6 research outputs found

    Coarse Correlation in Extensive-Form Games

    Full text link
    Coarse correlation models strategic interactions of rational agents complemented by a correlation device, that is a mediator that can recommend behavior but not enforce it. Despite being a classical concept in the theory of normal-form games for more than forty years, not much is known about the merits of coarse correlation in extensive-form settings. In this paper, we consider two instantiations of the idea of coarse correlation in extensive-form games: normal-form coarse-correlated equilibrium (NFCCE), already defined in the literature, and extensive-form coarse-correlated equilibrium (EFCCE), which we introduce for the first time. We show that EFCCE is a subset of NFCCE and a superset of the related extensive-form correlated equilibrium. We also show that, in two-player extensive-form games, social-welfare-maximizing EFCCEs and NFCEEs are bilinear saddle points, and give new efficient algorithms for the special case of games with no chance moves. In our experiments, our proposed algorithm for NFCCE is two to four orders of magnitude faster than the prior state of the art

    No-Regret Learning Dynamics for Extensive-Form Correlated Equilibrium

    Full text link
    The existence of simple, uncoupled no-regret dynamics that converge to correlated equilibria in normal-form games is a celebrated result in the theory of multi-agent systems. Specifically, it has been known for more than 20 years that when all players seek to minimize their internal regret in a repeated normal-form game, the empirical frequency of play converges to a normal-form correlated equilibrium. Extensive-form (that is, tree-form) games generalize normal-form games by modeling both sequential and simultaneous moves, as well as private information. Because of the sequential nature and presence of partial information in the game, extensive-form correlation has significantly different properties than the normal-form counterpart, many of which are still open research directions. Extensive-form correlated equilibrium (EFCE) has been proposed as the natural extensive-form counterpart to normal-form correlated equilibrium. However, it was currently unknown whether EFCE emerges as the result of uncoupled agent dynamics. In this paper, we give the first uncoupled no-regret dynamics that converge to the set of EFCEs in nn-player general-sum extensive-form games with perfect recall. First, we introduce a notion of trigger regret in extensive-form games, which extends that of internal regret in normal-form games. When each player has low trigger regret, the empirical frequency of play is close to an EFCE. Then, we give an efficient no-trigger-regret algorithm. Our algorithm decomposes trigger regret into local subproblems at each decision point for the player, and constructs a global strategy of the player from the local solutions at each decision point

    Hindsight and Sequential Rationality of Correlated Play

    Full text link
    Driven by recent successes in two-player, zero-sum game solving and playing, artificial intelligence work on games has increasingly focused on algorithms that produce equilibrium-based strategies. However, this approach has been less effective at producing competent players in general-sum games or those with more than two players than in two-player, zero-sum games. An appealing alternative is to consider adaptive algorithms that ensure strong performance in hindsight relative to what could have been achieved with modified behavior. This approach also leads to a game-theoretic analysis, but in the correlated play that arises from joint learning dynamics rather than factored agent behavior at equilibrium. We develop and advocate for this hindsight rationality framing of learning in general sequential decision-making settings. To this end, we re-examine mediated equilibrium and deviation types in extensive-form games, thereby gaining a more complete understanding and resolving past misconceptions. We present a set of examples illustrating the distinct strengths and weaknesses of each type of equilibrium in the literature, and prove that no tractable concept subsumes all others. This line of inquiry culminates in the definition of the deviation and equilibrium classes that correspond to algorithms in the counterfactual regret minimization (CFR) family, relating them to all others in the literature. Examining CFR in greater detail further leads to a new recursive definition of rationality in correlated play that extends sequential rationality in a way that naturally applies to hindsight evaluation.Comment: Technical report for a paper in the proceedings of the thirty-fifth AAAI Conference on Artificial Intelligence (AAAI-21), February 2-9, 2021, Virtual. 26 pages and 15 figure
    corecore