3,878 research outputs found

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig

    Efficient data uncertainty management for health industrial internet of things using machine learning

    Full text link
    [EN] In modern technologies, the industrial internet of things (IIoT) has gained rapid growth in the fields of medical, transportation, and engineering. It consists of a self-governing configuration and cooperated with sensors to collect, process, and analyze the processes of a real-time system. In the medical system, healthcare IIoT (HIIoT) provides analytics of a huge amount of data and offers low-cost storage systems with the collaboration of cloud systems for the monitoring of patient information. However, it faces certain connectivity, nodes failure, and rapid data delivery challenges in the development of e-health systems. Therefore, to address such concerns, this paper presents an efficient data uncertainty management model for HIIoT using machine learning (EDM-ML) with declining nodes prone and data irregularity. Its aim is to increase the efficacy for the collection and processing of real-time data along with smart functionality against anonymous nodes. It developed an algorithm for improving the health services against disruption of network status and overheads. Also, the multi-objective function decreases the uncertainty in the management of medical data. Furthermore, it expects the routing decisions using a machine learning-based algorithm and increases the uniformity in health operations by balancing the network resources and trust distribution. Finally, it deals with a security algorithm and established control methods to protect the distributed data in the exposed health industry. Extensive simulations are performed, and their results reveal the significant performance of the proposed model in the context of uncertainty and intelligence than benchmark algorithms.This research is supported by Artificial Intelligence & Data Analytics Lab (AIDA) CCIS Prince Sultan University, Riyadh Saudi Arabia. Authors are thankful for the support.Haseeb, K.; Saba, T.; Rehman, A.; Ahmed, I.; Lloret, J. (2021). Efficient data uncertainty management for health industrial internet of things using machine learning. International Journal of Communication Systems. 34(16):1-14. https://doi.org/10.1002/dac.4948114341

    Statistical Review of Health Monitoring Models for Real-Time Hospital Scenarios

    Get PDF
    Health Monitoring System Models (HMSMs) need speed, efficiency, and security to work. Cascading components ensure data collection, storage, communication, retrieval, and privacy in these models. Researchers propose many methods to design such models, varying in scalability, multidomain efficiency, flexibility, usage and deployment, computational complexity, cost of deployment, security level, feature usability, and other performance metrics. Thus, HMSM designers struggle to find the best models for their application-specific deployments. They must test and validate different models, which increases design time and cost, affecting deployment feasibility. This article discusses secure HMSMs' application-specific advantages, feature-specific limitations, context-specific nuances, and deployment-specific future research scopes to reduce model selection ambiguity. The models based on the Internet of Things (IoT), Machine Learning Models (MLMs), Blockchain Models, Hashing Methods, Encryption Methods, Distributed Computing Configurations, and Bioinspired Models have better Quality of Service (QoS) and security than their counterparts. Researchers can find application-specific models. This article compares the above models in deployment cost, attack mitigation performance, scalability, computational complexity, and monitoring applicability. This comparative analysis helps readers choose HMSMs for context-specific application deployments. This article also devises performance measuring metrics called Health Monitoring Model Metrics (HM3) to compare the performance of various models based on accuracy, precision, delay, scalability, computational complexity, energy consumption, and security
    corecore