634 research outputs found

    An Elliptic Curve-based Signcryption Scheme with Forward Secrecy

    Full text link
    An elliptic curve-based signcryption scheme is introduced in this paper that effectively combines the functionalities of digital signature and encryption, and decreases the computational costs and communication overheads in comparison with the traditional signature-then-encryption schemes. It simultaneously provides the attributes of message confidentiality, authentication, integrity, unforgeability, non-repudiation, public verifiability, and forward secrecy of message confidentiality. Since it is based on elliptic curves and can use any fast and secure symmetric algorithm for encrypting messages, it has great advantages to be used for security establishments in store-and-forward applications and when dealing with resource-constrained devices.Comment: 13 Pages, 5 Figures, 2 Table

    Modelling and simulation of a biometric identity-based cryptography

    Get PDF
    Government information is a vital asset that must be kept in a trusted environment and efficiently managed by authorised parties. Even though e-Government provides a number of advantages, it also introduces a range of new security risks. Sharing confidential and top-secret information in a secure manner among government sectors tend to be the main element that government agencies look for. Thus, developing an effective methodology is essential and it is a key factor for e-Government success. The proposed e-Government scheme in this paper is a combination of identity-based encryption and biometric technology. This new scheme can effectively improve the security in authentication systems, which provides a reliable identity with a high degree of assurance. In addition, this paper demonstrates the feasibility of using Finite-state machines as a formal method to analyse the proposed protocols

    Biometric identity-based cryptography for e-Government environment

    Get PDF
    Government information is a vital asset that must be kept in a trusted environment and efficiently managed by authorised parties. Even though e-Government provides a number of advantages, it also introduces a range of new security risks. Sharing confidential and top-secret information in a secure manner among government sectors tend to be the main element that government agencies look for. Thus, developing an effective methodology is essential and it is a key factor for e-Government success. The proposed e-Government scheme in this paper is a combination of identity-based encryption and biometric technology. This new scheme can effectively improve the security in authentication systems, which provides a reliable identity with a high degree of assurance. In addition, this paper demonstrates the feasibility of using Finite-state machines as a formal method to analyse the proposed protocols

    Basic key exchange protocols for secret key cryptosystems under CRYMPIX library

    Get PDF
    Thesis (Master)--Izmir Institute of Technology, Computer Engineering, Izmir, 2007Includes bibliographical references (leaves: 47-48)Text in English; Abstract: Turkish and Englishviii, 50 leavesKey exchange protocols are developed in order to overcome the key distribution problem of symmetrical cryptosystems. These protocols which are based on various algebraic domains are different implementations of public-key cryptography. In this thesis, the basic key exchange protocols are reviewed and CRYMPIX implementations of them are provided. CRYMPIX has a portable structure that provides platform independence for generated code. Hence, the implemented key exchange mechanisms are suitable to be used on different hardware and software platforms

    Robust and efficient password authenticated key agreement with user anonymity for session initiation protocol-based communications

    Get PDF
    A suitable key agreement protocol plays an essential role in protecting the communications over open channels among users using Voice over Internet Protocol (VoIP). This paper presents a robust and flexible password authenticated key agreement protocol with user anonymity for Session Initiation Protocol (SIP) used by VoIP communications. Security analysis demonstrates that our protocol enjoys many unique properties, such as user anonymity, no password table, session key agreement, mutual authentication, password updating freely and conveniently revoking lost smartcards etc. Furthermore, our protocol can resist the replay attack, the impersonation attack, the stolen-verifier attack, the man-in-middle attack, the Denning-Sacco attack, and the offline dictionary attack with or without smartcards. Finally, performance analysis shows that our protocol is more suitable for practical application in comparison with other related protocols

    Cryptanalysis of an e_cient three-party password-based key exchange scheme

    Get PDF
    AbstractIn order to secure communications between two clients with a trusted server's help in public network environments, a three-party password-based authenticated key exchange (3PAKE) scheme is used to provide the transaction confidentiality and e_ciency. In 2010, Lou-Huang proposed a new simple three-party password-based authenticated key exchange (LH-3PAKE) scheme based on elliptic curve cryptography (ECC). By analysis, Lou-Huang claimed that the proposed LH- 3PAKE scheme is not only secure against various attacks, but also more e_cient than previously proposed 3PAKE schemes. However, this paper demonstrates LH-3PAKE scheme is vulnerable to o_-line password guessing attacks by an attacker

    A lightweight privacy preserving authenticated key agreement protocol for SIP-based VoIP

    Get PDF
    Session Initiation Protocol (SIP) is an essential part of most Voice over Internet Protocol (VoIP) architecture. Although SIP provides attractive features, it is exposed to various security threats, and so an efficient and secure authentication scheme is sought to enhance the security of SIP. Several attempts have been made to address the tradeoff problem between security and efficiency, but designing a successful authenticated key agreement protocol for SIP is still a challenging task from the viewpoint of both performance and security, because performance and security as two critical factors affecting SIP applications always seem contradictory. In this study, we employ biometrics to design a lightweight privacy preserving authentication protocol for SIP based on symmetric encryption, achieving a delicate balance between performance and security. In addition, the proposed authentication protocol can fully protect the privacy of biometric characteristics and data identity, which has not been considered in previous work. The completeness of the proposed protocol is demonstrated by Gong, Needham, and Yahalom (GNY) logic. Performance analysis shows that our proposed protocol increases efficiency significantly in comparison with other related protocols
    • …
    corecore