4,128 research outputs found

    Low Mach number effect in simulation of high Mach number flow

    Full text link
    In this note, we relate the two well-known difficulties of Godunov schemes: the carbuncle phenomena in simulating high Mach number flow, and the inaccurate pressure profile in simulating low Mach number flow. We introduced two simple low-Mach-number modifications for the classical Roe flux to decrease the difference between the acoustic and advection contributions of the numerical dissipation. While the first modification increases the local numerical dissipation, the second decreases it. The numerical tests on the double-Mach reflection problem show that both modifications eliminate the kinked Mach stem suffered by the original flux. These results suggest that, other than insufficient numerical dissipation near the shock front, the carbuncle phenomena is strongly relevant to the non-comparable acoustic and advection contributions of the numerical dissipation produced by Godunov schemes due to the low Mach number effect.Comment: 9 pages, 1 figur

    Kinetic Solvers with Adaptive Mesh in Phase Space

    Full text link
    An Adaptive Mesh in Phase Space (AMPS) methodology has been developed for solving multi-dimensional kinetic equations by the discrete velocity method. A Cartesian mesh for both configuration (r) and velocity (v) spaces is produced using a tree of trees data structure. The mesh in r-space is automatically generated around embedded boundaries and dynamically adapted to local solution properties. The mesh in v-space is created on-the-fly for each cell in r-space. Mappings between neighboring v-space trees implemented for the advection operator in configuration space. We have developed new algorithms for solving the full Boltzmann and linear Boltzmann equations with AMPS. Several recent innovations were used to calculate the discrete Boltzmann collision integral with dynamically adaptive mesh in velocity space: importance sampling, multi-point projection method, and the variance reduction method. We have developed an efficient algorithm for calculating the linear Boltzmann collision integral for elastic and inelastic collisions in a Lorentz gas. New AMPS technique has been demonstrated for simulations of hypersonic rarefied gas flows, ion and electron kinetics in weakly ionized plasma, radiation and light particle transport through thin films, and electron streaming in semiconductors. We have shown that AMPS allows minimizing the number of cells in phase space to reduce computational cost and memory usage for solving challenging kinetic problems

    A Level Set Approach to Eulerian-Lagrangian Coupling

    Get PDF
    We present a numerical method for coupling an Eulerian compressible flow solver with a Lagrangian solver for fast transient problems involving fluid-solid interactions. Such coupling needs arise when either specific solution methods or accuracy considerations necessitate that different and disjoint subdomains be treated with different (Eulerian or Lagrangian)schemes. The algorithm we propose employs standard integration of the Eulerian solution over a Cartesian mesh. To treat the irregular boundary cells that are generated by an arbitrary boundary on a structured grid, the Eulerian computational domain is augmented by a thin layer of Cartesian ghost cells. Boundary conditions at these cells are established by enforcing conservation of mass and continuity of the stress tensor in the direction normal to the boundary. The description and the kinematic constraints of the Eulerian boundary rely on the unstructured Lagrangian mesh. The Lagrangian mesh evolves concurrently, driven by the traction boundary conditions imposed by the Eulerian counterpart. Several numerical tests designed to measure the rate of convergence and accuracy of the coupling algorithm are presented as well. General problems in one and two dimensions are considered, including a test consisting of an isotropic elastic solid and a compressible fluid in a fully coupled setting where the exact solution is available

    Multidimensional HLLE Riemann solver; Application to Euler and Magnetohydrodynamic Flows

    Full text link
    In this work we present a general strategy for constructing multidimensional Riemann solvers with a single intermediate state, with particular attention paid to detailing the two-dimensional Riemann solver. This is accomplished by introducing a constant resolved state between the states being considered, which introduces sufficient dissipation for systems of conservation laws. Closed form expressions for the resolved fluxes are also provided to facilitate numerical implementation. The Riemann solver is proved to be positively conservative for the density variable; the positivity of the pressure variable has been demonstrated for Euler flows when the divergence in the fluid velocities is suitably restricted so as to prevent the formation of cavitation in the flow. We also focus on the construction of multidimensionally upwinded electric fields for divergence-free magnetohydrodynamical flows. A robust and efficient second order accurate numerical scheme for two and three dimensional Euler and magnetohydrodynamic flows is presented. The scheme is built on the current multidimensional Riemann solver. The number of zones updated per second by this scheme on a modern processor is shown to be cost competitive with schemes that are based on a one-dimensional Riemann solver. However, the present scheme permits larger timesteps
    corecore