12,848 research outputs found

    A Taxonomy of Workflow Management Systems for Grid Computing

    Full text link
    With the advent of Grid and application technologies, scientists and engineers are building more and more complex applications to manage and process large data sets, and execute scientific experiments on distributed resources. Such application scenarios require means for composing and executing complex workflows. Therefore, many efforts have been made towards the development of workflow management systems for Grid computing. In this paper, we propose a taxonomy that characterizes and classifies various approaches for building and executing workflows on Grids. We also survey several representative Grid workflow systems developed by various projects world-wide to demonstrate the comprehensiveness of the taxonomy. The taxonomy not only highlights the design and engineering similarities and differences of state-of-the-art in Grid workflow systems, but also identifies the areas that need further research.Comment: 29 pages, 15 figure

    SLA-Oriented Resource Provisioning for Cloud Computing: Challenges, Architecture, and Solutions

    Full text link
    Cloud computing systems promise to offer subscription-oriented, enterprise-quality computing services to users worldwide. With the increased demand for delivering services to a large number of users, they need to offer differentiated services to users and meet their quality expectations. Existing resource management systems in data centers are yet to support Service Level Agreement (SLA)-oriented resource allocation, and thus need to be enhanced to realize cloud computing and utility computing. In addition, no work has been done to collectively incorporate customer-driven service management, computational risk management, and autonomic resource management into a market-based resource management system to target the rapidly changing enterprise requirements of Cloud computing. This paper presents vision, challenges, and architectural elements of SLA-oriented resource management. The proposed architecture supports integration of marketbased provisioning policies and virtualisation technologies for flexible allocation of resources to applications. The performance results obtained from our working prototype system shows the feasibility and effectiveness of SLA-based resource provisioning in Clouds.Comment: 10 pages, 7 figures, Conference Keynote Paper: 2011 IEEE International Conference on Cloud and Service Computing (CSC 2011, IEEE Press, USA), Hong Kong, China, December 12-14, 201

    A Case for Cooperative and Incentive-Based Coupling of Distributed Clusters

    Full text link
    Research interest in Grid computing has grown significantly over the past five years. Management of distributed resources is one of the key issues in Grid computing. Central to management of resources is the effectiveness of resource allocation as it determines the overall utility of the system. The current approaches to superscheduling in a grid environment are non-coordinated since application level schedulers or brokers make scheduling decisions independently of the others in the system. Clearly, this can exacerbate the load sharing and utilization problems of distributed resources due to suboptimal schedules that are likely to occur. To overcome these limitations, we propose a mechanism for coordinated sharing of distributed clusters based on computational economy. The resulting environment, called \emph{Grid-Federation}, allows the transparent use of resources from the federation when local resources are insufficient to meet its users' requirements. The use of computational economy methodology in coordinating resource allocation not only facilitates the QoS based scheduling, but also enhances utility delivered by resources.Comment: 22 pages, extended version of the conference paper published at IEEE Cluster'05, Boston, M
    corecore