34 research outputs found

    Computing Vertex Centrality Measures in Massive Real Networks with a Neural Learning Model

    Full text link
    Vertex centrality measures are a multi-purpose analysis tool, commonly used in many application environments to retrieve information and unveil knowledge from the graphs and network structural properties. However, the algorithms of such metrics are expensive in terms of computational resources when running real-time applications or massive real world networks. Thus, approximation techniques have been developed and used to compute the measures in such scenarios. In this paper, we demonstrate and analyze the use of neural network learning algorithms to tackle such task and compare their performance in terms of solution quality and computation time with other techniques from the literature. Our work offers several contributions. We highlight both the pros and cons of approximating centralities though neural learning. By empirical means and statistics, we then show that the regression model generated with a feedforward neural networks trained by the Levenberg-Marquardt algorithm is not only the best option considering computational resources, but also achieves the best solution quality for relevant applications and large-scale networks. Keywords: Vertex Centrality Measures, Neural Networks, Complex Network Models, Machine Learning, Regression ModelComment: 8 pages, 5 tables, 2 figures, version accepted at IJCNN 2018. arXiv admin note: text overlap with arXiv:1810.1176

    A Scalable Null Model for Directed Graphs Matching All Degree Distributions: In, Out, and Reciprocal

    Full text link
    Degree distributions are arguably the most important property of real world networks. The classic edge configuration model or Chung-Lu model can generate an undirected graph with any desired degree distribution. This serves as a good null model to compare algorithms or perform experimental studies. Furthermore, there are scalable algorithms that implement these models and they are invaluable in the study of graphs. However, networks in the real-world are often directed, and have a significant proportion of reciprocal edges. A stronger relation exists between two nodes when they each point to one another (reciprocal edge) as compared to when only one points to the other (one-way edge). Despite their importance, reciprocal edges have been disregarded by most directed graph models. We propose a null model for directed graphs inspired by the Chung-Lu model that matches the in-, out-, and reciprocal-degree distributions of the real graphs. Our algorithm is scalable and requires O(m)O(m) random numbers to generate a graph with mm edges. We perform a series of experiments on real datasets and compare with existing graph models.Comment: Camera ready version for IEEE Workshop on Network Science; fixed some typos in tabl

    The domination number of on-line social networks and random geometric graphs

    Get PDF
    We consider the domination number for on-line social networks, both in a stochastic network model, and for real-world, networked data. Asymptotic sublinear bounds are rigorously derived for the domination number of graphs generated by the memoryless geometric protean random graph model. We establish sublinear bounds for the domination number of graphs in the Facebook 100 data set, and these bounds are well-correlated with those predicted by the stochastic model. In addition, we derive the asymptotic value of the domination number in classical random geometric graphs

    Towards a property graph generator for benchmarking

    Full text link
    The use of synthetic graph generators is a common practice among graph-oriented benchmark designers, as it allows obtaining graphs with the required scale and characteristics. However, finding a graph generator that accurately fits the needs of a given benchmark is very difficult, thus practitioners end up creating ad-hoc ones. Such a task is usually time-consuming, and often leads to reinventing the wheel. In this paper, we introduce the conceptual design of DataSynth, a framework for property graphs generation with customizable schemas and characteristics. The goal of DataSynth is to assist benchmark designers in generating graphs efficiently and at scale, saving from implementing their own generators. Additionally, DataSynth introduces novel features barely explored so far, such as modeling the correlation between properties and the structure of the graph. This is achieved by a novel property-to-node matching algorithm for which we present preliminary promising results

    Generating realistic scaled complex networks

    Get PDF
    Research on generative models is a central project in the emerging field of network science, and it studies how statistical patterns found in real networks could be generated by formal rules. Output from these generative models is then the basis for designing and evaluating computational methods on networks, and for verification and simulation studies. During the last two decades, a variety of models has been proposed with an ultimate goal of achieving comprehensive realism for the generated networks. In this study, we (a) introduce a new generator, termed ReCoN; (b) explore how ReCoN and some existing models can be fitted to an original network to produce a structurally similar replica, (c) use ReCoN to produce networks much larger than the original exemplar, and finally (d) discuss open problems and promising research directions. In a comparative experimental study, we find that ReCoN is often superior to many other state-of-the-art network generation methods. We argue that ReCoN is a scalable and effective tool for modeling a given network while preserving important properties at both micro- and macroscopic scales, and for scaling the exemplar data by orders of magnitude in size.Comment: 26 pages, 13 figures, extended version, a preliminary version of the paper was presented at the 5th International Workshop on Complex Networks and their Application
    corecore