9,605 research outputs found

    Audio-visual multi-modality driven hybrid feature learning model for crowd analysis and classification

    Get PDF
    The high pace emergence in advanced software systems, low-cost hardware and decentralized cloud computing technologies have broadened the horizon for vision-based surveillance, monitoring and control. However, complex and inferior feature learning over visual artefacts or video streams, especially under extreme conditions confine majority of the at-hand vision-based crowd analysis and classification systems. Retrieving event-sensitive or crowd-type sensitive spatio-temporal features for the different crowd types under extreme conditions is a highly complex task. Consequently, it results in lower accuracy and hence low reliability that confines existing methods for real-time crowd analysis. Despite numerous efforts in vision-based approaches, the lack of acoustic cues often creates ambiguity in crowd classification. On the other hand, the strategic amalgamation of audio-visual features can enable accurate and reliable crowd analysis and classification. Considering it as motivation, in this research a novel audio-visual multi-modality driven hybrid feature learning model is developed for crowd analysis and classification. In this work, a hybrid feature extraction model was applied to extract deep spatio-temporal features by using Gray-Level Co-occurrence Metrics (GLCM) and AlexNet transferrable learning model. Once extracting the different GLCM features and AlexNet deep features, horizontal concatenation was done to fuse the different feature sets. Similarly, for acoustic feature extraction, the audio samples (from the input video) were processed for static (fixed size) sampling, pre-emphasis, block framing and Hann windowing, followed by acoustic feature extraction like GTCC, GTCC-Delta, GTCC-Delta-Delta, MFCC, Spectral Entropy, Spectral Flux, Spectral Slope and Harmonics to Noise Ratio (HNR). Finally, the extracted audio-visual features were fused to yield a composite multi-modal feature set, which is processed for classification using the random forest ensemble classifier. The multi-class classification yields a crowd-classification accurac12529y of (98.26%), precision (98.89%), sensitivity (94.82%), specificity (95.57%), and F-Measure of 98.84%. The robustness of the proposed multi-modality-based crowd analysis model confirms its suitability towards real-world crowd detection and classification tasks

    Beam scanning by liquid-crystal biasing in a modified SIW structure

    Get PDF
    A fixed-frequency beam-scanning 1D antenna based on Liquid Crystals (LCs) is designed for application in 2D scanning with lateral alignment. The 2D array environment imposes full decoupling of adjacent 1D antennas, which often conflicts with the LC requirement of DC biasing: the proposed design accommodates both. The LC medium is placed inside a Substrate Integrated Waveguide (SIW) modified to work as a Groove Gap Waveguide, with radiating slots etched on the upper broad wall, that radiates as a Leaky-Wave Antenna (LWA). This allows effective application of the DC bias voltage needed for tuning the LCs. At the same time, the RF field remains laterally confined, enabling the possibility to lay several antennas in parallel and achieve 2D beam scanning. The design is validated by simulation employing the actual properties of a commercial LC medium

    Machine learning and mixed reality for smart aviation: applications and challenges

    Get PDF
    The aviation industry is a dynamic and ever-evolving sector. As technology advances and becomes more sophisticated, the aviation industry must keep up with the changing trends. While some airlines have made investments in machine learning and mixed reality technologies, the vast majority of regional airlines continue to rely on inefficient strategies and lack digital applications. This paper investigates the state-of-the-art applications that integrate machine learning and mixed reality into the aviation industry. Smart aerospace engineering design, manufacturing, testing, and services are being explored to increase operator productivity. Autonomous systems, self-service systems, and data visualization systems are being researched to enhance passenger experience. This paper investigate safety, environmental, technological, cost, security, capacity, and regulatory challenges of smart aviation, as well as potential solutions to ensure future quality, reliability, and efficiency

    Role of Digitalization in Election Voting Through Industry 4.0 Enabling Technologies

    Get PDF
    The election voting system is one of the essential pillars of democracy to elect the representative for ruling the country. In the election voting system, there are multiple areas such as detection of fake voters, illegal activities for fake voting, booth capturing, ballot monitoring, etc., in which Industry 4.0 can be adopted for the application of real-time monitoring, intelligent detection, enhancing security and transparency of voting and other data during the voting. According to previous research, there are no studies that have presented the significance of industry 4.0 technologies for improving the electronic voting system from a sustainability standpoint. To overcome the research gap, this study aims to present literature about Industry 4.0 technologies on the election voting system. We examined individual industry enabling technologies such as blockchain, artificial intelligence (AI), cloud computing, and the Internet of Things (IoT) that have the potential to strengthen the infrastructure of the election voting system. Based upon the analysis, the study has discussed and recommended suggestions for the future scope such as: IoT and cloud computing-based automatic systems for the detection of fake voters and updating voter attendance after the verification of the voter identity; AI-based illegal, and fake voting activities detection through vision node; blockchain-inspired system for the data integrity in between voter and election commission and robotic assistance system for guiding the voter and also for detecting disputes in the premises of election booth

    A Machine Learning based Empirical Evaluation of Cyber Threat Actors High Level Attack Patterns over Low level Attack Patterns in Attributing Attacks

    Full text link
    Cyber threat attribution is the process of identifying the actor of an attack incident in cyberspace. An accurate and timely threat attribution plays an important role in deterring future attacks by applying appropriate and timely defense mechanisms. Manual analysis of attack patterns gathered by honeypot deployments, intrusion detection systems, firewalls, and via trace-back procedures is still the preferred method of security analysts for cyber threat attribution. Such attack patterns are low-level Indicators of Compromise (IOC). They represent Tactics, Techniques, Procedures (TTP), and software tools used by the adversaries in their campaigns. The adversaries rarely re-use them. They can also be manipulated, resulting in false and unfair attribution. To empirically evaluate and compare the effectiveness of both kinds of IOC, there are two problems that need to be addressed. The first problem is that in recent research works, the ineffectiveness of low-level IOC for cyber threat attribution has been discussed intuitively. An empirical evaluation for the measure of the effectiveness of low-level IOC based on a real-world dataset is missing. The second problem is that the available dataset for high-level IOC has a single instance for each predictive class label that cannot be used directly for training machine learning models. To address these problems in this research work, we empirically evaluate the effectiveness of low-level IOC based on a real-world dataset that is specifically built for comparative analysis with high-level IOC. The experimental results show that the high-level IOC trained models effectively attribute cyberattacks with an accuracy of 95% as compared to the low-level IOC trained models where accuracy is 40%.Comment: 20 page

    The Viability and Potential Consequences of IoT-Based Ransomware

    Get PDF
    With the increased threat of ransomware and the substantial growth of the Internet of Things (IoT) market, there is significant motivation for attackers to carry out IoT-based ransomware campaigns. In this thesis, the viability of such malware is tested. As part of this work, various techniques that could be used by ransomware developers to attack commercial IoT devices were explored. First, methods that attackers could use to communicate with the victim were examined, such that a ransom note was able to be reliably sent to a victim. Next, the viability of using "bricking" as a method of ransom was evaluated, such that devices could be remotely disabled unless the victim makes a payment to the attacker. Research was then performed to ascertain whether it was possible to remotely gain persistence on IoT devices, which would improve the efficacy of existing ransomware methods, and provide opportunities for more advanced ransomware to be created. Finally, after successfully identifying a number of persistence techniques, the viability of privacy-invasion based ransomware was analysed. For each assessed technique, proofs of concept were developed. A range of devices -- with various intended purposes, such as routers, cameras and phones -- were used to test the viability of these proofs of concept. To test communication hijacking, devices' "channels of communication" -- such as web services and embedded screens -- were identified, then hijacked to display custom ransom notes. During the analysis of bricking-based ransomware, a working proof of concept was created, which was then able to remotely brick five IoT devices. After analysing the storage design of an assortment of IoT devices, six different persistence techniques were identified, which were then successfully tested on four devices, such that malicious filesystem modifications would be retained after the device was rebooted. When researching privacy-invasion based ransomware, several methods were created to extract information from data sources that can be commonly found on IoT devices, such as nearby WiFi signals, images from cameras, or audio from microphones. These were successfully implemented in a test environment such that ransomable data could be extracted, processed, and stored for later use to blackmail the victim. Overall, IoT-based ransomware has not only been shown to be viable but also highly damaging to both IoT devices and their users. While the use of IoT-ransomware is still very uncommon "in the wild", the techniques demonstrated within this work highlight an urgent need to improve the security of IoT devices to avoid the risk of IoT-based ransomware causing havoc in our society. Finally, during the development of these proofs of concept, a number of potential countermeasures were identified, which can be used to limit the effectiveness of the attacking techniques discovered in this PhD research

    Intrusion Detection Systems for Flying Ad-hoc Networks

    Full text link
    Unmanned Aerial Vehicles (UAVs) are becoming more dependent on mission success than ever. Due to their increase in demand, addressing security vulnerabilities to both UAVs and the Flying Ad-hoc Networks (FANET) they form is more important than ever. As the network traffic is communicated through open airwaves, this network of UAVs relies on monitoring applications known as Intrusion Detection Systems (IDS) to detect and mitigate attacks. This paper will survey current IDS systems that include machine learning techniques when combating various vulnerabilities and attacks from bad actors. This paper will be concluded with research challenges and future research directions in finding an effective IDS system that can handle cyber-attacks while meeting performance requirements.Comment: 5 Pages, 1 figure, 1 table, 41 Reference

    The Palaces of Comfort, Consolation and Distraction - The Pie and Mash shop as a performative space of a contested London working class memory

    Get PDF
    This thesis seeks to interrogate and clarify the history and culture of London’s traditional but fading and largely forgotten eel, pie and mash shops. In doing so the work examines their cultural conduit, the adjacent and evolving identity of the cockney whose contested memoryscapes have, I suggest, great contemporary political and cultural relevance in an age of populism and Brexit. The work excavates a tracing around the shops’ absences in historical literature. It situates their establishment within the dying breath of an older, popular street culture and the birth of a new London working class, centred around unofficial street markets and in a synchronous dance with the ideological accession of the bourgeoisie. The thesis employs the biological notion of a taxon to illustrate the shops’ evolution largely defined by the class-demotion of their clientele that mirrored the changing cartography of the city. By the late nineteenth century, this work argues, the eel and pie shops had become a pillar of a respectable London working class culture whose hyper-local solidarities revolved around micro-class divisions of work and negotiated bourgeois codes of propriety as part of a ‘culture of consolation’ that has remained largely impenetrable to outsiders. The study explores this concomitant cockney identity which became, partly through bourgeois theatrical ventriloquising, a figure of imperial incorporation. This eventually came to represent a particular type of ‘ordinariness’, subsequently reconfigured around the gains of a Welfare State and a national economy that continues to be periodically valorised according its usefulness to capital at times of political stress. Utilising sensory ethnography and memory studies the work explores the landscape and territoriality of the contemporary eel, pie and mash shop. It interrogates the rituals and complex, often competing and polyphonic memory inscriptions which memorialise a largely post-colonial nostalgic melancholia around the loss of fantasy of a British omnipotence. The thesis argues that the shops and their simulacra-like reincarnations amongst the cockney diaspora in the Essex new towns offer an insight into the changing notions of taste and class within the convivialities of a unique but broadly closed heritage of proletarian culture as a zone of resistance in the neoliberal city

    The Psychology of Trust from Relational Messages

    Get PDF
    A fundamental underpinning of all social relationships is trust. Trust can be established through implicit forms of communication called relational messages. A multidisciplinary, multi-university, cross-cultural investigation addressed how these message themes are expressed and whether they are moderated by culture and veracity. A multi-round decision-making game with 695 international participants assessed the nonverbal and verbal behaviors that express such meanings as affection, dominance, and composure, from which people ultimately determine who can be trusted and who not. Analysis of subjective judgments showed that trust was most predicted by dominance, then affection, and lastly, composure. Behaviorally, several nonverbal and verbal behaviors associated with these message themes were combined to predict trust. Results were similar across cultures but moderated by veracity. Methodologically, automated software extracted facial features, vocal features, and linguistic metrics associated with these message themes. A new attentional computer vision method retrospectively identified specific meaningful segments where relational messages were expressed. The new software tools and attentional model hold promise for identifying nuanced, implicit meanings that together predict trust and that can, in combination, serve as proxies for trust

    AI and Robotics in the Fight Against COVID-19 Pandemic

    Get PDF
    The outbreak of the novel coronavirus and its disease, COVID-19 present an unprecedented challenge for humanity. Artificial Intelligence (AI) and robotics may help fighting COVID-19. Potential applications of AI in this accelerating pandemic include, but are not limited to, early detection and diagnosis, massive agent modeling and simulation, data analytics, assistive robots, disinfection robots, public awareness and patrolling, contactless delivery services, virtual healthcare assistants, drug repurposing and vaccination discovery. This chapter sheds light on the roles AI and robotics can play in fighting this disastrous pandemic, and possible future ones. It highlights several potential applications to transform this challenge into opportunities. This chapter also discusses the ethical implications of AI and robotics during the pandemic and in the post-pandemic world
    • …
    corecore