3 research outputs found

    An introduction of a modular framework for securing 5G networks and beyond

    Get PDF
    Fifth Generation Mobile Network (5G) is a heterogeneous network in nature, made up of multiple systems and supported by different technologies. It will be supported by network services such as device-to-device (D2D) communications. This will enable the new use cases to provide access to other services within the network and from third-party service providers (SPs). End-users with their user equipment (UE) will be able to access services ubiquitously from multiple SPs that might share infrastructure and security management, whereby implementing security from one domain to another will be a challenge. This highlights a need for a new and effective security approach to address the security of such a complex system. This article proposes a network service security (NSS) modular framework for 5G and beyond that consists of different security levels of the network. It reviews the security issues of D2D communications in 5G, and it is used to address security issues that affect the users and SPs in an integrated and heterogeneous network such as the 5G enabled D2D communications network. The conceptual framework consists of a physical layer, network access, service and D2D security levels. Finally, it recommends security mechanisms to address the security issues at each level of the 5G-enabled D2D communications network

    A secure framework for communications in heterogeneous networks

    No full text
    Heterogeneous Networks represent an open architecture in which two different domains need to cooperate in order to provide ubiquitous connectivity. The first is network operators domain, where multiple network operators share the core network to provide network accessibility over a wide variety of wireless technologies such as WiFi and mobile network technologies. The other is the Application-Service Providers domain, which launches various services ranging from the normal videostreaming to the most confidential E-Commerce services. This highlights the fact that any efficient security solution for heterogeneous networks has to consider the security in these different domains. Therefore, this paper introduces security framework that comprises two Authentication and Key Agreement protocols to secure transactions at the network and service levels. The proposed protocols have been formally verified using formal methods approach based on Casper/FDR tool
    corecore