4,118 research outputs found

    Advanced Message Routing for Scalable Distributed Simulations

    Get PDF
    The Joint Forces Command (JFCOM) Experimentation Directorate (J9)'s recent Joint Urban Operations (JUO) experiments have demonstrated the viability of Forces Modeling and Simulation in a distributed environment. The JSAF application suite, combined with the RTI-s communications system, provides the ability to run distributed simulations with sites located across the United States, from Norfolk, Virginia to Maui, Hawaii. Interest-aware routers are essential for communications in the large, distributed environments, and the current RTI-s framework provides such routers connected in a straightforward tree topology. This approach is successful for small to medium sized simulations, but faces a number of significant limitations for very large simulations over high-latency, wide area networks. In particular, traffic is forced through a single site, drastically increasing distances messages must travel to sites not near the top of the tree. Aggregate bandwidth is limited to the bandwidth of the site hosting the top router, and failures in the upper levels of the router tree can result in widespread communications losses throughout the system. To resolve these issues, this work extends the RTI-s software router infrastructure to accommodate more sophisticated, general router topologies, including both the existing tree framework and a new generalization of the fully connected mesh topologies used in the SF Express ModSAF simulations of 100K fully interacting vehicles. The new software router objects incorporate the scalable features of the SF Express design, while optionally using low-level RTI-s objects to perform actual site-to-site communications. The (substantial) limitations of the original mesh router formalism have been eliminated, allowing fully dynamic operations. The mesh topology capabilities allow aggregate bandwidth and site-to-site latencies to match actual network performance. The heavy resource load at the root node can now be distributed across routers at the participating sites

    Exploiting AWG Free Spectral Range Periodicity in Distributed Multicast Architectures

    Get PDF
    Modular optical switch architectures combining wavelength routing based on arrayed waveguide grating (AWG) devices and multicasting based on star couplers hold promise for flexibly addressing the exponentially growing traffic demands in a cost- and power-efficient fashion. In a default switching scenario, an input port of the AWG is connected to an output port via a single wavelength. This can severely limit the capacity between broadcast domains, resulting in interdomain traffic switching bottlenecks. In this paper, we examine the possibility of resolving capacity bottlenecks by exploiting multiple AWG free spectral ranges (FSRs), i.e., setting up multiple parallel connections between each pair of broadcast domains. To this end, we introduce a multi-FSR scheduling algorithm for interconnecting broadcast domains by fairly distributing the wavelength resources among them. We develop a general-purpose analytical framework to study the blocking probabilities in a multistage switching scenario and compare our results with Monte Carlo simulations. Our study points to significant improvements with a moderate increase in the number of FSRs. We show that an FSR count beyond four results in diminishing returns. Furthermore, to investigate the trade-offs between the network- and physical-layer effects, we conduct a cross-layer analysis, taking into account pulse amplitude modulation (PAM) and rate-adaptive forward error correction (FEC). We illustrate how the effective bit rate per port increases with an increase in the number of FSRs. %We also look at the advantages of an impairment-aware scheduling strategy in a multi-FSR switching scenario

    Efficient Micro-Mobility using Intra-domain Multicast-based Mechanisms (M&M)

    Full text link
    One of the most important metrics in the design of IP mobility protocols is the handover performance. The current Mobile IP (MIP) standard has been shown to exhibit poor handover performance. Most other work attempts to modify MIP to slightly improve its efficiency, while others propose complex techniques to replace MIP. Rather than taking these approaches, we instead propose a new architecture for providing efficient and smooth handover, while being able to co-exist and inter-operate with other technologies. Specifically, we propose an intra-domain multicast-based mobility architecture, where a visiting mobile is assigned a multicast address to use while moving within a domain. Efficient handover is achieved using standard multicast join/prune mechanisms. Two approaches are proposed and contrasted. The first introduces the concept proxy-based mobility, while the other uses algorithmic mapping to obtain the multicast address of visiting mobiles. We show that the algorithmic mapping approach has several advantages over the proxy approach, and provide mechanisms to support it. Network simulation (using NS-2) is used to evaluate our scheme and compare it to other routing-based micro-mobility schemes - CIP and HAWAII. The proactive handover results show that both M&M and CIP shows low handoff delay and packet reordering depth as compared to HAWAII. The reason for M&M's comparable performance with CIP is that both use bi-cast in proactive handover. The M&M, however, handles multiple border routers in a domain, where CIP fails. We also provide a handover algorithm leveraging the proactive path setup capability of M&M, which is expected to outperform CIP in case of reactive handover.Comment: 12 pages, 11 figure

    Scalability of broadcast performance in wireless network-on-chip

    Get PDF
    Networks-on-Chip (NoCs) are currently the paradigm of choice to interconnect the cores of a chip multiprocessor. However, conventional NoCs may not suffice to fulfill the on-chip communication requirements of processors with hundreds or thousands of cores. The main reason is that the performance of such networks drops as the number of cores grows, especially in the presence of multicast and broadcast traffic. This not only limits the scalability of current multiprocessor architectures, but also sets a performance wall that prevents the development of architectures that generate moderate-to-high levels of multicast. In this paper, a Wireless Network-on-Chip (WNoC) where all cores share a single broadband channel is presented. Such design is conceived to provide low latency and ordered delivery for multicast/broadcast traffic, in an attempt to complement a wireline NoC that will transport the rest of communication flows. To assess the feasibility of this approach, the network performance of WNoC is analyzed as a function of the system size and the channel capacity, and then compared to that of wireline NoCs with embedded multicast support. Based on this evaluation, preliminary results on the potential performance of the proposed hybrid scheme are provided, together with guidelines for the design of MAC protocols for WNoC.Peer ReviewedPostprint (published version

    Multi-layer virtual transport network management

    Full text link
    Nowadays there is an increasing need for a general paradigm which can simplify network management and further enable network innovations. Software Defined Networking (SDN) is an efficient way to make the network programmable and reduce management complexity, however it is plagued with limitations inherited from the legacy Internet (TCP/IP) architecture. In this paper, in response to limitations of current Software Defined Networking (SDN) management solutions, we propose a recursive approach to enterprise network management, where network management is done through managing various Virtual Transport Networks (VTNs) over different scopes (i.e., regions of operation). Different from the traditional virtual network model which mainly focuses on routing/tunneling, our VTN provides communication service with explicit Quality-of-Service (QoS) support for applications via transport flows, and it involves all mechanisms (e.g., addressing, routing, error and flow control, resource allocation) needed to support such transport flows. Based on this approach, we design and implement a management architecture, which recurses the same VTN-based management mechanism for enterprise network management. Our experimental results show that our management architecture achieves better performance.National Science Foundation awards: CNS-0963974 and CNS-1346688
    • …
    corecore