorithm adopted in parti-

tioning stage, re-run the test can not guarantee the same partition distribution as

last time. Partition distribution is a big factor impacting the workflow performance.

Parallel-forms reliability: There is no standard to evaluate the cloud computing

platform computing power. There is no mating to AWS M4.2XLarge instant type or

similar from other cloud computing platforms like Google or Microsoft Azure. The

non-universal computing node size standard limits our cross infrastructure platform

test to examine our parallel-forms reliability.

6.6 Threads to Validity

History: Between two rounds of the trajectory processing tests, the Linux system

cache some frequently used data as an optimization even though we delete the whole

database folder and all Spark intermediate files. Building a whole new system to

execute a single test and terminating it is cost-consuming. Also, the long distance

network connection between S3 file storage and EMR cluster is also a concern that
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we could not control. To solve this, it requires a dedicated private cluster and to reset

all configurations between each round of tests.

Selection biases: When selecting the trajectory data, there is no measurement

to evaluate the variance of trajectories. We just randomly select the trajectories that

fulfill the required size of data. There is no more measurement against the trajectory

lasting time, trajectory travel distance. So double the size of the dataset does not

mean the double size of MBRs or double workload. To improve this, distribute short,

medium and long trajectories in each size of test dataset on a pro-rata basis.

The trajectories are gathered from Beijing city. However, the road network in

Beijing is one of the very few cities with ring roads. There are more than six ring

roads in Beijing. The unique road network affects the accuracy when compare the

two trajectories. Applying more trajectory data from other cities can improve this

bias.
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Chapter 7

Conclusion

In this thesis, a distributed trajectory segmentation framework that transforms se-

quences of trajectories into queryable data blocks to build trajectory analysis appli-

cations is developed.

The thesis designs the system architecture and workflows to discover trajectory

patterns using both distributed in-memory processing framework and a cluster of

graph database nodes.

This thesis designs the parallel trajectory segmentation algorithm based on MapRe-

duce pattern. It is implemented on Spark which is a memory processing framework.

Greedy-split algorithm is selected to transform trajectory data to indexable MBR

shapes ,which is a balance between the accuracy and time complexity.

This whole system uses divide and conquer thoughts to divide a whole geograph-

ical area into multiple partitions. The experiments show two dynamic partitioning

strategies one is R-tree partition and another is Quad-tree partitioning. The results

show that Quad-tree has a better performance when handling data skew problem.

For acceleration of the similarity query, the R-tree indexing inside of each partition

is stored in the node memory or in external database. The self-join query operation for

finding similar trajectories is also implemented in both Spark in-memory framework

and external Neo4j NoSQL database.

Based on the evaluation, we suggest users when facing small scales or dynamic

queries for low latency processing like streaming or micro batches to use the in-

memory processing framework. When the case is large scale static historical data

analysis like data warehouse offline query, we suggest users using the Neo4j based
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framework.

After defined two metrics of trajectories, more performance experiments are evalu-

ated to testify how the parameters can affect the performance of the framework. The

number of segments per trajectory affects the accuracy of trajectory transformation

but also directly influences the raw data processing latency. Increasing the cluster

node scale can get a good speedup because of the enlargement of memory. The study

also evaluates how the partition numbers can affect throughput. Clusters can be

fully utilized only by choosing high enough level of parallelism. However too many

partitions can result in more overhead at later processing stage.

Finally, the bottleneck to higher scalability caused by data screw is observed. Ac-

cordingly, this thesis proposes a balancing method based on time dimension to adjust

individual partition size and thus balance the data distribution. The study also eval-

uates a better partition method called “Quad-Tree” to solve the “overflow: partition

skewness.

For the future work, it aims to extend this framework with streaming pipeline to

handle real-time data, how to ensure the framework can recover from partial failure

and use other container DevOps concepts to achieve elastic auto scaling.
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Appendix A

System Deployment

Our system is written in Java Maven. All dependencies can be handled by the repos-

itories automatically.

To get the project, please use git took to folk the code.

Firstly, compile the modified GeoSpark with the support of Neo4j

1 g i t c l one https : // g i t hu b . com/kanghq/GeoSpark . g i t

1 g i t c l one https : // g i t hu b . com/kanghq/SparkApp . g i t

If you want the support of Neo4j, include this customized package in your local

repository path.

1 <groupId>org . datasys lab</groupId>

2 <a r t i f a c t I d>geospark</a r t i f a c t I d>

3 <vers ion >0.6.1−hq</vers ion>

Then compile the middleware. We skip the test cases to save time.

1 mvn i n s t a l l −DskipTests
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After a successful build, we can find the jar file in the target folder.

Upload this file to AWS S3 storage.

To use the graph database, download neo4j spatial plugin source code from git and

switch to 3.1 branch which adds the feature with GeoSpark support.

1 g i t c l one https : // g i t hu b . com/kanghq/ s p a t i a l . g i t

2 g i t checkout 3 . 1

3

Follow the instruction to build this plugin.

Download Neo4j Ver 3.1 Community.

Put this compiled plugin in the Neo4j plugin folder.
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Then we log in to Amazon AWS console to start the cluster.

Please select the EMR version 5.1.0

To avoid insufficient turnover disk space, please manually increase each node’s EBS

Storage to 100 GB.

Create a security group that allows SSH, Spark, and Neo4j to communicate with

each other.
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Assign this security group to both Master and core task nodes.

Upload the Neo4j Community 3.1 software to each node and start the graph

database server.

Add each work node an alternative hostname with the prefix DBSRV, for example,

DBSRV1, DBSRV2 ...

Now you can submit the Spark task.
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