14,736 research outputs found

    A survey of self organisation in future cellular networks

    Get PDF
    This article surveys the literature over the period of the last decade on the emerging field of self organisation as applied to wireless cellular communication networks. Self organisation has been extensively studied and applied in adhoc networks, wireless sensor networks and autonomic computer networks; however in the context of wireless cellular networks, this is the first attempt to put in perspective the various efforts in form of a tutorial/survey. We provide a comprehensive survey of the existing literature, projects and standards in self organising cellular networks. Additionally, we also aim to present a clear understanding of this active research area, identifying a clear taxonomy and guidelines for design of self organising mechanisms. We compare strength and weakness of existing solutions and highlight the key research areas for further development. This paper serves as a guide and a starting point for anyone willing to delve into research on self organisation in wireless cellular communication networks

    Will SDN be part of 5G?

    Get PDF
    For many, this is no longer a valid question and the case is considered settled with SDN/NFV (Software Defined Networking/Network Function Virtualization) providing the inevitable innovation enablers solving many outstanding management issues regarding 5G. However, given the monumental task of softwarization of radio access network (RAN) while 5G is just around the corner and some companies have started unveiling their 5G equipment already, the concern is very realistic that we may only see some point solutions involving SDN technology instead of a fully SDN-enabled RAN. This survey paper identifies all important obstacles in the way and looks at the state of the art of the relevant solutions. This survey is different from the previous surveys on SDN-based RAN as it focuses on the salient problems and discusses solutions proposed within and outside SDN literature. Our main focus is on fronthaul, backward compatibility, supposedly disruptive nature of SDN deployment, business cases and monetization of SDN related upgrades, latency of general purpose processors (GPP), and additional security vulnerabilities, softwarization brings along to the RAN. We have also provided a summary of the architectural developments in SDN-based RAN landscape as not all work can be covered under the focused issues. This paper provides a comprehensive survey on the state of the art of SDN-based RAN and clearly points out the gaps in the technology.Comment: 33 pages, 10 figure

    LTE in Unlicensed Bands is neither Friend nor Foe to Wi-Fi

    Full text link
    Proponents of deploying LTE in the 5 GHz band for providing additional cellular network capacity have claimed that LTE would be a better neighbour to Wi-Fi in the unlicensed band, than Wi-Fi is to itself. On the other side of the debate, the Wi-Fi community has objected that LTE would be highly detrimental to Wi-Fi network performance. However, there is a lack of transparent and systematic engineering evidence supporting the contradicting claims of the two camps, which is essential for ascertaining whether regulatory intervention is in fact required to protect the Wi-Fi incumbent from the new LTE entrant. To this end, we present a comprehensive coexistence study of Wi-Fi and LTE-in-unlicensed, surveying a large parameter space of coexistence mechanisms and a range of representative network densities and deployment scenarios. Our results show that, typically, harmonious coexistence between Wi-Fi and LTE is ensured by the large number of 5 GHz channels. For the worst-case scenario of forced co-channel operation, LTE is sometimes a better neighbour to Wi-Fi - when effective node density is low - but sometimes worse - when density is high. We find that distributed interference coordination is only necessary to prevent a "tragedy of the commons" in regimes where interference is very likely. We also show that in practice it does not make a difference to the incumbent what kind of coexistence mechanism is added to LTE-in-unlicensed, as long as one is in place. We therefore conclude that LTE is neither friend nor foe to Wi-Fi in the unlicensed bands in general. We submit that the systematic engineering analysis exemplified by our case study is a best-practice approach for supporting evidence-based rulemaking by the regulator.Comment: accepted for publication in IEEE Acces

    Scalable RAN Virtualization in Multi-Tenant LTE-A Heterogeneous Networks (Extended version)

    Full text link
    Cellular communications are evolving to facilitate the current and expected increasing needs of Quality of Service (QoS), high data rates and diversity of offered services. Towards this direction, Radio Access Network (RAN) virtualization aims at providing solutions of mapping virtual network elements onto radio resources of the existing physical network. This paper proposes the Resources nEgotiation for NEtwork Virtualization (RENEV) algorithm, suitable for application in Heterogeneous Networks (HetNets) in Long Term Evolution-Advanced (LTE-A) environments, consisting of a macro evolved NodeB (eNB) overlaid with small cells. By exploiting Radio Resource Management (RRM) principles, RENEV achieves slicing and on demand delivery of resources. Leveraging the multi-tenancy approach, radio resources are transferred in terms of physical radio Resource Blocks (RBs) among multiple heterogeneous base stations, interconnected via the X2 interface. The main target is to deal with traffic variations in geographical dimension. All signaling design considerations under the current Third Generation Partnership Project (3GPP) LTE-A architecture are also investigated. Analytical studies and simulation experiments are conducted to evaluate RENEV in terms of network's throughput as well as its additional signaling overhead. Moreover we show that RENEV can be applied independently on top of already proposed schemes for RAN virtualization to improve their performance. The results indicate that significant merits are achieved both from network's and users' perspective as well as that it is a scalable solution for different number of small cells.Comment: 40 pages (including Appendices), Accepted for publication in the IEEE Transactions on Vehicular Technolog
    • …
    corecore