2,800 research outputs found

    Blocking Java Applets at the Firewall

    Full text link
    This paper explores the problem of protecting a site on the Internet against hostile external Java applets while allowing trusted internal applets to run. With careful implementation, a site can be made resistant to current Java security weaknesses as well as those yet to be discovered. In addition, we describe a new attack on certain sophisticated firewalls that is most effectively realized as a Java applet

    The Use of Firewalls in an Academic Environment

    No full text

    Exploratory review on network firewall architectures and their appplications

    Get PDF

    A Survey on Handover Management in Mobility Architectures

    Full text link
    This work presents a comprehensive and structured taxonomy of available techniques for managing the handover process in mobility architectures. Representative works from the existing literature have been divided into appropriate categories, based on their ability to support horizontal handovers, vertical handovers and multihoming. We describe approaches designed to work on the current Internet (i.e. IPv4-based networks), as well as those that have been devised for the "future" Internet (e.g. IPv6-based networks and extensions). Quantitative measures and qualitative indicators are also presented and used to evaluate and compare the examined approaches. This critical review provides some valuable guidelines and suggestions for designing and developing mobility architectures, including some practical expedients (e.g. those required in the current Internet environment), aimed to cope with the presence of NAT/firewalls and to provide support to legacy systems and several communication protocols working at the application layer

    Firewall Management

    Get PDF
    Network connectivity can be both a blessing and a curse. On the one hand, network connectivity can enable users to share files, exchange e-mail, and pool physical resources. Yet network connectivity can also be a risky endeavor, if the connectivity grants access to would-be intruders. The Internet is a perfect case in point. Designed for a trusted environment, many contemporary exploits are based upon vulnerabilities inherent to the protocol itself. In light of this trend, many organizations are implementing firewalls to protect their internal network from the untrusted Internet.firewall, network connection, risks, vulnerabilities

    Hyp3rArmor: reducing web application exposure to automated attacks

    Full text link
    Web applications (webapps) are subjected constantly to automated, opportunistic attacks from autonomous robots (bots) engaged in reconnaissance to discover victims that may be vulnerable to specific exploits. This is a typical behavior found in botnet recruitment, worm propagation, largescale fingerprinting and vulnerability scanners. Most anti-bot techniques are deployed at the application layer, thus leaving the network stack of the webapp’s server exposed. In this paper we present a mechanism called Hyp3rArmor, that addresses this vulnerability by minimizing the webapp’s attack surface exposed to automated opportunistic attackers, for JavaScriptenabled web browser clients. Our solution uses port knocking to eliminate the webapp’s visible network footprint. Clients of the webapp are directed to a visible static web server to obtain JavaScript that authenticates the client to the webapp server (using port knocking) before making any requests to the webapp. Our implementation of Hyp3rArmor, which is compatible with all webapp architectures, has been deployed and used to defend single and multi-page websites on the Internet for 114 days. During this time period the static web server observed 964 attempted attacks that were deflected from the webapp, which was only accessed by authenticated clients. Our evaluation shows that in most cases client-side overheads were negligible and that server-side overheads were minimal. Hyp3rArmor is ideal for critical systems and legacy applications that must be accessible on the Internet. Additionally Hyp3rArmor is composable with other security tools, adding an additional layer to a defense in depth approach.This work has been supported by the National Science Foundation (NSF) awards #1430145, #1414119, and #1012798
    • …
    corecore